Skip to main content

On the Hermite Series-Based Generalized Regression Neural Networks for Stream Data Mining

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11955))

Abstract

In the paper, we develop the mathematically justified stream data mining algorithm for solving regression problems. The algorithm is based on the Hermite expansions of drifting regression functions. The global convergence, in the \(L_2\) space, is proved both in probability and with probability one. The examples of several concept drifts to be handled by our algorithm, and the illustrative simulations are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akdeniz, E., Egrioglu, E., Bas, E., Yolcu, U.: An ARMA type Pi-sigma artificial neural network for nonlinear time series forecasting. J. Artif. Intell. Soft Comput. Res. 8(2), 1–21 (2018)

    Article  Google Scholar 

  2. Bifet, A., Gavalda, R., Holmes, G., Pfahringer, B.: Machine Learning for Data Streams with Practical Examples in MOA. MIT Press, Cambridge (2018)

    Book  Google Scholar 

  3. Devi, V.S., Meena, L.: Parallel MCNN (PMCNN) with application to prototype selection on large and streaming data. J. Artif. Intell. Soft Comput. Res. 7(3), 155–169 (2017)

    Article  Google Scholar 

  4. Ditzler, G., Roveri, V., Alippi, C., Polikar, V.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)

    Article  Google Scholar 

  5. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

  6. Duda, P., Jaworski, M., Rutkowski, L.: Knowledge discovery in data streams with the orthogonal series-based generalized regression neural networks. Inf. Sci. 460, 497–518 (2018)

    Article  MathSciNet  Google Scholar 

  7. Duda, P., Jaworski, M., Rutkowski, L.: Convergent time-varying regression models for data streams: tracking concept drift by the recursive Parzen-based generalized regression neural networks. Int. J. Neural Syst. 28, 1–23 (2018)

    Article  Google Scholar 

  8. Duda, P., Rutkowski, L., Jaworski, M., Rutkowska, D.: On the Parzen kernel-based probability density function learning procedures over time-varying streaming data with applications to pattern classification. IEEE Tran. Cybern. 1–14 (2018)

    Google Scholar 

  9. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106 (2001)

    Google Scholar 

  10. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Wozniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  11. Lobo, J.L., Lana, I., Ser, J.D., Bilbao, M.N., Kasabov, N.: Evolving spiking neural networks for online learning over drifting data streams. Neural Netw. 108, 1–19 (2018)

    Article  Google Scholar 

  12. Nobukawa, S., Nishimura, H., Yamanishi, T.: Pattern classification by spiking neural networks combining self-organized and reward-related spike-timing-dependent plasticity. J. Artif. Intell. Soft Comput. Res. 9(4), 283–291 (2019)

    Article  Google Scholar 

  13. Nikolsky, S.: A Course of Mathematical Analysis. Mir Publishers, Moscow (1977)

    Google Scholar 

  14. Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream data mining? Inf. Sci. 381, 46–54 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ramirez-Gallego, S., Krawczyk, B., Garcia, S., Wozniak, M., Benitez, J.M., Herrera, F.: Nearest neighbor classification for high-speed big data streams using spark. IEEE Trans. Syst. Man Cybern. Syst. 47, 2727–2739 (2017)

    Article  Google Scholar 

  16. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25, 1272–1279 (2013)

    Article  Google Scholar 

  17. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26, 1048–1059 (2015)

    Article  MathSciNet  Google Scholar 

  18. Rutkowski, L., Jaworski, M., Duda, P.: Stream Data Mining: Algorithms and Their Probabilistic Properties. Springer, Heidelberg (2019)

    MATH  Google Scholar 

  19. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)

    Article  Google Scholar 

  20. Szego, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society Coll. Publ. (1959)

    Google Scholar 

  21. Yuan, J., Wang, Z., Sun, Y., Zhang, W., Jiang, J.: An effective pattern-based Bayesian classifier for evolving data stream. Neurocomputing 295, 17–28 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The project is financed under the program of the Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in the years 2019–2022, project number 020/RID/2018/19, the amount of financing 12,000,000 PLN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Rutkowski .

Editor information

Editors and Affiliations

Appendix – Proof of Theorems 1 and 2

Appendix – Proof of Theorems 1 and 2

Let us denote:

$$\begin{aligned} K_n(x,u) = \sum _{j_{1}=0}^{q(n)}...\sum _{j_{p}=0}^{q(n)}g_{j_{1}}(x^{(1)}) g_{j_{1}}(u^{(1)})\dots \text { }g_{j_{p}}(x^{(p)})g_{j_{p}}(u^{(p)}). \end{aligned}$$
(42)

Obviously,

$$\begin{aligned} \int {Var[Y_n K_n(x,X_n)]dx} \le \int {\mathbb {E}[Y^2_n K^2_n(x,X_n)]dx}. \end{aligned}$$
(43)

Since \(X_n\) and \(Z_n\) are independent random variables, using (7) and (8), one gets:

$$\begin{aligned} \int {\mathbb {E}[Y^2_n K^2_n(x,X_n)]dx} \end{aligned}$$
$$\begin{aligned} = \int {\mathbb {E}[{\phi }^2_n(X_n) K^2_n(x,X_n)]dx} + \int {\mathbb {E}[Z^2_n K^2_n(x,X_n)]dx} \end{aligned}$$
$$\begin{aligned} = \int \int {\phi }^2_n(u)K^2_n(x,u)f(u) dx du + \sigma _z^2 \int \int K^2_n(x,u)f(u) dx du. \end{aligned}$$
(44)

By the Schwarz inequality, one has:

$$\begin{aligned} K^2_n(x,u) \le \sum _{j_{1}=0}^{q(n)}g^2_{j_{1}}(x^{(1)}) \sum _{j_{1}=0}^{q(n)}g^2_{j_{1}}(u^{(1)}) \dots \sum _{j_{p}=0}^{q(n)}g^2_{j_{p}}(x^{(p)}) \sum _{j_{p}=0}^{q(n)}g^2_{j_{p}}(u^{(p)}) \end{aligned}$$
(45)

Combining (44) with (45), using (3), (18), and the orthonormality of system (1), one obtains the following bound:

$$\begin{aligned} \int {Var[Y_n K_n(x,X_n)]dx} \le q^p(n) \left( \sum _{j=0}^{q(n)}G^2_j \right) ^p d_n. \end{aligned}$$
(46)

In view of (25) and (46), a proper application of Theorems 9.3 and 9.4 in [18] concludes the proof of Theorems 1 and 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rutkowska, D., Rutkowski, L. (2019). On the Hermite Series-Based Generalized Regression Neural Networks for Stream Data Mining. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36718-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36717-6

  • Online ISBN: 978-3-030-36718-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics