Skip to main content

Generative Histogram-Based Model Using Unsupervised Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11955))

Included in the following conference series:

Abstract

This paper presents a new generative unsupervised learning algorithm based on a representation of the clusters distribution by histograms. The main idea is to reduce the model complexity through cluster-defined projections of the data on independent axes. The results show that the proposed approach performs efficiently compared with other algorithms. In addition, it is more efficient to generate new instances with the same distribution than the training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldi, P., Brunak, S., Bach, F.: Bioinformatics: The Machine Learning Approach. MIT press, Cambridge (2001)

    MATH  Google Scholar 

  2. Benaglia, T., Chauveau, D., Hunter, D.R.: An EM-like algorithm for semi- and nonparametric estimation in multivariate mixtures. J. Comput. Graph. Stat. 18(2), 505–526 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  4. Cabanes, G., Bennani, Y., Grozavu, N.: Unsupervised learning for analyzing the dynamic behavior of online banking fraud. In: IEEE 13th International Conference on Data Mining, pp. 513–520 (2013)

    Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 3(7), 1–21 (2002)

    Article  Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  8. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  9. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  10. Jebara, T.: Machine Learning: Discriminative and Generative, vol. 755. Springer, Heidelberg (2012)

    Google Scholar 

  11. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook. Springer, New York (2005). https://doi.org/10.1007/b107408

    Book  MATH  Google Scholar 

  12. McLachlan, G.J., Basford, K.E.: Mixture models: inference and applications to clustering, vol. 84. M. Dekker, New York (1988)

    Google Scholar 

  13. Rastin, P., Cabanes, G., Matei, B., Bennani, Y., Marty, J.M.: A new sparse representation learning of complex data: application to dynamic clustering of web navigation. Pattern Recogn. 91, 291–307 (2019)

    Article  Google Scholar 

  14. Ruschendorf, L.: Wasserstein metric. In: Hazewinkel, H. (ed.) Encyclopedia of Mathematics. Springer, Berlin (2001). https://doi.org/10.1007/978-94-009-5991-0

    MATH  Google Scholar 

  15. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Train, K.E.: Mixed Logit, p. 138–154. Cambridge University Press (2003)

    Google Scholar 

  17. Ultsch, A.: Fundamental Clustering Problems Suite (FCPS) (2005)

    Google Scholar 

  18. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)

    Article  Google Scholar 

  19. Yue, H.H., Tomoyasu, M.: Weighted principal component analysis and its applications to improve FDC performance. In: IEEE Conference on Decision and Control (CDC), vol. 4, pp. 4262–4267 (2004)

    Google Scholar 

  20. Zhao, H., Fu, Y.: Dual-regularized multi-view outlier detection. In: International Conference on Artificial Intelligence, pp. 4077–4083. AAAI Press (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Pro-TEXT project (No ANR-18-CE23-0024) financed by the ANR (Agence Nationale de la Recherche).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Rastin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rastin, P., Cabanes, G., Verde, R., Bennani, Y., Couronne, T. (2019). Generative Histogram-Based Model Using Unsupervised Learning. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36718-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36717-6

  • Online ISBN: 978-3-030-36718-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics