Skip to main content

Performance Analysis of Spiking RBM with Measurement-Based Phase Change Memory Model

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2019)

Abstract

Phase change memory (PCM) is arguably one of the most promising non-volatile memories which can be used in neuromorphic applications. When we use PCM as analog synaptic elements, non-ideality impact should be carefully taken into account. In this paper, we investigate the impact of such non-ideality items as nonlinear weight update and resistance drift on training accuracy in a spiking restricted Boltzmann machine (RBM). In addition to ideal PCM model, actual measurement-based PCM characteristics is used for this study. The resistance drift affects training accuracy, especially in a widely distributed read interval time caused by spatial and temporal sparse spike activities during training in spiking RBM. Our simulation results show that the training accuracy worsens with the increase of the weight-update nonlinearity or the resistance-drift coefficient. However, the results also suggest we can expect more than 8.95% improvement in training accuracy. This potential improvement will be possible if we use linearity-improved confined PCM cells whose median resistance drift coefficient is 0.005, compared to the resistance drift coefficient of more than 0.02 in typical existing PCM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burr, G.W., et al.: Neuromorphic computing using non-volatile memory. Adv. Phys. X 2(1), 89–124 (2017)

    MathSciNet  Google Scholar 

  2. Tsai, H., et al.: Recent progress in analog memory-based accelerators for deep learning. J. Phys. D: Appl. Phys. 51 (2018). 283001

    Article  Google Scholar 

  3. Ambrogio, S., et al.: Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018)

    Article  Google Scholar 

  4. Sebastian, A., et al.: Tutorial: brain-inspired computing using phase-change memory devices. J. Appl. Phys. 124 (2018). 111101

    Article  Google Scholar 

  5. Mochida, R., et al.: A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neural-network processor with cell current controlled writing and flexible network architecture. In: IEEE Symposium on VLSI Technology (2018)

    Google Scholar 

  6. Yue, K., et al.: A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors. Sci. Adv. 5(4) (2019). eaau8170. https://doi.org/10.1126/sciadv.aau8170

    Article  Google Scholar 

  7. Lin, Y.-H., et al.: Performance impacts of analog ReRAM non-ideality on neuromorphic computing. IEEE Trans. Electron Devices 66(3), 1289–1295 (2019)

    Article  Google Scholar 

  8. Ernoult, M., et al.: Using memristors for robust local learning of hardware restricted Boltzmann machines. Sci. Rep. 9 (2019). Article number 1851

    Google Scholar 

  9. Kim, S., et al.: NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning. In: IEDM (2015)

    Google Scholar 

  10. Suri, M., et al.: Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction. In: IEDM (2011)

    Google Scholar 

  11. Merolla, P.A., et al.: A million spiking neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  12. Davies, M., et al.: IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  13. Boybat, I., et al.: Neuromorphic computing with multi-memristive synapses. Nature Commun. 9 (2018). Article number 2514

    Google Scholar 

  14. Suri, M., et al.: Impact of PCM resistance-drift in neuromorphic systems and drift-mitigation strategy. In: IEEE/ACM International Symposium on Nanoscale Architectures (2013)

    Google Scholar 

  15. Nomura, A., et al.: NVM weight variation impact on analog spiking neural network chip. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11307, pp. 676–685. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04239-4_61

    Chapter  Google Scholar 

  16. Nandakumar, S.R., et al.: A phase-change memory model for neuromorphic computing. J. Appl. Phys. 124 (2018). 152135

    Article  Google Scholar 

  17. Neftci, E., et al.: Event-driven contrastive divergence for spiking neuromorphic systems. Front. Neurosci. 7, 272 (2014)

    Article  Google Scholar 

  18. Bichler, O., et al.: Visual pattern extraction using energy-efficient “2-PCM synapse” neuromorphic architecture. IEEE Trans. Electron Devices 59(8), 2206–2214 (2012)

    Article  Google Scholar 

  19. Ito, M., et al.: Lightweight refresh method for PCM-based neuromorphic circuits. In: 18th International Conference on Nanotechnology, pp. 1–4. IEEE (2018)

    Google Scholar 

  20. Kim, W., et al.: Confined PCM-based analog synaptic devices offering low resistance-drift and 1000 programmable states for deep learning. In: IEEE Symposium on VLSI technology (2019)

    Google Scholar 

  21. Boybat, I., et al.: Stochastic weight updates in phase-change memory-based synapses and their influence on artificial neural networks. In: 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishii, M. et al. (2019). Performance Analysis of Spiking RBM with Measurement-Based Phase Change Memory Model. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-030-36802-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36802-9_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36801-2

  • Online ISBN: 978-3-030-36802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics