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Abstract. In this paper, we present an approach based on convolutional
neural networks (CNNs) for facial expression recognition in a difficult
setting with severe occlusions. More specifically, our task is to recognize
the facial expression of a person wearing a virtual reality (VR) headset
which essentially occludes the upper part of the face. In order to accu-
rately train neural networks for this setting, in which faces are severely
occluded, we modify the training examples by intentionally occluding
the upper half of the face. This forces the neural networks to focus on
the lower part of the face and to obtain better accuracy rates than mod-
els trained on the entire faces. Our empirical results on two benchmark
data sets, FER+ and AffectNet, show that our CNN models’ predictions
on lower-half faces are up to 13% higher than the baseline CNN models
trained on entire faces, proving their suitability for the VR setting. Fur-
thermore, our models’ predictions on lower-half faces are no more than
10% under the baseline models’ predictions on full faces, proving that
there are enough clues in the lower part of the face to accurately predict
facial expressions.

Keywords: Facial expression recognition - convolutional neural net-
works - severe face occlusion - virtual reality headset.

1 Introduction

Facial expression recognition from images is an actively studied problem in com-
puter vision, having a broad range of applications including human behavior un-
derstanding, detection of mental disorders, human-computer interaction, among
others. Our particular application is to recognize the facial expressions of a per-
son wearing a virtual reality (VR) headset and use the recognition result in order
to provide feedback to the VR system, which can automatically change the VR
experience according to the user’s emotions.

In the past few years, most works @ have

focused on building and training deep neural networks in order to achieve state-
of-the-art results. Engineered models based on handcrafted features
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Fig. 1. Images (of people wearing VR headsets) with corresponding Grad-CAM 28]
explanation masks and labels from a VGG-face model trained on lower-half images.

have drawn very little attention, since such models usually yield less accurate
results compared to deep learning models. As most recent works, we adopt deep
convolutional neural networks (CNNs) due to their capability of attaining state-
of-the-art results in facial expression recognition. However, we have to train the
neural networks for a very difficult setting, in which the person to be analyzed
wears a VR headset. The currently available VR headsets essentially occlude the
upper part of the face, posing significant problems for a standard (not adapted)
facial expression recognition system. Our goal is to adapt the facial expression
recognition system for this specific setting. To achieve this goal, we train two
CNN models, VGG-f [3] and VGG-face |26], on modified training images in which
the upper half of the face is completely occluded. This forces the neural networks
to find discriminative clues in the lower half of the face, as shown in Figure

We perform experiments showing that our models (trained with occluded
faces) obtain better accuracy rates than models trained on the entire faces,
when the test set contains occluded faces. The experiments are conducted on
two benchmark data sets, FER+ [2] and AffectNet [24]. Our empirical results
show that our CNN models’ trained on lower-half faces are up to 13% higher
than the baseline CNN models trained on entire faces, when the test set includes
images of lower-half faces. Furthermore, our models trained and tested on lower-
half faces are about 10% (or even less) under the baseline models, when the
baseline models are tested on full faces, thus proving that there are enough clues
in the lower part of the face to accurately predict facial expressions. Overall, our
empirical results indicate that learning and inferring facial expressions solely
on the lower half of the face is a viable option for recognizing facial expression
of persons wearing VR headsets. We thus conclude that our final goal, that of
providing feedback to the VR system in order to automatically change the VR
experience based on the user’s emotions, is achievable.

We organize the rest of this paper as follows. We discuss related work in
Section[2] We present the convolutional neural networks in Section[3] We describe
the empirical results in Section [4} Finally, we draw our conclusions in Section

2 Related Art

The early works on facial expression recognition are mostly based on handcrafted
features [32]. After the success of AlexNet [17] in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [27], deep learning has been widely
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adopted in the computer vision community. Perhaps some of the first works to
propose deep learning approaches for facial expression recognition were presented
at the 2013 Facial Expression Recognition (FER) Challenge [9]. Interestingly, the
top scoring system in the 2013 FER Challenge is a deep convolutional neural net-
work [31], while the best handcrafted model ranked only in the fourth place [14].
With only a few exceptions [1,[29,130], most of the recent works on facial expres-
sion recognition are based on deep learning |2}/6H8}11}13}/16./18-21}/23//25\/3436].
Some of these recent works [13]/16,{18|/34,35] proposed to train an ensemble of con-
volutional neural networks for improved performance, while others [4[15] com-
bined deep features with handcrafted features such as SIFT [22] or Histograms
of Oriented Gradients (HOG) [5]. Works that combine deep and handcrafted
features usually employ a single CNN model and various handcrafted features,
e.g. Connie et al. [4] employed SIFT and dense SIFT, while Kaya et al. [15]
employed SIFT, HOG and Local Gabor Binary Patterns (LGBP). While most
works studied facial expression recognition from static images as we do here,
some works approached facial expression recognition in video [11}15].

Different from these mainstream works [2}/4L/61(8/11}[13H16,18}/19,[21}23} 25,
29,,30,[34H36], we focus on recognizing facial expressions of occluded faces. More
closely related to our work, Li et al. [20] proposed an end-to-end trainable Patch-
Gated CNN that can automatically perceive occluded region of the face, making
the recognition based on the visible regions. To find the visible regions of the face,
their model decomposes an intermediate feature map into several patches accord-
ing to the positions of related facial landmarks. Each patch is then reweighted
by its importance, which is determined from the patch itself. Different from Li et
al. [20], we consider a more difficult setting in which half of the face is occluded.

To our knowledge, the only work that studies facial expression recognition
for people wearing VR headsets is that of Hickson et al. |[12|. In their work,
Hickson et al. [12] presented an algorithm that automatically infers expressions
from images of the user’s eyes captured from an infrared gaze-tracking camera
mounted inside the VR headset, while the user is engaged in a VR experience.
While their approach is applicable to VR headsets that have an infrared camera
mounted inside, our approach, which uses an external camera, is cheaper and
applicable to all VR headsets, thus being more generic.

3 Method

In this work, we choose two pre-trained CNN models, namely VGG-f 3] and
VGG-face [26]. We proceed by fine-tuning the networks in two stages. In the first
stage (see details in Section [3.1]), we fine-tune the CNN models on images with
full faces. In the second stage (see details in Section , we further fine-tune
the models on images in which the upper half of the face is occluded. All models
are trained using data augmentation, which is based on including horizontally
flipped images. To prevent overfitting, we employ Dense-Spare-Dense (DSD)
training [10] to train our CNN models. The training starts with a dense phase,
in which the network is trained as usual. When switching to the sparse phase,
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the weights that have lower absolute values are replaced by zeros after every
epoch. A sparsity threshold is used to determine the percentage of weights that
are replaced by zeros. The DSD learning process, typically ends with a dense
phase. It is important to note that DSD can be applied several times in order
to achieve the desired performance. We next describe in detail each of the three
training stages.

3.1 Training on non-occluded faces

VGG-face. VGG-face [26] is a deep neural network that is pre-trained on a
closely related task, namely face recognition. The architecture is composed of 16
layers. We keep its 13 convolutional (conv) layers, replacing the fully-connected
(fc) layers with a single max-pooling layer for faster inference. We also replace the
softmax layer of 1000 units with a softmax layer of 8 units, since FER+ [2] and
AffectNet [24] contain 8 classes of emotion. We randomly initialize the weights
in the softmax layer, using a Gaussian distribution with zero mean and 0.1
standard deviation. We add 6 dropout layers after each conv layer, starting from
the fourth convolutional block. The first dropout layer has a dropout rate of 0.3.
For each subsequent dropout layer, the dropout rate increases by 0.05. Thus, the
last dropout layer has a dropout rate of 0.55. We set the learning rate to 10~4
and we decrease it by a factor of 10 when the validation error stagnates for more
than 10 epochs. In order to train VGG-face, we use stochastic gradient descent
using mini-batches of 64 images and set the momentum rate to 0.9. We fine-tune
VGG-face using DSD training [10] for a total of 50 epochs. For DSD training,
we set the sparsity rate to 0.2 for the second conv layer, increasing the rate up
to 0.7 with each additional conv layer. We refrain from pruning the weights of
the first conv layer. Since VGG-face is pre-trained on a closely related task (face
recognition), it converges in only 50 epochs.

VGG-f. We also fine-tune the VGG-f 3] network with 8 layers, which is pre-
trained on the ILSVRC benchmark [27]. As for VGG-face, we keep the conv
layers of VGG-f, replacing the fc layers with a single max-pooling layer. We also
replace the softmax layer of 1000 units with a softmax layer of 8 units. We add 3
dropout layers after each conv layer, starting from the third convolutional layer.
In each dropout layer, we set the dropout rate to 0.2. We set the learning rate to
103 and we decrease it by a factor of 10 when the validation error stagnates for
more than 10 epochs. At the end of the training process, the learning rate drops
to 1072, In order to train VGG-f, we use stochastic gradient descent using mini-
batches of 512 images and set the momentum rate to 0.9. As for VGG-face, we
use the DSD training method to fine-tune the VGG-f model. However, we refrain
from pruning the weights of the first conv layer during the sparse phases. We set
the sparsity rate to 0.2 for the second conv layer, increasing the rate up to 0.5
with each additional conv layer. We train this network for a total of 800 epochs.
Since VGG-f is pre-trained on a distantly related task (object recognition), it
converges in a higher number of epochs than VGG-face.
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3.2 Training on occluded faces

VGG-face. We fine-tune VGG-face on images containing only occluded faces,
using, in large part, the same parameter choices as in the first training stage.
The architecture is the same as in the first training stage. We hereby present
only the different parameter choices. We applied DSD training for 40 epochs,
starting with a learning rate of 1073, decreasing it by a factor of 10 each time
the validation error stagnated for more than 10 epochs. At the end of the training
process, the learning rate drops to 107%.

VGG-f. In a similar fashion, we fine-tune VGG-f on images containing only
occluded faces, preserving the architecture and most of the parameter choices.
We next describe the differences from the first training stage. We applied DSD
training for 80 epochs using a learning rate of 1073, This time we did not have
to decrease the learning rate during training, as the validation error drops after
every epoch.

4 Experiments

4.1 Data sets

FER+. The FER+ data set [2] is a curated version of FER 2013 [9] in which
some of the original images are relabeled, while other images, e.g. not containing
faces, are completely removed. Barsoum et al. [2] add contempt as the eighth
class of emotion along with the other 7 classes: anger, disgust, fear, happiness,
neutral, sadness, surprise. The FER+ data set contains 25045 training images,
3191 validation images and another 3137 test images. All images are of 48 x 48
pixels in size.

AffectNet. The AffectNet [24] data set contains 287651 training images and
4000 validation images, which are manually annotated. Since the test set is not
publicly available, researchers [24.36] evaluate their approaches on the validation
set containing 500 images for each of the 8 emotion classes.

4.2 Implementation details

The input images in both data sets are scaled to 224 x 224 pixels. We use the
MatConvNet [33] library to train the CNN models. Each CNN architecture is
trained on the joint AffectNet and FER+ training sets. On AffectNet, we adopt
the down-sampling setting proposed in [24], which solves, to some extent, the
imbalanced nature of the facial expression recognition task. As Mollahosseini et
al. [24], we select at most 15000 samples from each class for training. This leaves
us with a training set of 88021 images.

4.3 Results

In Table [1} we present the empirical results conducted on AffectNet [24] and
FER+ [2] using either VGG-f or VGG-face. The models are trained and tested
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Table 1. Accuracy rates of various VGG-f and VGG-face models on AffectNet [24]
and FER+ (2], using full faces or lower-half faces (occluded upper half) for training
and testing. A bag-of-visual-words model |14] and two state-of-the-art CNN models
(trained on full faces), VGG-13 [2] and AlexNet [24], are also included for reference.

lModel "I‘rain set ‘Test set ‘Aﬁ'ectNet‘FER+‘
Bag-of-visual-words [|14]|full faces full faces 48.30% |80.65%
VGG-13 [2] full faces full faces - 84.99%
AlexNet [24] full faces full faces 58.00% -

VGG-f full faces full faces 57.37% |85.05%
VGG-face full faces full faces 59.03% |84.79%
VGG-f full faces lower-half faces| 41.58% [70.00%
VGG-face full faces lower-half faces| 37.70% [68.89%
VGG-f lower-half faces|lower-half faces| 47.58% [78.23%
VGG-face lower-half faces|lower-half faces| 49.23% [82.28%

on various combinations of full or occluded images. We include a bag-of-visual-
words baseline [14] and two state-of-the-art CNN models (trained on full faces),
VGG-13 [2] and AlexNet [24], for reference. First, we note that our models, VGG-
f and VGG-face, attain results that are on par with the state-of-the-art CNNs,
when full faces are used for training and testing. However, the CNN models
trained on full faces give poor results when lower-half faces are used for testing.
These results indicate that the CNN models (trained on full faces, as usual) are
not particularly designed to handle severe facial occlusions, justifying our idea
of fine-tuning the models on images containing such severe occlusions. Indeed,
we observe significant accuracy improvements when VGG-f and VGG-face are
fine-tuned on occluded images. For instance, the fine-tuning of VGG-face on
lower-half images (occluded upper half) brings an improvement of 11.53% (from
37.70% to 49.23%) on AffectNet and an improvement of 13.39% (from 68.89%
to 82.28%) on FER+. Interesting, our final models trained and tested on lower-
half faces attain results that are not very far from the CNN models trained
and tested on full faces. For example, our VGG-face model is 8.77% under the
state-of-the-art AlexNet [24] on AffectNet, and 2.71% under the state-of-the-art
VGG-13 [2] on FER+. Despite being tested on lower-half images, both VGG-f
and VGG-face surpass the bag-of-visual-words model [14], which is tested on
full images. We thus conclude that our CNN models can provide reliable results,
despite being tested on faces that are severely occluded.

5 Conclusion

In this paper, we proposed a learning approach based on fine-tuning CNN models
in order to recognize facial expressions of severely occluded faces. The empirical
results indicate that our learning framework can bring significant performance
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gains, leading to models that provide reliable results in practice, even surpassing
a bag-of-visual-words baseline [14] tested on images with fully visible faces.
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