Skip to main content

Local Temporal Compression for (Globally) Evolving Spatial Surfaces

  • Conference paper
  • First Online:
  • 1050 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11932))

Abstract

The advances in the Internet of Things (IoT) paradigm have enabled generation of large volumes of data from multiple domains, capturing the evolution of various physical and social phenomena of interest. One of the consequences of such enormous data generation is that it needs to be stored, processed and queried – along with having the answers presented in an intuitive manner. A number of techniques have been proposed to alleviate the impact of the sheer volume of the data on the storage and processing overheads, along with bandwidth consumption – and, among them, the most dominant is compression. In this paper, we consider a setting in which multiple geographically dispersed data sources are generating data streams – however, the values from the discrete locations are used to construct a representation of continuous (time-evolving) surface. We have used different compression techniques to reduce the size of the raw measurements in each location, and we analyzed the impact of the compression on the quality of approximating the evolution of the shapes corresponding to a particular phenomenon. Specifically, we use the data from discrete locations to construct a TIN (triangulated irregular networks), which evolves over time as the measurements in each locations change. To analyze the global impact of the different compression techniques that are applied locally, we used different surface distance functions between raw-data TINs and compressed data TINs. We provide detailed discussions based on our experimental observations regarding the corresponding (compression method, distance function) pairs.

X. Teng—Research supported by NSF grant III 1823267.

P. Giri—Research supported by NSF grant CNS 182367.

J. Sun—Research supported by NSF-REU grant 018522

G. Trajcevski—Research supported by NSF grants III-1823279 and CNS-1823267.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The very first implementation dating back to 1973s, due to W. Randolph Franklin.

References

  1. GPCC: Global Precipitation Climatology Centre. https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre

  2. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1_5

    Chapter  Google Scholar 

  3. Bertilsson, E., Goswami, P.: Dynamic creation of multi-resolution triangulated irregular network. In: Proceedings of SIGRAD (2016)

    Google Scholar 

  4. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15(3), 211–228 (2006)

    Article  Google Scholar 

  5. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number of line segments. Int. J. Comput. Geom. Appl. 6, 59–77 (1992)

    Article  MathSciNet  Google Scholar 

  6. Chanwimalueang, T., Mandic, D.: Cosine similarity entropy: self-correlation-based complexity analysis of dynamical systems. Entropy 19, 652 (2017). https://doi.org/10.3390/e19120652

    Article  MathSciNet  Google Scholar 

  7. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB), Toronto, Canada, 31 August– 3 September 2004, pp. 792–803 (2004)

    Chapter  Google Scholar 

  8. Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H.: SpADe: on shape-based pattern detection in streaming time series. In: IEEE International Conference on Data Engineering (ICDE) (2007)

    Google Scholar 

  9. Cheng, X., Fang, L., Yang, L., Cui, S.: Mobile big data: the fuel for data-driven wireless. IEEE Internet Things J. 4(5), 1489–1516 (2017)

    Article  Google Scholar 

  10. Chudzicki, C., Pritchard, D.E., Chen, Z.: Geosoca: exploiting geographical, social and categorical correlations for point-of-interest recommendations. In: Proceedings of the International Conference On Research and Development in Information Retrieval (SIGIR), pp. 443–452. ACM (2015)

    Google Scholar 

  11. Deepika, G., Rajapirian, P.: Wireless sensor network in precision agriculture: a survey. In: 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS) (2016)

    Google Scholar 

  12. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: Int. J. Geograph. Inf. Geovisualization 10, 112–122 (1973)

    Article  Google Scholar 

  13. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45, 1 (2012)

    Article  Google Scholar 

  14. ESRI: Arcgis desktop help 9.2 - about TIN surfaces (2019)

    Google Scholar 

  15. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: SIGMOD Conference, pp. 419–429 (1994)

    Article  Google Scholar 

  16. Floriani, L.D., Magillo, P.: Triangulated irregular network. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 3178–3179. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_437

    Chapter  Google Scholar 

  17. Gao, H., et al.: A survey of incentive mechanisms for participatory sensing. IEEE Commun. Surv. Tutorials 17(2), 918–943 (2015)

    Article  Google Scholar 

  18. Guo, B., Lam, K.M., Lin, K.H., Siu, W.C.: Human face recognition based on spatially weighted hausdorff distance. Pattern Recogn. Lett. 24(1), 499–507 (2003)

    Article  Google Scholar 

  19. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, Burlington (2012)

    MATH  Google Scholar 

  20. Jang, J., Kim, H., Cho, H.: Smart roadside server for driver assistance and safety warning: framework and applications. In: Proceedings of the International Conference on Ubiquitous Information Technologies and Applications (2010)

    Google Scholar 

  21. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3, 263–286 (2001)

    Article  Google Scholar 

  22. Keogh, E., Lonardi, S., Ratanamahatana, C.A., Wei, L., Lee, S.H., Handley, J.: Compression-based data mining of sequential data. Data Min. Knowl. Discov. 14(1), 99–129 (2007)

    Article  MathSciNet  Google Scholar 

  23. Keogh, E.J.: A decade of progress in indexing and mining large time series databases. In: VLDB (2006)

    Google Scholar 

  24. Keogh, E.J., Chakrabarti, K., Mehrotra, S., Pazzani, M.J.: Locally adaptive dimensionality reduction for indexing large time series databases. In: SIGMOD Conference, pp. 151–162 (2001)

    Article  Google Scholar 

  25. Kern, W.F., Bland, J.R.: Solid Mensuration. Wiley/Chapman & Hall, Limited, New York/London (1934)

    Google Scholar 

  26. Kotsakos, D., Trajcevski, G., Gunopulos, D., Aggarwal, C.C.: Time-series data clustering. In: Data Clustering: Algorithms and Applications, pp. 357–380 (2013)

    Chapter  Google Scholar 

  27. Liang, S.: Geometric processing and positioning techniques. In: Liang, S., Li, X., Wang, J. (eds.) Advanced Remote Sensing, pp. 33–74. Academic Press, Boston (2012). Chapter 2

    Google Scholar 

  28. Maselli, G., Piva, M., Stankovic, J.A.: Adaptive communication for battery-free devices in smart homes. IEEE Internet Things J. 6, 6977–6988 (2019)

    Article  Google Scholar 

  29. Mekis, E., Hogg, W.D.: Rehabilitation and analysis of Canadian daily precipitation time series. Atmos. Ocean 37(1), 53–85 (2010)

    Article  Google Scholar 

  30. Rafiei, D., Mendelzon, A.O.: Similarity-based queries for time series data. In: Proceedings ACM SIGMOD International Conference on Management of Data, SIGMOD 1997, Tucson, Arizona, USA, 13–15 May 1997, pp. 13–25 (1997)

    Google Scholar 

  31. ur Rehman, M.H., Liew, C.S., Abbas, A., Jayaraman, P.P., Wah, T.Y., Khan, S.U.: Big data reduction methods: a survey. Data Sci. Eng. 1(4), 265–284 (2016)

    Article  Google Scholar 

  32. Shi, D., et al.: Deep Q-network based route scheduling for TNC vehicles with passengers’ location differential privacy. IEEE Internet Things J. 6, 7681–7692 (2019)

    Article  Google Scholar 

  33. Shokoohi-Yekta, M., Wang, J., Keogh, E.J.: On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 289–297 (2015)

    Google Scholar 

  34. Sim, K., Nia, M., Tso, C., Kho, T.: Chapter 34 - brain ventricle detection using hausdorff distance. In: Tran, Q.N., Arabnia, H.R. (eds.) Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology. Emerging Trends in Computer Science and Applied Computing, pp. 523–531. Morgan Kaufmann, Boston (2016)

    Chapter  Google Scholar 

  35. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15, 29–29 (2015)

    Article  Google Scholar 

  36. Teng, X., Züfle, A., Trajcevski, G., Klabjan, D.: Location-awareness in time series compression. In: Benczúr, A., Thalheim, B., Horváth, T. (eds.) ADBIS 2018. LNCS, vol. 11019, pp. 82–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98398-1_6

    Chapter  Google Scholar 

  37. Trajcevski, G.: Compression of spatio-temporal data. In: IEEE 17th International Conference on Mobile Data Management, MDM 2016, 2016 - Workshops, Porto, Portugal, 13–16 June, pp. 4–7 (2016)

    Google Scholar 

  38. Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of points. Cartographic J. 30, 46–51 (1993)

    Article  Google Scholar 

  39. Vlachos, M., Kollios, G., Gunopulos, D.: Elastic translation invariant matching of trajectories. Mach. Learn. 58(2–3), 301–334 (2005)

    Article  Google Scholar 

  40. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  41. Whitmore, A., Agarwal, A., Xu, L.D.: The Internet of Things: a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2015)

    Article  Google Scholar 

  42. Yao, H., Gao, P., Wang, J., Zhang, P., Jiang, C., Han, Z.: Capsule network assisted IoT traffic classification mechanism for smart cities. IEEE Internet Things J. 6, 7515–7525 (2019)

    Article  Google Scholar 

  43. Yi, W.Y., Lo, K.M., Mak, T., Leung, K.S., Leung, Y., Meng, M.L.: A survey of wireless sensor network based air pollution monitoring systems. Sensors 15, 31392–31427 (2015)

    Article  Google Scholar 

  44. Zhuang, C., Yuan, N.J., Song, R., Xie, X., Ma, Q.: Understanding people lifestyles: construction of urban movement knowledge graph from GPS trajectory. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 3616–3623 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goce Trajcevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teng, X., Giri, P., Dwyer, M., Sun, J., Trajcevski, G. (2019). Local Temporal Compression for (Globally) Evolving Spatial Surfaces. In: Madria, S., Fournier-Viger, P., Chaudhary, S., Reddy, P. (eds) Big Data Analytics. BDA 2019. Lecture Notes in Computer Science(), vol 11932. Springer, Cham. https://doi.org/10.1007/978-3-030-37188-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37188-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37187-6

  • Online ISBN: 978-3-030-37188-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics