Skip to main content

Stochastic ADMM Based Distributed Machine Learning with Differential Privacy

  • Conference paper
  • First Online:

Abstract

While embracing various machine learning techniques to make effective decisions in the big data era, preserving the privacy of sensitive data poses significant challenges. In this paper, we develop a privacy-preserving distributed machine learning algorithm to address this issue. Given the assumption that each data provider owns a dataset with different sample size, our goal is to learn a common classifier over the union of all the local datasets in a distributed way without leaking any sensitive information of the data samples. Such an algorithm needs to jointly consider efficient distributed learning and effective privacy preservation. In the proposed algorithm, we extend stochastic alternating direction method of multipliers (ADMM) in a distributed setting to do distributed learning. For preserving privacy during the iterative process, we combine differential privacy and stochastic ADMM together. In particular, we propose a novel stochastic ADMM based privacy-preserving distributed machine learning (PS-ADMM) algorithm by perturbing the updating gradients, that provide differential privacy guarantee and have a low computational cost. We theoretically demonstrate the convergence rate and utility bound of our proposed PS-ADMM under strongly convex objective. Through our experiments performed on real-world datasets, we show that PS-ADMM outperforms other differentially private ADMM algorithms under the same differential privacy guarantee.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The specific results of computation cost and memory cost refer to [23].

  2. 2.

    The proof of Theorem 2 is very similar to the B.2 in [19]. Due to the space limitation, we omit the detail of it.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, Vienna, October 2016, pp. 308–318 (2016)

    Google Scholar 

  2. Bekkerman, R., Bilenko, M., Langford, J.: Scaling Up Machine Learning: Parallel and Distributed Approaches. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  3. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  5. Dheeru, D., Taniskidou, E.K.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  7. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, October 2015, pp. 1322–1333 (2015)

    Google Scholar 

  9. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

    Book  MATH  Google Scholar 

  10. Guo, Y., Gong, Y.: Practical collaborative learning for crowdsensing in the internet of things with differential privacy. In: IEEE Conference on Communications and Network Security (CNS), Beijing, May 2018, pp. 1–9 (2018)

    Google Scholar 

  11. Han, S., Topcu, U., Pappas, G.J.: Differentially private distributed constrained optimization. IEEE Trans. Autom. Control 62(1), 50–64 (2017)

    Article  MathSciNet  Google Scholar 

  12. He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  Google Scholar 

  13. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in Neural Information Processing Systems, Lake Tahoe, December 2013, pp. 315–323 (2013)

    Google Scholar 

  14. Liu, L., Han, Z.: Multi-block ADMM for big data optimization in smart grid. In: International Conference on Computing, Networking and Communications (ICNC), Anaheim, February 2015, pp. 556–561 (2015)

    Google Scholar 

  15. Nguyen, H., Khodaei, A., Han, Z.: A big data scale algorithm for optimal scheduling of integrated microgrids. IEEE Trans. Smart Grid 9(1), 274–282 (2016)

    Article  Google Scholar 

  16. Ouyang, H., He, N., Tran, L., Gray, A.: Stochastic alternating direction method of multipliers. In: International Conference on Machine Learning, Atlanta, June 2013, pp. 80–88 (2013)

    Google Scholar 

  17. Qin, Z., Goldfarb, D.: Structured sparsity via alternating direction methods. J. Mach. Learn. Res. 13(1), 1435–1468 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Schizas, I.D., Ribeiro, A., Giannakis, G.B.: Consensus in ad hoc wsns with noisy links - Part I: distributed estimation of deterministic signals. IEEE Trans. Sig. Process. 56(1), 350–364 (2008)

    Article  Google Scholar 

  19. Wang, D., Ye, M., Xu, J.: Differentially private empirical risk minimization revisited: faster and more general. In: Advances in Neural Information Processing Systems, Long Beach, December 2017, pp. 2722–2731 (2017)

    Google Scholar 

  20. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  21. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

    Article  Google Scholar 

  22. Zhang, T., Zhu, Q.: A dual perturbation approach for differential private ADMM-based distributed empirical risk minimization. In: Proceedings of the ACM Workshop on Artificial Intelligence and Security, Vienna, October 2016, pp. 129–137 (2016)

    Google Scholar 

  23. Zhao, S., Li, W., Zhou, Z.: Scalable stochastic alternating direction method of multipliers. arXiv preprint arXiv:1502.03529 (2015)

Download references

Acknowledgement

This work of J. Ding, and M. Pan was supported in part by the U.S. Natural Science Foundation under grants US CNS-1613661, CNS-1646607, CNS-1702850, and CNS-1801925. This work of Y. Gong was partly supported by the US National Science Foundation under grant CNS-1850523. This work of H. Zhang was partly supported by the National Natural Science Foundation of China (Grant No. 61822104, 61771044), Beijing Natural Science Foundation (No. L172025, L172049), and 111 Project (No. B170003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Pan .

Editor information

Editors and Affiliations

A Appendix

A Appendix

The approximate gradient \(\varvec{g}_i^s\) can be written as \(\varvec{g}_i^s = \varvec{b}_i^s + \varvec{q}_i^s\), where

1.1 A.1 Proof of Lemma 1

Proof

Since each \(l_{im }(\varvec{x})\) is convex, G-Lipschitz and has \( L_m\)-Lipschitz continuous gradient, for any \(\varvec{x}_1\) and \( \varvec{x}_2,\) there exists \(L_m > 0 \) such that

$$\begin{aligned} l_{im}(\varvec{x}_1) \le l_{im}(\varvec{x}_2) + (\varvec{x}_2 - \varvec{x}_1)^T\nabla l_{im}(\varvec{x}_2) + \frac{L_m}{2} \Vert \varvec{x}_2 - \varvec{x}_1\Vert ^2. \end{aligned}$$

We can see that \(f_i(\varvec{x})\) is \(v _{f}\)-smooth, with \(f_i(\varvec{x}_1) \le f_i(\varvec{x}_2) +(\varvec{x}_2 - \varvec{x}_1)^T\nabla f_i(\varvec{x}_1) + \frac{v_{f }}{2} \Vert \varvec{x}_2 - \varvec{x}_1\Vert ^2\), where \(v _{f} = \max _{m}L_m .\) Then, we can have

$$\begin{aligned}&\Vert \nabla L_i(\varvec{x}_1) -\nabla L_i(\varvec{x}_2) \Vert = \Vert \nabla f_i(\varvec{x}_1) - \nabla f_i(\varvec{x}_2) + \rho (\varvec{x}_1 - \varvec{x}_2)\Vert \\&\le \Vert \nabla f_i(\varvec{x}_1) - \nabla f_i(\varvec{x}_2) \Vert + \Vert \rho (\varvec{x}_1 - \varvec{x}_2)\Vert \le (v_{f }+ \rho )\Vert \varvec{x}_1 -\varvec{x}_2\Vert \le v_{L }\Vert \varvec{x}_1 -\varvec{x}_2\Vert , \end{aligned}$$

where we let \(v_{L } \ge v_{f }+ \rho \). Thus, \( L_i(\varvec{x})\) and \(\hat{L}_m(\varvec{x})\) are \(v_{L }\)-smooth. Moreover, it is obvious to see that \( L_i(\varvec{x})\) is \(\mu _L\)-strongly convex with \(\mu _L \le \mu _f+\rho \).

1.2 A.2 Basic Lemmas

Lemma 2

The variance of \(\varvec{g}_i^s\) satisfies

Proof

Notice that

Hence, the variance of \(\varvec{g}_i^s\) can be bounded as

where the first inequality uses \(\Vert a + b\Vert ^2 \le 2\Vert a\Vert ^2 + 2 \Vert b\Vert ^2\) and the second inequality uses \(\mathbb {E}\Vert \varvec{x}_i - \mathbb {E}\varvec{x}_i\Vert ^2 = \mathbb {E}\Vert \varvec{x}_i\Vert ^2 - \Vert \mathbb {E}\varvec{x}_i\Vert ^2 \le \mathbb {E}\Vert \varvec{x}_i\Vert ^2\).

Lemma 3

For \(0<\eta < \frac{1}{2 v_{L}}\), we have

Proof

$$\begin{aligned}&L_i(\varvec{v}_{i}^{s+1})\le L_i(\varvec{v}_i^s) + (\varvec{v}_i^{s+1}-\varvec{v}_i^s)^T\nabla L_i(\varvec{v}_i^s) + \frac{v_{L }}{2}\Vert \varvec{v}_i^{s+1}-\varvec{v}_i^s\Vert ^2. \end{aligned}$$

Taking expectation on both sides, we obtain

Then, we have

By choosing \(\eta < 1/{(2v_{L })}\), we get

Lemma 4

Proof

We have \(\mathbb {E}(\varvec{b}_i^s) = \nabla f_i(\varvec{v}_i^s)\) and this leads to

$$\begin{aligned} \mathbb {E} \Vert \varvec{v}_i^{s+1} - \varvec{x}_i\Vert ^2&\le \Vert \varvec{v}_i^s - \varvec{x}_i\Vert ^2 - 2\eta (\varvec{v}_i^s -\varvec{x}_i)^T \mathbb {E}(\varvec{g}_i^s) + \eta ^2 \mathbb {E}(\Vert \varvec{g}_i^s \Vert ^2) \\&\le \Vert \varvec{v}_i^s - \varvec{x}_i\Vert ^2 - 2\eta (\varvec{v}_i^s -\varvec{x}_i)^T \mathbb {E}(\nabla f_i(\varvec{v}_i^s) + \varvec{q}_i^s) + \eta ^2 \mathbb {E}(\Vert \varvec{g}_i^s \Vert ^2) \\&\le \Vert \varvec{v}_i^s - \varvec{x}_i\Vert ^2 - 2\eta (\varvec{v}_i^s -\varvec{x}_i)^T\nabla L_i (\varvec{v}_i^s) + \eta ^2 \mathbb {E}(\Vert \varvec{g}_i^s \Vert ^2). \end{aligned}$$

Then, we have

According to Lemma 3, we obtain

Lemma 5

$$\begin{aligned}&g(\varvec{z}^{k+1}) - g(\varvec{z})- \sum _{i = 1}^N (\varvec{z}^{k+1} - \varvec{z})^T\varvec{\alpha }_i^{k+1} \\&\le \frac{\rho }{2}( \Vert \varvec{z}^{k } - \varvec{z}\Vert ^2-\Vert \varvec{z}^{k+1} - \varvec{z}^k\Vert ^2-\Vert \varvec{z}^{k+1} - \varvec{z}\Vert ^2) \end{aligned}$$

where \(\varvec{\alpha }_i^{k+1} = \varvec{\lambda }_i^k +\rho (\varvec{x}_i^{k+1}-\varvec{z}^k).\)

Proof

By deriving the optimal conditions of the minimization problem in (5), we have

$$\begin{aligned} g(\varvec{z}^{k+1}) - g(\varvec{z}) \le -(\varvec{z}^{k+1}-\varvec{z})^T\sum _{i= 1}^N[-\varvec{\lambda }_i^{k}+ \rho (\varvec{x}_i^{k+1} -\varvec{z}^{k+1}) ]. \end{aligned}$$

Then, by using the notation \(\varvec{\alpha }_i^{{ k+1 }} = \varvec{\lambda }_i^k +\rho (\varvec{x}_i^{k+1}-\varvec{z}^k)\), we obtain

$$\begin{aligned}&g(\varvec{z}^{k+1}) - g(\varvec{z})- \sum _{i = 1}^N (\varvec{z}^{k+1} - \varvec{z})^T\varvec{\alpha }_i^{k+1} \le \rho (\varvec{z}^{k}-\varvec{z}^{k+1})^T (\varvec{z}^{k+1} -\varvec{z}) )\\&\le \frac{\rho }{2} (\Vert \varvec{z}^{k } - \varvec{z}\Vert ^2-\Vert \varvec{z}^{k+1} - \varvec{z}^k\Vert ^2-\Vert \varvec{z}^{k+1} - \varvec{z}\Vert ^2). \end{aligned}$$

Lemma 6

$$\begin{aligned}&(\varvec{\alpha }_i^{k+1} - \varvec{\alpha }_i)^T[-(\varvec{x}_i^{k+1} - \varvec{z}^{k+1})] \\&\le \frac{1}{2\rho }( \Vert \varvec{\lambda }_i^k-\varvec{\alpha }_i \Vert ^2 - \Vert \varvec{\lambda }_i^{k+1}-\varvec{\alpha }_i \Vert ^2) + \frac{\rho }{2} \Vert \varvec{z}^k - \varvec{z}^{k+1}\Vert ^2 \end{aligned}$$

where \(\varvec{\alpha }_i^{k+1} = \varvec{\lambda }_i^k +\rho (\varvec{x}_i^{k+1}-\varvec{z}^k).\)

Proof

$$\begin{aligned}&(\varvec{\alpha }_i^{k+1} - \varvec{\alpha }_i )^T[-(\varvec{x}_i^{k+1} - \varvec{z}^{k+1})] =\frac{1}{\rho }(\varvec{\alpha }_i^{k+1} - \varvec{\alpha }_i )^T(\varvec{\lambda }_i^k - \varvec{\lambda }_i^{k+1})\\&= \frac{1}{2\rho }(\Vert \varvec{\alpha }_i^{k+1}-\varvec{\lambda }_i^{k+1}\Vert ^2 - \Vert \varvec{\alpha }_i^{k+1}-\varvec{\lambda }_i^{k}\Vert ^2+ \Vert \varvec{\lambda }_i^k-\varvec{\alpha }_i \Vert ^2 - \Vert \varvec{\lambda }_i^{k+1}-\varvec{\alpha }_i \Vert ^2)\\&\le \frac{1}{2\rho }( \Vert \varvec{\lambda }_i^k-\varvec{\alpha }_i \Vert ^2 - \Vert \varvec{\lambda }_i^{k+1}-\varvec{\alpha }_i \Vert ^2) + \frac{\rho }{2} \Vert \varvec{z}^k - \varvec{z}^{k+1}\Vert ^2. \end{aligned}$$

Lemma 7

Assume \(f_i(\cdot )\) be \(\mu _f\)-strongly convex, and let \(\varvec{x}_i^{k+1}\), \(\varvec{z}^k\) and \(\varvec{\lambda }_i^k\) be generated by the proposed algorithm. For \(\eta \) satisfies , \(1-\frac{\rho \xi }{2}-\frac{\mu _f\xi }{4}+\frac{4\eta ^2 v_L^2 S}{1-2\eta v_L} \le \frac{S \eta \mu _f}{2}\), the following holds if

$$\begin{aligned} \mathbb {E}[f_i(\varvec{x}_i^{k+1}) - f_i(\varvec{x}_i)+ (\varvec{x}_i^{k+1} - \varvec{x}_i)^T\varvec{\alpha }_i^{{ k+1 }}]&\le \frac{\mu _f }{4}[\Vert \varvec{x}_i^k - \varvec{x}_i\Vert ^2-\Vert \varvec{x}_i^{k+1} - \varvec{x}_i\Vert ^2]\\&+ \frac{2\eta }{1-2\eta v_L} (\sigma ^2)_k^sp \end{aligned}$$

where \(\varvec{\alpha }_i^{k+1} = \varvec{\lambda }_i^k +\rho (\varvec{x}_i^{k+1}-\varvec{z}^k).\)

Proof

Using Lemma 4 and the strong convexity of \(L_i(\varvec{v}_i)\), we have

where \(\zeta = 2\eta - \frac{4\eta }{1-2\eta v_L}\), \(\xi =\frac{4\eta }{1-2\eta v_L} \).

Then, we obtain

where we apply Lemma 2 and \(L_i(\varvec{v}_i^s) - L_i(\varvec{x}_i) = f_i(\varvec{v}_i^s) - f_i(\varvec{x}_i) + (\varvec{v}_i^s - \varvec{x}_i)^T\varvec{q}_i^s -\frac{\rho }{2}\Vert \varvec{v}_i^s - \varvec{x}_i\Vert ^2\) to obtain the inequality. Hence, we choose \(\eta \le \frac{4\mu _L-4\rho -3\mu _f}{8v_L^2+2\mu _fv_L}\) so that \( 1-\frac{\rho \xi }{2}-\frac{\mu _f\xi }{4} \ge 1+\frac{4\eta ^2 v_L^2}{1-2\eta v_L}-\frac{\mu _L\xi }{2}-\frac{\mu _f\zeta }{4}\). We take and we know that \(f_i(\varvec{v}_i^s) - f_i(\varvec{x}_i) + (\varvec{v}_i^s - \varvec{x}_i)^T\varvec{q}_i^s\) is convex in \(\varvec{v}_i^s\). By using the Jensen’s inequality, we have

where Summing from \(s = 0,1,2,...,S-1\) and using we obtain

$$\begin{aligned}&2S\eta \mathbb {E}[f_i(\varvec{x}_i^{k+1}) - f_i(\varvec{x}_i)+ (\varvec{x}_i^{k+1} - \varvec{x}_i)^T\varvec{\alpha }_i^{{ k+1 }}+\frac{\mu _f }{4}\Vert \varvec{x}_i^{k+1} - \varvec{x}_i\Vert ^2] \\&\le \frac{2\eta ^2S}{1-2\eta v_L} (\sigma ^2)_k^sp +(1-\frac{\rho \xi }{2}-\frac{\mu _f\xi }{4} +\frac{4\eta ^2 v_L^2 S}{1-2\eta v_L})\Vert \varvec{x}_i^k - \varvec{x}_i\Vert ^2, \end{aligned}$$

where \(\varvec{\alpha }_i^{{ k+1 }} = \varvec{\lambda }_i^k +\rho (\varvec{x}_i^{k+1}-\varvec{z}^k).\)

Thus, we have

$$\begin{aligned}&\mathbb {E}[f_i(\varvec{x}_i^{k+1}) - f_i(\varvec{x}_i)+ (\varvec{x}_i^{k+1} - \varvec{x}_i)^T\varvec{\alpha }_i^{{ k+1 }}] \\&\le \frac{1}{2S\eta }(1-\frac{\rho \xi }{2}-\frac{\mu _f\xi }{4} +\frac{4\eta ^2 v_L^2 S}{1-2\eta v_L})\Vert \varvec{x}_i^k - \varvec{x}_i\Vert ^2 - \frac{\mu _f }{4}\mathbb {E}\Vert \varvec{x}_i^{k+1} - \varvec{x}_i\Vert ^2 \\&~~~+\frac{2\eta }{1-2\eta v_L} (\sigma ^2)_k^sp \\&\le \frac{\mu _f }{4}[\Vert \varvec{x}_i^k - \varvec{x}_i\Vert ^2-\Vert \varvec{x}_i^{k+1} - \varvec{x}_i\Vert ^2] + \frac{2\eta }{1-2\eta v_L} (\sigma ^2)_k^sp, \end{aligned}$$

where we assume \( 1-\frac{\rho \xi }{2}-\frac{\mu _f\xi }{4} +\frac{4\eta ^2 v_L^2 S}{1-2\eta v_L} \le \frac{ S\eta \mu _f }{2}.\)

1.3 A.3 Proof of Theorem 3

Proof

Combining Lemmas 7, 5 and 6 together and using the convergence criterion (9), we let \(\varvec{w}_i^{k+1} = (\varvec{x}_i^{k+1}; \varvec{z}^{k+1}; \varvec{\alpha }_i^{k+1}) \), and . For any \(\varvec{w}= (\varvec{x}_i ;\varvec{z};\varvec{\lambda }_i ),\) we have

$$\begin{aligned}&\mathbb {E}[P(\varvec{u}^{k+1})-P(\varvec{u}) +\sum _{i=1}^N (\varvec{w}^{k+1} - \varvec{w})^T F(\varvec{w}^{k+1})]\\&\le \mathbb {E}\Bigg \{ \sum _{i=1}^N f_i(\varvec{x}_i^{k+1}) + g(\varvec{z}^{k+1})-\sum _{i=1}^N f_i(\varvec{x}_i) - g(\varvec{z}) \\&~~~+ \sum _{i=1}^N \begin{pmatrix} \varvec{x}_i^{k+1} - \varvec{x}_i\\ \varvec{z}^{k+1} - \varvec{z}\\ \varvec{\alpha }_i^{k+1} - \varvec{\alpha }_i \end{pmatrix} ^T \begin{pmatrix} \varvec{\alpha }_i^{k+1} \\ -\varvec{\alpha }_i^{k+1} \\ -(\varvec{x}_i^{k+1} - \varvec{z}^{k+1}) \end{pmatrix} \Bigg \}\\&\le \sum _{i=1}^N\Bigg \{\frac{\mu _f }{4}[\Vert \varvec{x}_i^k - \varvec{x}_i\Vert ^2-\Vert \varvec{x}_i^{k+1} - \varvec{x}_i\Vert ^2] + \frac{\rho }{2} (\Vert \varvec{z}^{k } - \varvec{z}\Vert ^2-\Vert \varvec{z}^{k+1} - \varvec{z}\Vert ^2)\\&~~~+\frac{1}{2\rho }( \Vert \varvec{\lambda }_i^k-\varvec{\alpha }_i \Vert ^2 - \Vert \varvec{\lambda }_i^{k+1}-\varvec{\alpha }_i \Vert ^2)+ \frac{2\eta }{1-2\eta v_L} (\sigma ^2)_k^sp\Bigg \}, \end{aligned}$$

where \(F(\varvec{w}) = \) \( \begin{pmatrix} \varvec{\alpha }_i \\ -\varvec{\alpha }_i \\ -(\varvec{x}_i - \varvec{z}) \end{pmatrix} \).

Summing the inequality over \(k = 0,1,2,...,K-1\) and using the Jensen’s inequality, we get

where , and If we take \(\varvec{x}= \varvec{x}^*,\varvec{z}= \varvec{z}^*,\) and , we have

1.4 A.4 Proof of Theorem 4

By choosing \(\eta \), which satisfies condition in Theorem 3, and \(S = O(\frac{v_f}{\mu _f})\), we can make \(A = \frac{\mu _f }{4 } \Vert \varvec{x}_i^0 - \varvec{x}_i^*\Vert ^2+ \frac{\rho }{2 } \Vert \varvec{z}^{0 } - \varvec{z}^*\Vert ^2 +\frac{1}{2\rho } (\Vert \varvec{\lambda }_i^0\Vert ^2+ \tau _i^2)\) a constant.

Then, we have

Thus, if we choose \(K = O\left( \frac{M \epsilon }{G}\sqrt{\frac{\mu _f}{v_f p \ln (1/\delta )}}\right) ,\) we have

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, J., Errapotu, S.M., Zhang, H., Gong, Y., Pan, M., Han, Z. (2019). Stochastic ADMM Based Distributed Machine Learning with Differential Privacy. In: Chen, S., Choo, KK., Fu, X., Lou, W., Mohaisen, A. (eds) Security and Privacy in Communication Networks. SecureComm 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-030-37228-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37228-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37227-9

  • Online ISBN: 978-3-030-37228-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics