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Abstract. Control Flow Graph (CFG) similarity analysis is an essen-
tial technique for a variety of security analysis tasks, including malware
detection and malware clustering. Even though various algorithms have
been developed, existing CFG similarity analysis methods still suffer from
limited efficiency, accuracy, and usability. In this paper, we propose a
novel fuzzy hashing scheme called topology-aware hashing (TAH) for ef-
fective and efficient CFG similarity analysis. Given the CFGs constructed
from program binaries, we extract blended n-gram graphical features of
the CFGs, encode the graphical features into numeric vectors (called
graph signatures), and then measure the graph similarity by comparing
the graph signatures. We further employ a fuzzy hashing technique to
convert the numeric graph signatures into smaller fixed-size fuzzy hash
signatures for efficient similarity calculation. Our comprehensive evalua-
tion demonstrates that TAH is more effective and efficient compared to
existing CFG comparison techniques. To demonstrate the applicability
of TAH to real-world security analysis tasks, we develop a binary simi-
larity analysis tool based on TAH, and show that it outperforms existing
similarity analysis tools while conducting malware clustering.

Keywords: CFG Comparison · Binary Similarity · Malware Analysis

1 Introduction

Control flow graph (CFG) similarity analysis has played an essential role in mal-
ware analysis, e.g., detecting the variants of known malware samples [3,6,11,21,
27], evaluating the relationship between different malware families, studying the
evolution of different malware families, and triaging large-scale newly collected
malicious samples to prioritize the new threats. Research also demonstrated that
it is the most fundamental component for effective binary bug search [12], which
tried to create signatures from known vulnerable version CFGs and identify the
vulnerable version of binaries. Therefore, effective and efficient CFG similarity
analysis is much desired for operational security analysis in practice.

Despite the numerous efforts towards effective CFG similarity comparison,
we found it is still challenging to apply existing CFG comparison approaches
for real-world analysis (e.g., structural based binary similarity analysis). Graph
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matching is known to be computationally expensive. Even though several ap-
proximate graph isomorphism algorithms [21, 27, 30, 44] have been developed
and applied to CFG comparison over the past several decades, it is still a time-
consuming procedure to compare a large number of CFGs at the same time. For
instance, comparing binary A with m functions and binary B with n functions
would result in m ∗ n pairwise CFG comparisons. In addition, we notice that
the majority of existing CFG similarity comparison algorithms work with “raw”
CFG structures, and rely on inefficient CFG representations for comparison. Last
but not least, the evaluation of existing CFG comparison algorithms mainly fo-
cus on recognizing the similarity of CFGs. However, performing well with regard
to recognizing CFG similarities does not guarantee also doing good in identifying
CFG differences. And the later capability is equally important especially if the
information of how “similar” of two CFGs are also used in practical applications,
e.g., whether the algorithm will generate comparatively low similarity scores if
the input CFGs are significantly different.

In this paper, we hypothesize that the original CFG representation is not
required to measure the CFG similarity if a CFG can be effectively encoded
with certain representative graph features, which could result in a universal and
compact graph format and make the overall comparison more efficient at the
same time. Therefore, based on the insight that the n-gram concept is applica-
ble to represent CFGs to assess graph similarity, we design a blended n-gram
graphical feature based CFG comparison method, called topology-aware hashing
(TAH). The n-gram concept has been extensively applied for measuring docu-
ment similarity where contiguous sequences of n items are extracted from an
input stream. We apply it to CFGs in a similar manner, except working with
multiple input paths. Extracting n-gram graphical features from CFG struc-
tures enables us to effectively encode arbitrary CFGs to the same format. To
facilitate the comparison between graph signatures, we further employ a fuzzy
hashing technique to convert the numeric graph signatures into smaller fixed-size
fuzzy hash signatures. In this way, we achieve high accuracy through the n-gram
graphical feature representation, and high efficiency through the compact fuzzy
hash comparison. Compared to the state-of-the-art CFG comparison algorithms,
our approach achieves the highest accuracy for hierarchical clustering and takes
the least amount of time to complete all pairwise comparisons. To demonstrate
the effectiveness of the structural comparison approach, we further implement a
binary similarity analysis tool based on TAH. When compared with the state-
of-the-art binary similarity tools, it achieves the highest accuracy at the F-score
of 0.929 for singe-linkage malware clustering tasks.

In summary, we have the following major contributions:

– We propose a blended n-gram graphical feature based CFG comparison
method called TAH. It extracts the n-gram graphical features from the
topology of CFGs, and measures the similarity of CFGs by comparing the
graphical features encoded in fuzzy hash signatures.

– We design a clustering analysis based evaluation framework to comprehen-
sively assess various CFG comparison techniques, and show that TAH is
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more stable, faster, and generates more accurate results compared to state-
of-the-art CFG comparison techniques.

– We design and implement a TAH-based binary similarity analysis tool, and
demonstrate that it effectively performs malware clustering tasks with 2865
carefully labeled malware samples in an efficient manner.

2 Related Work

2.1 CFG Similarity Analysis

Control flow graph (CFG) similarity analysis is the core technical component
of many existing security analysis systems, and various techniques have been
proposed for approximate CFG similarity computation.

1. Min-cost bipartite graph matching: Hu et al. [21] developed an edit
distance based graph isomorphism algorithm by building a cost matrix that
represents the costs of mapping the nodes in two graphs, and using the
Hungarian algorithm [28] to find an optimal mapping between the nodes
such that the total cost (i.e., edit distance) is minimized. Vujošević et al. [44]
iteratively built a similarity matrix between the nodes of two CFGs based on
the similarity of their neighbors, and adopted the Hungarian algorithm to
find the matching between the nodes in two graphs such that the resulting
similarity score is the highest.

2. Maximal common subgraph matching: McGregor [30] designed a back-
track search algorithm to find the maximal common subgraph of two graphs.
This idea has been used to design efficient CFG comparison algorithms,
and adopted for binary semantic difference analysis [15] and binary code
search [12] scenarios. Given the maximal common subgraph output, a graph
similarity score was calculated as the maximal number of common subgraph
nodes divided by the number of available nodes between two graphs.

3. k-subgraph matching: Kruegel et al. [27] designed an algorithm based
on k-subgraph mining. They generated a spanning tree for each node in the
graph such that the out-degree of every node was less than or equal to 2, then
recursively generated k-subgraphs from the spanning trees by considering all
possible allocations of k − 1 nodes under the root node. Each k-subgraph
was then canonicalized and converted into a fingerprint by concatenating the
rows of its adjacency matrix.

4. Simulation-based graph similarity: Sokolsky et al. [42] modeled the con-
trol flow graphs using Labeled Transition Systems. Given two CFGs, they
recursively matched the most similar outgoing nodes starting from the entry
nodes, and summed up the similarity of the matched nodes and edges. The
overall similarity of two CFGs was then defined by a recursive formula.

5. Graph embedding: Genius [13] was designed to learn high-level feature
representations from an attributed CFG (ACFG) and encode the graphs
into numerical vectors using a codebook-based graph matching approach.
It used 6 block-level attributes (e.g., string constants and the number of
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instructions) and 2 inter-block level attributes (e.g., the number of offspring
and betweenness). Using the same features, Gemini [46] proposed a neural
network-based approach to compute the graph embedding for an ACFG, and
achieved better accuracy and efficiency. CFG similarity is then measured by
comparing the embedded graph representation.

Our TAH algorithm belongs to the graph embedding category, which is also
known as topological descriptors [14, 20] in other domains. We notice that lots
of recent graph embedding techniques [18] were mainly designed to represent
the individual graph nodes [1, 34] in vector spaces. They were often applied for
network (i.e., undirected graph) structure analysis [45] and require additional
training processes [5, 24, 45]. TAH is different from Genius and Gemini in that
TAH is basic block content-agnostic, and its graph embedding is always deter-
ministic and requires no separate training process. Graph kernels are widely
adopted for comparing graph similarities. However, we note that the majority of
the graph kernels are designed and used for analyzing undirected graphs or net-
works [16, 41, 43], and require label [41] and weight [25] information. Therefore,
they are not directly applicable to analyzing CFGs, which are directed, unla-
beled, and unweighted graphs. Nevertheless, we notice that our n-gram concept
resonates some of the structural properties used in graph kernel algorithms, such
as graphlets [41] (e.g., the subgraphs with k nodes where k ∈ 3, 4, 5).

2.2 Binary Similarity Analysis

We discuss the previous binary similarity analysis methods that are most relevant
to our approach.

BitShred [23] was a system designed for large scale malware similarity anal-
ysis and clustering, and it extracted n-gram features from the machine code
sequences of the executable sections and applied feature hashing to encode the
features into a bit-vector. nextGen-hash [29] was a concretized fuzzy hashing
approach based on the core ideas developed in BitShred, and achieved more
accurate results than other fuzzy hash algorithms; however, its significant fin-
gerprint size made it hard to use in practice. Myles and Collberg [33] proposed
to use opcode-level n-grams as software birthmarks and applied it to prove the
copyright of software. Opcode level n-gram representation of a binary has also
been explored to detect similar malicious code patterns [4, 22, 32, 39]. Alazab et
al. [2] proposed to detect malware using n-gram features from API call sequences.
SSdeep [26] was a representative fuzzy hashing algorithm that was used to detect
homologous files using context triggered piecewise hashes.

CFG based analysis was also used for binary code comparison. BinDiff [11]
was a binary comparison tool that assisted vulnerability researchers and engi-
neers to quickly find the differences and similarities using function and basic
block level attributes. BinSlayer [3] modeled a binary diffing problem as a bi-
partite graph matching problem. It assigned a distance metric between the basic
block in one function and the basic block in another function that minimized
the total distance, and found that graph isomorphism based algorithms were less
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accurate when the changes between two binaries were large. BinHunt [15] and
iBinHunt [31] relied on symbolic execution and a theorem prover to check seman-
tic differences between basic blocks. Although they might yield better accuracy,
it was hard to use in practice due to an expensive operation cost. Kruegel et
al. [27] used the previously mentioned k-subgraph matching algorithm to detect
polymorphic worms, which was also based on CFG structural analysis. Cesare
and Xiang [6] also extracted fixed-size k-subgraph features and n-gram features
from the string representation of a CFG for malware variant detection.

To some extent, our n-gram graphical features are close to k-subgraphs, but
they are different concepts. Unlike existing work that tried to find an optimal
matching between functions in two binaries, TAH compares the CFGs of the
entire binary using the overall n-gram graphical features. Furthermore, n-gram
features from a CFG string [6] were still derived in a traditional n-gram usage
manner while our proposed n-gram graphical features are directly extracted from
CFG structures.

3 Approach Overview

We illustrate the workflow of TAH in Figure 1. Given two sets of CFGs, we
extract the blended n-gram graphical features from the input CFGs and encode
them as numeric vectors, called graph signatures. To make it more efficient to
use and compare, we subsequently convert the graph signatures into fixed-size
bit-vectors, called fuzzy hash outputs. Finally, we compare the corresponding
fuzzy hash outputs to calculate the similarity of input CFGs.

n-gram
graph

features

graph
signature

fuzzy hash
signature

fuzzy hash
comparison

CFGs

n-gram
graph

features

graph
signature

fuzzy hash
signature

CFGs

basic block
type

abstraction

basic block
type

abstraction

Fig. 1: The workflow of TAH

3.1 Basic Block Type Abstraction

In order to extract representative graphical features, we abstract the basic blocks
of CFGs using categorization. The main objective of the abstraction is to cate-
gorize the nodes of CFGs into different types, which are then used to denote the
“content” of the nodes as used in traditional n-gram application scenarios.

We explore a simple yet effective abstraction of basic block types which cap-
tures the topology of a CFG, and demonstrate that such a simple type abstrac-
tion approach produces reliable results. In particular, we define the basic block
types based on the number of parents (i.e., node in-degree) and the number
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of children (i.e., node out-degree). To study the CFGs of real-world applica-
tions including goodware and malware, we experimentally analyzed a total of
93,470 binaries that were obtained from newly installed Android and Windows
operation systems, and malware sharing websites like VirusShare [38].

outdegree
0 1 2 ≥3

indegree

0 B00 B01 B02 B03
1 B10 B11 B12 B13
2 B20 B21 B22 B23
≥3 B30 B31 B32 B33

B02 B12

B11 B20

B21

n n-gram feature set

1 B02, B12, B21, B11, B20
2 B02B12, B02B21, B12B21, B12B20

B21B11, B11B20
3 B02B12B21, B02B21B11, B02B12B20

B12B21B11, B21B11B20
4 B02B12B21B11, B02B21B11B20
5 B02B12B21B11B20

Fig. 2: A sample CFG and its blended n-gram features

We noted that the majority (97%) of indegree and outdegree values were
between 0 and 3, and mainly focused on in-degree values ranging from 0 to 3, and
out-degree values ranging from 0 to 3 when abstracting CFGs. This abstraction
approach results in a total of 16 different basic block types as shown in the left
table of Figure 2 where each entry in the table denotes a specific basic block type
annotated with its indegree and outdegree values. Basic blocks whose indegree is
larger than or equal to 3 are considered as the same type, and basic blocks whose
outdegree is larger than or equal to 3 are considered as the same type. During
our experiments, we noticed that this approach did not cause significant feature
collision as only 1.27% of basic blocks from real-world applications had larger
than 3 outdegree and only 3.67% of basic blocks had larger than 3 indegree.

3.2 Blended n-gram Graphical Feature Extraction

Similar to the traditional n-gram analysis, we consider a node (i.e., basic block)
in a CFG as a single item, and define an n-gram graphical feature to be the con-
secutive n basic blocks from an input CFG. In order to encapsulate the structural
properties, the connectivity among nodes, and the contextual information of the
input CFG, we include all k-gram (k ∈ [1, n]) features as the complete graphical
feature set. This k-gram model considering all possible sequences from length 1
to n was previously referred to as blended n-gram features [36,40].

Let us take the sample CFG as shown in the middle of Figure 2 to explain
the blended n-gram graphical features in more details. Each basic block is repre-
sented in the abstracted basic block type as discussed in Section 3.1, e.g., B21 with
2 parent nodes and 1 child node. For a given n, we extract all possible blended
n-gram graphical features at every node in the CFG. For example, at node B02,
the 1-gram feature is B02 itself, the 2-gram features are B02B12 and B02B21, and the
3-gram features are B02B12B21, B02B12B20, and B02B21B11. This procedure is called
visiting node B02, and visiting a node reaches descendant nodes at up to n − 1
levels away. We apply this procedure for all nodes in the CFG and obtain the
resulting blended n-gram graphical feature sets. The complete 5-gram graphical
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features for the sample CFG are presented in the right table of Figure 2. Note
that cycles in a CFG will not be an issue since each node in a CFG is visited
only once and the visiting order makes no difference.

Larger n can result in a larger feature space and provide more distinguish-
ing capabilities. On the other hand, a larger feature space also requires more
storage and computing resources to extract all n-gram graphical features and
perform subsequent operations, e.g., comparisons. We comprehensively assessed
the impact of different n-gram sizes, and empirically chose blended 5-gram as
the default n-gram size balancing the accuracy and the efficiency. A näıve imple-
mentation of the blended 5-gram feature set would result in a feature space of
1,118,4804. However, there are certain n-gram graphical features that are invalid
by definition. For example, k-gram (k ≥ 2) features that contain 0 indegree of
basic block types (i.e., B00, B01, B02, B03) but do not start with them are invalid.
Similarly, k-gram (k ≥ 2) features that contain 0 outdegree of basic block types
(i.e., B00, B10, B20, B30) but do not end with them are also invalid. After remov-
ing such invalid features, the blended 5-gram feature set has smaller 118,096
legitimate entries.

3.3 Graph Signature Generation and Comparison

We generate a graph signature by encoding the blended n-gram graphical features
into a numeric vector. Each entry in the vector represents a specific feature, and
the value of the entry denotes the number of appearances of its corresponding
feature in the graph. In this way, both the content and the frequency of features
are taken into consideration when building graph signatures. All the graph sig-
natures are in the same size which is determined by the n-gram graphical feature
space. We describe a feature entry as a 32-bit unsigned integer type, which we
empirically validate that 232 feature space is large enough for practical usage.

We employ the following cosine similarity measure (C) to compute the simi-
larity between two graph signatures.

C(Ga,Gb) =
Ga · Gb
|Ga| · |Gb|

(1)

The rationale behind the use of the cosine similarity measure is that it provides
an ideal foundation for effective signature size compression, which is often desired
for large scale analysis. We describe how we generate a more compact fuzzy hash
signature from it in Section 3.4.

In practice, the feature counts for different binary programs vary significantly,
and the cosine similarity may yield less accurate results as it only assesses ori-
entation of vectors rather than magnitude of vectors. For example, two vectors
(1,2,3,4) and (2,4,6,8) yield the cosine similarity score of 1.0, however the magni-
tude of vectors are significantly different. This is due to the cosine similarity only
measuring the angle between the input vectors. We denote the total number of

4 16 of 1-gram features, 162 of 2-gram features, 163 of 3-gram features, 164 of 4-gram
features, and 165 of 5-gram features.
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the graphical features contained in a CFG as N, and define the size rectification
factor (R) between two CFGs as follows:

R(Ga,Gb) =
min(N(Ga),N(Gb))
max(N(Ga),N(Gb))

(2)

We then compute the final similarity (S) between two graph signatures by
multiplying the rectification factor to the cosine similarity, S(Ga,Gb) = R(Ga,Gb)×
C(Ga,Gb). According to the definition, the final similarity of two graph signa-
tures is 1.0 when they are exactly the same, and the size rectification factor is to
regulate the similarity only when input graph vectors are significantly different.

3.4 Fuzzy Hash Signature Generation and Comparison

The above graph signature representation provides an effective similarity com-
parison mechanism; however, the signature size increases exponentially when
larger n-gram sizes are used. For example, the size of the graph signature is
about 461 KB (i.e., 4B · 118096) with blended 5-gram graphical features, which
is challenging to store and compare at a large scale. To make the technique easier
to use and further facilitate the graph signature storage and comparison process,
we compress the “raw” graph signature into k-bit vector representation using
fuzzy hashing principles.

Specifically, we pre-define a unique seed number and prepare k independent
vectors with elements that are selected randomly from Gaussian distribution,
and configure each random vector to be the same dimension as the raw graph
signatures. We denote the i-th random vector and the raw graph signature as Vi
and G, respectively; and then define the following function B to compare each
random vector against the graph signature.

Bi(Vi,G) =

{
1 if Vi · G ≥ 0

0 if Vi · G < 0
(3)

In this way, each random vector is used to create one projection for the raw
graph signature based on the dot product between the random vector and the
graph signature, and the output of k times of projections becomes a k-bit vector.
The overall random projection procedure is formally known as hyperplane local-
ity sensitive hashing (LSH) [8, 10]. Since all the graph signatures are projected
into {0, 1} space through the same hashing process, graph signatures with close
“locality” will be projected to similar k-bit vectors. We consider the generated
k-bit hash value as a fuzzy hash signature. Given two fuzzy hash signatures Fa

and Fb, we compute Hamming similarity (H) to measure the similarity between
the projected hash outputs as follows:

H(Fa,Fb) = 1− |Fa ⊕Fb|
k

(4)

LSH is commonly used as an efficient technique to conduct the approximate
nearest neighbor search in high-dimension objects. Previous research in LSH
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domain [8, 17] showed that (1) cosine similarity (as used for graph signature
comparison) is one type of similarity measurement that admits LSH families;
and (2) for any similarity function sim(x, y) that admits LSH projection, we
can always obtain an LSH family that maps the original objects to {0, 1} space
and has the property that the similarity between projected objects (e.g., Ham-
ming similarity) is proved to correspond to the original similarity function at
1+sim(x,y)

2 . Therefore, we leverage H(Fa,Fb) to estimate the original cosine sim-
ilarity between graph signatures by:

C̃(Ga,Gb) = 2×H(Fa,Fb)− 1 (5)

Increasing the number of random projection vectors makes the similarity
estimation more accurate. To obtain the optimal n-gram size and fingerprint
size, we conduct grid search against the same ground truth dataset with a set of
potential parameters, and record the optimal clustering result considering both
the efficiency and accuracy5. According to the empirical process, we set 256 as
the optimal k value. The total number of graphical features N is represented
as a 32-bit integer, and the final fuzzy hash output is 288 bits by default. We
compute the final fuzzy hash similarity by multiplying the rectification factor to
the estimated hash similarity: S̃(Ga,Gb) = R(Ga,Gb)× C̃(Ga,Gb).

4 Evaluation of CFG Similarity Analysis Algorithms

In this section, we evaluate the effectiveness and accuracy of different CFG
comparison algorithms. Our evaluation mainly focuses on the capability of the
algorithms to differentiate CFG structures (i.e., the topology) without relying on
basic block content. The auxiliary information provided by basic block content
could further improve CFG comparison. For example, the abstraction process
discussed in Section 3.1 can be extended to incorporate such information.

We compared TAH to representative CFG similarity analysis algorithms dis-
cussed in Section 2. For min-cost bipartite graph matching algorithm [21, 44],
k-subgraph matching [27], and simulation-based graph comparison [42], we used
the implementations provided by Chan [7]. We implemented McGreger’s maxi-
mum common subgraph matching algorithm [30] and our TAH. The graph em-
bedding based CFG comparison algorithms [13,46] are not evaluated since they
rely upon a separate training process and require six types of specific features
derived from concrete basic block content. The final outputs of the algorithms
were normalized ranging from 0 to 1. To facilitate evaluating arbitrary CFG
comparison algorithms, we plan to release our evaluation framework and the
corresponding dataset. A new CFG comparison algorithm can be easily evalu-
ated in this framework by providing a plugin that takes two CFGs as input and
outputs a normalized similarity score.

5 the parameter selection process is not included in the paper due to space limitation
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4.1 Algorithm Evaluation Strategy

To the best of our knowledge, the only prior work that formally evaluated dif-
ferent CFG similarity algorithms was that of Chan et al. [7]. They created a
ground truth CFG dataset by applying different levels of edit operations to a
seed CFG, and checked if the algorithms could identify a similar level of similar-
ity differences between the generated testing CFGs and the seed CFG. However,
we observe that Chan et al.’s methodology is problematic from the following
perspectives: (1) the ground truth dataset and evaluating strategy were inher-
ently biased towards edit-distance based CFG comparison algorithms; (2) differ-
ent edit operations (e.g., adding/deleting a node, and adding/deleting an edge)
might have different costs. For example, editing a node will not impact any ex-
isting edges; on the contrary, editing an edge will affect two nodes. Therefore,
the testing CFGs generated by the same number of edit operations may present
different similarity levels.

We propose a new evaluation strategy where we employ a CFG comparison
algorithm in a hierarchical agglomerative clustering (HAC) system as a custom
distance function, then use the custom distance function to conduct clustering
analysis for the same ground-truth dataset, and use the overall clustering result
as a performance indicator of the corresponding CFG comparison algorithm.
HAC is a bottom-up version of the hierarchical clustering methods, in which all
input items are initially considered as singleton clusters, and then for a specified
distance threshold t the algorithm iteratively merges the clusters with the mini-
mum distance as long as the corresponding cluster distance d is less than t. The
distance between two clusters is often referred to as “linkage” and the following
three linkage criteria are commonly used: single linkage considering the cluster
distance as the minimum distance between all the entries of two clusters, average
linkage considering the cluster distance as the average distance between all the
entries of two clusters, and complete linkage considering the cluster distance as
the maximum distance between all the entries of two clusters.

The rationale for evaluating different CFG comparison algorithms through
HAC are that: (1) the fundamental component of a HAC system is the simi-
larity measurement between all input items, which can be pre-calculated as a
distance matrix using each CFG comparison algorithm; (2) when analyzing the
same ground truth dataset, the only parameter that will impact the final clus-
tering result is the distance matrix which is controlled by each CFG comparison
algorithm; (3) the clustering analysis procedure assesses the capability to group
similar items and separate different items at the same time.

To measure the clustering results, we adopt the measurement of precision
and recall. Precision and recall measure two competing criteria of a clustering
algorithm: the ability to separate items from different clusters, and the ability
to group together items belonging to the same cluster. We consider the intersec-
tion point (or the nearest point) between precision and recall to be the optimal
clustering output. For simplicity, all the clustering results are subsequently mea-
sured with F-score, which is the harmonic mean of the optimal precision and
recall.
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4.2 Experiment Data Preparation

To create a ground-truth CFG dataset, we compiled the latest version of the
Android Open Source Project code and obtained 588 ELF ARM64 binaries. We
analyzed the compiled binaries, collected all the function level CFGs that had 20
nodes, and then randomly selected 5 seed CFGs from all available 20-node CFGs.
We applied one edit operation (e.g., adding a node, deleting a node6, adding an
edge, and deleting an edge) for each seed CFG. Since all the edges and nodes can
be edited in single operation and any of the existing two nodes can be added with
an additional edge, each of the seed CFG can be used to create about 500 artificial
and structurally similar CFGs. In the end, we created a total of 1,934 CFGs from
the 5 seed CFGs. We selected CFGs with 20 nodes since they typically provided
enough varieties between different CFGs, and the individual CFG comparison
did not take too long to complete for all the evaluated algorithms.

4.3 Evaluation Results

To avoid the bias towards a particular linkage strategy, we report the clustering
results with three linkage approaches for all CFG comparison algorithms. We
summarize the optimal clustering results for different algorithms in Table 1,
and present the detailed single-linkage CFG clustering results in Figure 3. The
fuzzy hash signature based CFG comparison approach is labeled as TAH and
the graph signature based CFG comparison approach is labeled as TAH′. We
included TAH′ to verify that fuzzy hashing based TAH closely approximated
TAH′ with little impact on accuracy.

Table 1: Optimal clustering results for different CFG comparison algorithms

Algorithm Single linkage Average linkage Complete linkage Avg F-score

Hu [21] 0.847 0.872 0.879 0.866

Vujošević [44] 0.749 0.869 0.876 0.831

Sokolsky [42] 0.367 0.456 0.501 0.441

Kruegel [27] 0.530 0.530 0.530 0.530

McGreger [30] 0.597 0.588 0.324 0.503

TAH′ 0.816 0.926 1.000 0.914

TAH 0.817 0.926 0.864 0.869

To further dissect the clustering results, we separated all CFG pairs into two
categories: same group CFG pairs and different group CFG pairs. Ideally, the
distance of the same group CFG pair is expected to be small, and the distance of
the different group CFG pair is expected to be large. We present the minimum
and the maximum distances of each group in Table 2, and plot the cumulative
distance distribution for each algorithm in Figure 4.

Combining the distance range information with CFG clustering results, we
can see that: (1) the algorithms proposed by Hu, Vujošević, and Sokolsky had

6 a graph node can be deleted only if it is isolated
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Fig. 3: Single-linkage clustering results for different CFG algorithms

Table 2: Distance ranges for different CFG pairs

Algorithm
Same-group Diff-group All pairs Same-group Diff-group All groups
Min Max Min Max Min Max Min Max Min Max Min Max

Hu 0.000 0.049 0.000 0.182 0.000 0.182 0.000 0.032 0.029 0.165 0.000 0.165
Vujošević 0.000 0.100 0.000 0.213 0.000 0.213 0.000 0.067 0.028 0.203 0.000 0.203
Sokolsky 0.000 0.258 0.000 0.258 0.000 0.258 0.000 0.250 0.000 0.250 0.000 0.250
Kruegel 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

McGreger 0.000 0.905 0.000 0.800 0.000 0.905 0.000 0.935 0.000 0.833 0.000 0.935
TAH′ 0.007 0.724 0.181 0.921 0.007 0.921 0.000 0.777 0.294 0.917 0.000 0.917
TAH 0.015 0.978 0.328 1.000 0.015 1.000 0.000 0.964 0.398 1.000 0.000 1.000

very narrow overall distance ranges for all CFG pairs, thus CFGs were quickly
merged into one group during the clustering process, which resulted in high recall
and low precision for the majority of provided distance thresholds. However, the
edit distance based CFG comparison algorithms generated relatively lower dis-
tance outputs for same group CFG pairs and higher distance outputs for different
group CFG pairs, therefore they still generated overall good F-score outputs. (2)
the algorithms proposed by Kruegel and McGreger provided a broader distance
range, but for both same group CFG pairs and different group CFG pairs at the
same time. This made precision and recall from different clustering thresholds
slowly intersected with each other or never intersected at all, which resulted
in overall poor F-score. (3) TAH′ and TAH both provided very good distance
ranges. Figure 4 also demonstrates that they clearly separated majority of same
group CFG pairs and different group CFG pairs, e.g., when choosing the distance
threshold around 0.50 for TAH′ and choosing the distance threshold around 0.70
for TAH. Therefore, they both generated very good F-score outputs.

As mentioned earlier, all the algorithm implementations evaluated in this
paper only considered the topology of the CFGs and ignored the content of
basic blocks, i.e., the content similarity between all basic block pairs were con-
sidered as 1. Therefore, these implementations may not faithfully represent the
full capability of the original designs, and the evaluation results presented in
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(b) Different-group CFG pairs

Fig. 4: Cumulative distance distribution for all comparison algorithms

this paper only reflected the algorithms’ capability of measuring the similarity
of CFG structures, without considering the basic block content. Even though
our evaluation framework supports experiments with real-world CFGs and the
TAH can be extended to incorporate boolean node attributes7, it is practically
challenging to conduct large scale experiments with real-world CFGs as it is
nontrivial to prepare a large-scale ground truth dataset using real-world CFGs
that present controlled and known similarity levels. Firstly, the source code level
similarities are commonly not proportionally preserved after the complicated
compilation procedure, i.e., it is difficult to control the granularity of CFG sim-
ilarities through source code updates. Secondly, when analyzing large amount
malicious real-world binary samples that were labeled as the same malware fam-
ily label, we noticed that samples often either shared the exact same functions
or had significantly changed functions, while few CFGs were closely similar.

Our evaluation strategy highlighted the strengths and the weaknesses of ex-
isting CFG comparison algorithms when comparing graph topologies. In sum-
mary, TAH′ showed the best separation capabilities between similar CFG pairs
and different CFG pairs, and TAH was a faster approximate method yet still
quite comparable to the accuracy of TAH′, whereas existing CFG comparison
algorithms either had limited distance output ranges or had almost the same
distance ranges between same group CFG pairs and different group CFG pairs.
This demonstrates that TAH′ and TAH are more reliable and have more bal-
anced capability to recognize similar CFGs and identify different CFGs at the
same time. High F-scores of TAH′ and TAH are achieved mainly because the
differences between n-gram graphical features are always proportional to the
structural differences of CFGs. For example, the same group CFGs will have
more similar n-gram graphical features, and the different group CFGs will have
more different graphical features, which subsequently leads to the desired dis-
tinguishing capabilities.

7 e.g., adding 1 bit to record whether the node contains string constants during basic
block type abstraction as described in Section 3.1
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4.4 Overall Performance

For each algorithm, we measured the time taken (in seconds) to finish the sim-
ilarity calculation for all CFG pairs. Since the hierarchical clustering algorithm
has n2 complexity, the prepared 1,934 CFGs would result in 1,869,211 pairwise
CFG comparisons. Note that all the algorithm implementations took two CFGs
as input and produced a similarity score, which means the graph signatures
for TAH′ and fuzzy hash signatures for TAH were generated 1,869,211 times
during the evaluation. And since TAH fuzzy hash outputs are generated from
TAH′ graph signatures, this made the TAH approach dramatically slower than
other approaches. However, if we cache the graph embedding process, e.g., pre-
calculating the graph signature for TAH′ and the fuzzy hash output for TAH
for each CFG then directly loading the generated signatures/hashes within each
pairwise CFG comparison routine, TAH′ only took 125.5s to finish the graph
signature generation and all pairwise comparison, and TAH only took 23.8s to
finish the fuzzy hash generation and all pairwise comparison. This was much
more efficient than other existing approaches. For the same dataset, Hu’s algo-
rithm took 755.6s, Vujošević’s algorithm took 1788.0s, Sokolsky’s algorithm took
483.1s, Kruegel’s algorithm took 321.8s, and McGreger’s algorithm took 2542.1s
to finish. Note that for the same CFG input, the fuzzy hash output is the same if
we apply the algorithm and generate it again, so it makes sense to only generate
it once and caching the intermediate and compact CFG representation when
used in real-world. However, this won’t be applicable for the existing algorithms
since there is no intermediate CFG representation for them and they need to
repeated compare the “raw” CFG inputs. This evaluation indicates that TAH is
particularly suitable for large scale dataset analysis.

5 Evaluation of Binary Similarity Analysis Tools

Based on TAH, we implemented a binary similarity analysis tool8 to evaluate
the effectiveness of the structural comparison approach. We assessed the effec-
tiveness of TAH to conduct binary similarity analysis, and compared it with the
following existing binary similarity comparison solutions: SSdeep v2.14.1 [26] and
BinDiff v4.3.0 [11]. Other previously proposed binary similarity analysis tools
were not evaluated because they were neither maintained [3] (i.e., not working
with a majority of the collected binaries) nor publicly available [15]. In order
to exclude the potential impact of the different disassemblers on the CFG con-
struction accuracy, TAH was implemented as an IDA Pro plugin. The current
implementation of TAH used IDA Pro v6.8 to process the target binaries and
constructed the corresponding CFGs. The same version of IDA Pro was also
used by BinDiff.

We embedded all the binary similarity analysis tools (e.g., TAH, BinDiff, and
SSdeep) into the hierarchical clustering system, and used the clustering outputs
to evaluate the similarity measurement accuracy of the tools. We prepared the

8 For simplicity, we also refer our binary similarity analysis tool as TAH.
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ground truth dataset by collecting desktop malware samples labeled with mal-
ware family names, and considered that the binaries with the same family name
were more similar to each other than binaries from different families were. Be-
cause the labeled malware datasets used in previous research were either discon-
tinued or only contained a list of file hashes, we prepared our own labeled ground
truth malware dataset. In the end, we collected 2,865 recent desktop malware
samples from VirusShare [38], and every sample was consistently labeled by at
least 25 antivirus products listed on VirusTotal [9]. The resulting ground truth
malware dataset containing 8 different malware families is shown in Table 3.

Table 3: Ground truth malware dataset

Malware Family Size Malware Family Size Malware Family Size

InstalleRex 1115 OutBrowse 615 MultiPlug 384

DomaIQ 184 LoadMoney 173 Linkular 164

InstallCore 127 DownloadAdmin 103

We also measured precision and recall to evaluate the clustering outputs. For
all tools, we summarized the optimal clustering results with regard to different
clustering strategies in Table 4, and depicted the overall clustering results with
different binary similarity analysis tools in Figure 5. We can see that TAH gen-
erated the highest F-score of 0.929 for single linkage clustering analysis. BinDiff
produced similar results with F-score of 0.883, while SSdeep only achieved over-
all F-score of 0.690. Because SSdeep operated at the binary stream level, it was
not able to identify a significant number of semantically similar binaries. Bin-
Diff and TAH both operated at the CFG level, and effectively identified a larger
number of similar binaries. Different similarity calculation logic of the tools led
to the F-score differences between BinDiff and TAH.

Table 4: Optimal clustering results for different binary similarity analysis tools

Tool Single linkage Average linkage Complete linkage Time taken

SSdeep 0.690 0.690 0.689 2.7m
BinDiff 0.883 0.883 0.883 166.4m
TAH 0.929 0.903 0.909 0.9m

We also evaluated the time taken to conduct the experiments with each tool.
Since BinDiff did not have an intermediate “signature” representation for binary
CFGs, we only calculated the time it took to finish all the pairwise computations
by converting all the input binaries into BinExport format. The time to conduct
pairwise comparisons with each tool is shown in the last column of Table 4. We
can see that TAH outperformed SSdeep and BinDiff in terms of efficiency, and
BinDiff was dramatically slower than other tools. The main reason for the higher
efficiency of TAH was that a fuzzy hash signature was essentially a bit-vector
which was more CPU friendly than SSdeep hash representation was.

It is worth to mention that various previous malware clustering systems al-
ready demonstrated very promising results. For example, using different datasets,
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Fig. 5: Single-linkage clustering results of different similarity analysis tools

Malheur [37] reported F-score of 0.95, BitShred [23] showed F-score of 0.932, and
FIRMA [35] claimed F-score of 0.988. As a reference, we chose to conduct ex-
periments with BitShred, which was a state-of-the-art malware clustering tool
using static and dynamic binary features. Since BitShred only adopted the single-
linkage clustering strategy, we plot the single-linkage clustering results for all the
tools in Figure 5. From the graph, we can see that BitShred reached the optimal
F-score of 0.885. Overall, TAH generated the best clustering results (e.g., F-
score of 0.929) with single-linkage clustering. Figure 5 also shows that recall for
TAH and BitShred at the distance threshold of 0 are above 0.650, while recall of
SSdeep and BinDiff at this threshold was 0. This is because TAH and BitShred
correctly identified a significant number of binary pairs as similarity of 1.000,
while both SSdeep and BinDiff could not identify any of such binary pairs. We
further notice that the majority of precision values (e.g., with distance thresholds
of [0.000, 0.995]) for SSdeep were 1.000, which means all the binary pairs that
were identified as similar (i.e., similarity score larger than 0.005) were indeed
similar. However, at the same time, the corresponding recall values for SSdeep
were less than 0.365, which indicates that SSdeep failed to recognize a signifi-
cant number of binaries that were known to be similar regardless of the distance
thresholds. This is in line with our practical usage experience with SSdeep.

6 Limitation

6.1 Feature and Signature Collision

We consider the potential attack scenario by generating similar graph features for
different CFGs. According to the design in Section 3.1, feature collision happens
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when: (1) nodes have indegree or outdegree larger than 3; (2) nodes with different
content are in the same topology. The first type of collision is rare in real-
world binary programs (e.g., 3.67% of nodes in our real-world datasets), and the
second type of collision is largely alleviated by recording the node context (i.e.,
n-gram features) and graphical feature counts. n-gram feature extraction allows
the resulting feature differences to be proportional to the structural differences.
The proposed CFG similarity analysis algorithm TAH compares CFG graph
signatures by measuring the overall cosine similarity of graph signatures and the
relative CFG sizes. Since the graph signature is mainly a summary of all features
contained in a CFG, it is theoretically possible for binaries with different CFGs
to generate similar graph signatures. However, random signature collision for
overall binary CFGs is rare in practice. To further reduce the possibility of
collision, we can increase the graphical feature space by incorporating certain
basic block content information into the type abstraction process, such as the
presence of a string or numeric constant, and the number of instructions.

6.2 Obfuscation and Evasion Techniques

It is well-known that malware samples are often packed in recent years to evade
signature-based malware analysis tools [19]. Even worse, malware authors can
apply multiple layers of packing, or employ advanced packers that dynamically
decrypt original code on-the-fly or interpret instructions in a virtualized envi-
ronment. We believe the TAH-based binary similarity analysis is still useful in
practice because of the following reasons. (1) Lots of real-world binaries are still
unpacked, especially for adware or PUP programs. TAH can be used to quickly
filter out similar binaries that have been processed before, or used for triaging
a large number of unprocessed binaries (even packed ones) by grouping similar
instances together. For this purpose, traditional cryptographic hash and existing
similarity analysis solutions are less effective. (2) CFG level analysis makes it
possible to provide a binary similarity analysis solution that has a good balance
between accuracy and efficiency. For example, dynamic analysis based approach
can defeat obfuscation, but is almost impossible to efficiently analyze a large
scale of dataset. (3) Comparing to low-level binary sequences, it will be more
difficult to add randomness to the CFG structure for the packed binaries. For
instance, the dead code can be removed during the CFG construction procedure.
Thus the packed binaries would often share certain deobfuscation routines, which
can be viewed as the signature of the packers.

7 Conclusion

In this paper, we proposed an effective CFG comparison algorithm TAH, which
compares CFGs using n-gram graphical features. In order to compare with exist-
ing CFG comparison solutions, we designed a clustering analysis based evaluation
framework, and systematically showed that TAH was more accurate and effi-
cient compared to state-of-the-art CFG comparison techniques. Based on TAH,
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we also developed a graphical comparison based fuzzy hash tool for binary sim-
ilarity analysis. We empirically demonstrated that TAH outperformed existing
binary similarity analysis tools while conducting malware clustering analysis.
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