Skip to main content

An Energy Optimized JPEG Encoder for Parallel Ultra-Low-Power Processing-Platforms

  • Conference paper
  • First Online:
Book cover Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2019)

Abstract

The energy autonomy and the lifetime of battery-operated sensors are primary concerns in industrial, healthcare and IoT applications, in particular when a high amount of data needs to be sent wirelessly such as in Wireless Camera Sensors (WCS). Onboard real-time image compression is the appropriate solution to decrease the system’s energy. This paper proposes an optimized algorithm implementation tailored for PULP (Parallel Ultra Low Power) processors, that permits to shrink the image size and the data to transmit. Our optimized JPEG encoder based on a Fast-Discrete Cosine Transform (DCT) function is designed to achieve the best trade-off between energy consumption and image distortion. The parallel software implementation requires only 0.495 mJ per frame and can support up to 80 fps satisfying the most stringent requirements in WCSs applications without requiring a dedicated hardware accelerator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magno M et al (2013 June) Multimodal video analysis on self-powered resource-limited wireless smart camera. IEEE J Emerg Sel Top Circuits Syst 3(2):223–235

    Article  ADS  Google Scholar 

  2. Magno M et al (2009 Sept) Multimodal abandoned/removed object detection for low power video surveillance systems. In: 2009 Sixth IEEE international conference on advanced video and signal based surveillance, Genova, pp 188–193

    Google Scholar 

  3. Polonelli T et al (2019 June) A multi-protocol system for configurable data streaming on IoT healthcare devices. In: 2019 IEEE 8th international workshop on advances in sensors and interfaces (IWASI), Otranto, Italy, pp 112–117

    Google Scholar 

  4. Negri L et al (2004 Aug) FSM-based power modeling of wireless protocols: the case of Bluetooth. In Proceedings of the 2004 international symposium on low power electronics and design (IEEE Cat. No.04TH8758), Newport Beach, CA, USA, pp 369–374

    Google Scholar 

  5. Ballerini M et al (2019 July) Experimental evaluation on NB-IoT and LoRaWAN for industrial and IoT applications. In: 2019 IEEE 19th international conference on industrial informatics (INDIN), Helsinki, 2019

    Google Scholar 

  6. Makkaoui L et al (2010 July) Fast zonal DCT-based image compression for wireless camera sensor networks. In: 2010 2nd international conference on image processing theory, tools and applications. IEEE, pp 126–129

    Google Scholar 

  7. Rusci M et al (2016) An event-driven ultra-low-power smart visual sensor. IEEE Sens J 16(13):5344–5353

    Article  ADS  Google Scholar 

  8. Chen S et al (2011) A 64 × 64 Pixels UWB wireless temporal-difference digital image sensor. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(12):2232–2240

    Google Scholar 

  9. Torfs T et al (2012) Low power wireless sensor network for building monitoring. IEEE Sens J 13(3):909–915

    Article  ADS  Google Scholar 

  10. Rossi D et al (2015 Oct) A −1.8 V to 0.9 V body bias, 60 GOPS/W 4-core cluster in low-power 28 nm UTBB FD-SOI technology. In: 2015 IEEE SOI-3D-subthreshold microelectronics technology unified conference (S3S). IEEE, pp 1–3

    Google Scholar 

  11. Osman H et al (2007 Nov) JPEG encoder for low-cost FPGAs. In: 2007 international conference on computer engineering & systems. IEEE, pp 406–411

    Google Scholar 

  12. Sakamoto T et al (1998) Software JPEG for a 32-bit MCU with dual issue. IEEE Trans Consum Electron 44(4):1334–1341

    Article  Google Scholar 

  13. Rao K et al (2014). Discrete cosine transform: algorithms, advantages, applications. Academic Press

    Google Scholar 

  14. Chen W et al (1977) A fast computational algorithm for the discrete cosine transform. IEEE Trans Commun 25(9):1004–1009

    Article  Google Scholar 

  15. Hou H (1987) A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans Acoust Speech Signal Process 35(10):1455–1461

    Article  Google Scholar 

  16. Loeffler C et al (1989 May) Practical fast 1-D DCT algorithms with 11 multiplications. In: International conference on acoustics, speech, and signal processing. IEEE, pp 988–991

    Google Scholar 

  17. Arai Y et al (1988) A fast DCT-SQ scheme for images. IEICE Trans (1976–1990) 71(11):1095–1097

    Google Scholar 

  18. Noritsuna 2019, https://github.com/noritsuna/JPEGEncoder4Cortex-M. Available online: July 2019

  19. Moodstocks 2016, https://github.com/Moodstocks/jpec. Available online: July 2019

  20. Flamand E et al (2018 July) GAP-8: a RISC-V SoC for AI at the edge of the IoT. In: 2018 IEEE 29th international conference on application-specific systems, architectures and processors (ASAP). IEEE, pp 1–4

    Google Scholar 

  21. Hore A et al (2010 Aug) Image quality metrics: PSNR vs. SSIM. In: 2010 20th international conference on pattern recognition. IEEE, pp 2366–2369

    Google Scholar 

  22. Polonelli T et al (2018 Oct) Slotted ALOHA overlay on LoRaWAN-A distributed synchronization approach. In: 2018 IEEE 16th international conference on embedded and ubiquitous computing (EUC). IEEE, pp 129–132

    Google Scholar 

  23. Polonelli T et al (2019 Feb) Slotted ALOHA on LoRaWAN-design, analysis, and deployment. In: Sensors (Switzerland), 19(4)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Polonelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polonelli, T., Battistini, D., Rusci, M., Brunelli, D., Benini, L. (2020). An Energy Optimized JPEG Encoder for Parallel Ultra-Low-Power Processing-Platforms. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2019. Lecture Notes in Electrical Engineering, vol 627. Springer, Cham. https://doi.org/10.1007/978-3-030-37277-4_15

Download citation

Publish with us

Policies and ethics