Pest detection for Precision Agriculture based
on IoT Machine Learning application

Andrea Albanese, Donato d’Acunto, and Davide Brunelli

Department of Industrial Engineering,
University of Trento,
Via Sommarive 9, 38123 Povo TN, Italy

{name.surname}@unitn.it

Abstract. Apple orchards are widely expanding in many countries of
the world, and one of the major threats of these fruit crops is the attack
of dangerous parasites such as the Codling Moth. IoT devices capable of
executing machine learning applications in-situ offer nowadays the pos-
sibility of featuring immediate data analysis and anomaly detection in
the orchard. In this paper, we present an embedded electronic applica-
tion that automatically detects the Codling Moths from pictures takes
by a camera on top of the insects-trap. Image pre-processing, cropping,
and classification are done on a low-power platform that can be easily
powered by a solar panel energy harvester. The proposed system is as-
sessed in terms of the accuracy of pest recognition and analysis of power
consumption for achieving the energy-neutral balance.

Keywords: Internet of Things, Machine Learning, Precision Agricul-
ture

1 Introduction

Electronics and ICT technologies are gaining momentum in agriculture services.
Precision farming is developing new solutions for pest detection, water manage-
ment, treatments optimization nowadays; since the goal of precision agriculture
is to get the most healthy product sustainably. Most of these applications use the
effort of smart sensors which are managed from low cost and low power embed-
ded systems. Usually, after sensing the surrounding environment, the system does
not take any decision about the acquired data and it is transmitted to remote
servers for supports. The main drawback of this approach is a large amount of
data to be transmitted that hampers scalability of such a distributed paradigm.
The key idea is to shift processing near the sensors and finally transmit a report
of a few bytes. Moreover, machine learning can improve the performance of a
precision agriculture application. This type of algorithms can detect and classify
parasites, diseases, and weeds in a very fast way.

This paper is focused on a smart application that detects automatically dan-
gerous parasites for apple orchards, the Codling Moth. This insect looks like a
butterfly and it is the main problem for apple orchards. Thanks to an insect glue



2 Lecture Notes in Computer Science: Authors’ Instructions

trap it is possible to take a picture and classify if there are any Codling Moth and
finally send a notification to the farmer. The classification is done near sensor
thanks to a specific low cost and low power hardware, and an energy-efficient
solution is proposed to sustain the system as long as possible.

1.1 ToT system

The system is composed of a trap that looks like a little house as shown in the
Fig. 1, where a pheromone bait and a glue layer capture the attracted insects
even at low-density presence. The farmer usually takes periodic inspections of
the traps or mount a wireless camera that sends wirelessly the captured pictures
for remote evaluation. This process is expensive and time consuming for the
farmer. The proposed work detects the presence of the parasites thank to a
machine learning approach sends only notifications of threats to the farmer with
the position of them.

(a) Commercial trap.

(b) Prototype of the IoT neural network
Codling Moth smart trap.

Fig.1: Codling Moth smart trap.

The workflow of the proposed application is summarized in Fig. 2. A camera
takes pictures inside the trap periodically, the board detects and crops new
insects not yet analyzed for the classification. Eventually, a notification is sent
to the farmer about the detection of parasites.

For this purpose, the hardware showed in Fig. 3 is based on a Raspberry
Pi3 with a Pi Camera. It is in charge of image pre-processing and cropping,
whereas a Movidius Neural Compute Stick (NCS) that provides the Intel Myriad
X neural accelerator, performs the classification stage. Classification is done by
a machine learning algorithm that uses a CNN model tailored for the NCS. The
uncommon feature of this IoT application is that the classification stage is done
in-situ (near the camera). The processing results, consisting of few bytes after the
classification, are transmitted using long-range and a low power communication
like LoRaWAN. Thanks to its technical specifications the end nodes can send



Lecture Notes in Computer Science: Authors’ Instructions 3

' Raspberry Pl (intel) Movidius

|

— —
E Ay I } ¢ CNN } } Taglg?:rtmer

Fig. 2: Flowchart of the system application.

Fig. 3: Hardware implementation.

data in a range of 15 km; additionally, LoRaWAN guarantees the integrity of the
transmitted data thanks to its protocol that is covered by security encryption.

1.2 Image pre-processing and deep learning

Deep learning is a class of algorithms widely used in machine learning. The
network implemented in this project is, in particular, a Convolutional Neural
Network. This type of networks are widely used in image classification and object
recognition problems. Before training stage of the DNN, a clear and quite large
dataset of pictures is necessary to build up the network in an optimal way.
The Dataset generation stage is fundamental for supervised methods, and each
image used for training and validation stages is known and labeled a priori. This
implies that a good dataset for the pictures used during training is crucial for final
performance. The dataset generation session started with a small set of pictures
(approximately 1300) that has been incremented when more insects have been
trapped during the experiment. The dataset is divided into two classes: codling
moth and general insects. For this specific task a VGG16 model, developed by
the Oxford University, is used [7]. Then the model is converted to a graph model
used to perform the classification on the VPU.

The camera captures the floor of the insect trap, as shown in Figure 4,
pictures may contain a high number of insects to classify. Thus, the images are
processed to extract each insect in sub tiles from the original taken picture. The
task is developed in order to extract easily features like color (a dark subject



4 Lecture Notes in Computer Science: Authors’ Instructions

on white background) and the shape of the insects through a Blob Extraction
algorithm. The process for image crop consists in:

e Conversion of the frame from RGB to GRAY scale;

e Smoothing (or blurring) of the frame with a Gaussian filter;
e Edge extraction through Canny operator;

e Some dilation and erosion of the picture.

After the application of this morphological operators, the blobs are detected
through the OpenCV blob detector. The blobs extracted are collected individ-
ually in a vector as a rectangle and, from the original frame, each of the cor-
responding region of interest (Rol) is cropped. All the new pictures are finally
saved for the neural network. The all procedure is repeated only for the cropped
images that contain more than one blob, in order to enlarge the dataset.

) Row picture.

(d)
Cropped Codling Cropped general in- Cropped Codling
Moth. sect. Moth.

Fig. 4: Examples of pre processed images.



Lecture Notes in Computer Science: Authors’ Instructions 5

2 Training, Validation and Test

For the training stage, we use the effort of the rapid development of neural
networks for image classification based on TensorFlow library [4].

The training stage is an offline process aiming to optimize the neural network
through a large dataset of labeled images as said before. Therefore the system
can learn which category the images belong to. The basic element of a DNN
is the neuron (or node). It is multiplied by a so called weight value only when
the input is ready. For example, if a neuron has four inputs, it has four weight
values which can be adjusted during the training time. A DNN could be improved
through many parameters involved in the process, in our case the most important
parameters that change the performance in a significant way are the number of
epochs and image size. The first is how many times the entire set of training
vectors is used to update the weights, at the end of each epoch a validation
step is computed to evaluate the ongoing training process. So the objective is
to find a good tradeoff between the two parameters described before in order to
complete as good as possible the training stage and even to meet the hardware
constraints. In our application the following three different configurations was
used:

e 75 epochs, image size 224 x 224;
e 10 epochs, image size 112 x 112;
e 10 epochs, image size 52 x 52;

In Fig. 5 is possible to look at the results obtained in the training tests.

— Training accuracy (0.99756)
— Validation accuracy (0.99062)

] EE ) 2 a 3 5 10 2 l i s 10

W
Epochs Epochs Epochs

(a) 75 epochs, image size (b) 10 epochs, image size (¢) 10 epochs, image size
224x224. 112x112. 52x52.

0175

Loss.

0050

0000

0 1 22 % 4 0 e 1w 2 i 6 5 o 2 i 6 5 0
Epochs

(d) 75 epochs, image size (e) 10 epochs, image size (f) 10 epochs, image size
224x224. 112x112. 52x52.

Fig.5: Training and validation accuracy and loss function.



6 Lecture Notes in Computer Science: Authors’ Instructions

Notice that training and validation accuracy using 75 epochs is going to be
saturated. This means that the network does not provide enough accuracy during
the test stage and is not able to generalize as good as required.

Thus the epochs can be decreased to achieve better results, as shown in the
graphs, 10 epochs are enough for good accuracy. Moreover, in order to avoid
possible overflow and to save memory on the Raspberry Pi 3, the image size is
decreased to work with a simpler model and to meet the hardware constraints.
Image size of 112x112 and 52x52 have been tested and used. The chosen image
size shows worse performance with respect to the ones obtained using bigger
image size, the accuracy achieved is, nevertheless, 98% which satisfy quietly the
requirements for an IoT system for parasites monitoring. After the training and
validation stage is finished, the next step is to compute a test through a new set
of data (a subset of the original dataset), which is never seen by the DNN;, this
in order to assess the performance and the generalization of the network. This
step is crucial to confirm the accuracy computed during validation.

In Fig. 6 is possible to look at an example of the output from the classification
stage. Our DNN provides a measure of the confidence which indicates how the
detected insect is close to a general insect or the Codling Moth.

The tests were done in an apple orchard during 12 weeks, with the insect glue
trap shown in Fig. 1. Classification results are summarized as follows:

80,6% was classified correctly;
4,8% was false positives;

6,4% was false negatives;
8,1% was uncertain;

Fig. 6: Example of moth detection from the system.



Lecture Notes in Computer Science: Authors’ Instructions 7

This IoT application will be executed twice per day. The overall application
workflow is divided into five general tasks consisting of:

Task 0: boot of Raspberry;

Task 1: camera capture;

Task 2: preprocessing;

Task 3: classification;

Task 4: report/alarm generation;

Moreover it is measured the current consumption and the duration of each task
and they are summarized in the following table:

HTask‘Period (s)‘Average Current (mA)H

TO | 43,68 345
T1 3,45 394
T2 4,07 501
T3 | 10,19 525
T4 0,34 525

Table 1: Overview table of the consumption of each task.

A real time clock (RTC) is used to power the IoT application on when
planned, and, when the taskset is completed, the system shuts down. In Fig. 7
the overall power consumption from T0 to T4 is shown. It is possible to observe
that Task T3 is the most power-hungry task, because it uses the Raspberry with
the Intel Movidius NCS neural accelerator. The total energy necessary to sustain
an application cycle is 124.1 J.

3 Conclusions

The average power consumption of the proposed system is very small, because of
its low duty cycle. Since the system is activated twice per day for a few minutes,
the average current consumption is only of few uA. In fact, the IoT smart trap
consumes only 248.2 J/day; and a 9000 mAh battery is sufficient to sustain the
system for more than 1 year. An additional 0,5W solar panel of few hundreds
em?, would furtherly extend the energy autonomy, until the full sustainability
where energy intake is enough to operate unattended indefinitely. This particular
feature represents a breakthrough for agricultural activities, because this means
that a farmer could use smart IoT insect trap forgetting about its maintenance,
and waiting for only automatic alerts if some Codling Moth is captured. Due
to the low cost of the components, the proposed work can scale to several in-
stallations in the farmer’s apple orchard, and save time and money for human
intervention in trap checking every day. This type of application is innovative be-
cause it is possible to use treatments for Codling Moth only when really needed,



8 Lecture Notes in Computer Science: Authors’ Instructions

1| shutdown
i
i
i
i
i
i
L I

Time (s)

Fig. 7: System power consumption.

saving over usage of chemicals treatments, and mitigating their impact on the
environment.

References

1. Machine Learning in Agriculture: Applications and Techniques, https://medium.
com/sciforce/machine-learning-in-agriculture-applications-and-techniq\
-ues-6ab501f4d1b5. Last accessed 15 May 2019

2. Intel Movidius Neural Compute SDK Documentation, https://movidius.github.
io/ncsdk/index.html. Last accessed 15 May 2019

3. Raspberry Pi Documentation, https://www.raspberrypi.org/documentation/.
Last accessed 15 May 2019

4. frank1789/NeuralNetworks, https://github.com/frank1789/NeuralNetworks.
Last accessed 25 May 2019

5. Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., Wat-
teyne, T.: Understanding the limits of lorawan. IEEE Communications Magazine
55(9), 34-40 (Sep 2017).

6. Ding, W., Taylor, G.: Automatic moth detection from trap images for pest manage-
ment. Comput. Electron. Agric. 123(C), 17-28 (Apr 2016).

7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. CoRR abs/1409.1556 (2014)



