Skip to main content

Shuffle Dense Networks for Biometric Authentication

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11982))

Included in the following conference series:

  • 1043 Accesses

Abstract

In recent years, with the continuous development of artificial intelligence technology, biometric authentication based on computer vision technology have also been developed rapidly. In this paper, we propose a novel Shuffle dense networks (SDN) with combining ShuffleNet and DenseNet for biometric authentication. ShuffleNet is an extremely computation-efficient structure that can obtain more channels information. DenseNet makes full use of all hierarchical features, which can facilitate the flow of information. Specifically, dense skip connections is adopted for combining the low-level features and the high-level features to enhance the performance of the reconstruction and residual learning is applied for easing the difficulty of training the deep neural network. In addition, the grouped convolutions are introduced for reducing computational complexity and the number of parameters. What’s more, the shuffle dense connections are proposed for mitigating the grouped convolutions problem of lacking information exchange between the groups. The proposed method is evaluated quantitatively and qualitatively on four benchmark datasets, and the experimental results of super-resolution illustrated that our SDN achieves great performance over the state-of-the-art frameworks.

Supported by organization National Nature Science Foundation of China Grand No: 61371156.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., Chen, X., Li, M., et al.: Secure deduplication with efficient and reliable convergent key management. IEEE Trans. Parallel Distrib. Syst. 25(6), 1615–1625 (2014)

    Article  Google Scholar 

  2. Li, J., Huang, X., Li, J., et al.: Securely outsourcing attribute-based encryption with checkability. IEEE Trans. Parallel Distrib. Syst. 25(8), 2201–2210 (2014)

    Article  Google Scholar 

  3. Li, J., Li, J., Chen, X., et al.: Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans. Comput. 64(2), 425–437 (2015)

    Article  MathSciNet  Google Scholar 

  4. Li, J., Li, Y., Chen, X., et al.: A hybrid cloud approach for secure authorized deduplication. IEEE Trans. Parallel Distrib. Syst. 25(5), 1206–1216 (2015)

    Article  Google Scholar 

  5. Li, J., Tan, X., Chen, X., Wong, D.S.: OPoR: enabling proof of retrievability in cloud computing with resource-constrained devices. IEEE Trans. Cloud Comput. 3(2), 195–205 (2015)

    Article  Google Scholar 

  6. Li, J., Zhang, F., Chen, X., et al.: Generic security-amplifying of ordinary digital sigantures. Inf. Sci. 201(2), 128–139 (2012)

    Article  Google Scholar 

  7. Cheng, G., Matsune, A., Li, Q., Zhu, L., Zang, H., Zhan, S.: Encoder-decoder residual network for real super-resolution. In: CVPRW (2019)

    Google Scholar 

  8. Yang, W., Zhang, X., Tian, Y., et al.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed. (2019)

    Google Scholar 

  9. Liu, Z., Mu, H., Zhang, X., et al.: MetaPruning: meta learning for automatic neural network channel pruning. arXiv preprint arXiv:1903.10258 (2019)

  10. Li, F., Bai, H., Zhao, Y.: Detail-preserving image super-resolution via recursively dilated residual network. Neurocomputing 358, 285–293 (2019)

    Article  Google Scholar 

  11. Li, F., Bai, H., Zhao, Y.: FilterNet: adaptive information filtering network for accurate and fast image super-resolution. IEEE Trans. Circuits Syst. Video Technol. (2019)

    Google Scholar 

  12. Huang, J.-B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  13. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  14. Dong, C., et al.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  15. Wang, Z., et al.: Deep networks for image super-resolution with sparse prior. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  16. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014)

    Google Scholar 

  18. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  19. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: IEEE Conference on Computer Vision and Pattern Recognition IEEE Computer Society, pp. 2790–2798 (2017)

    Google Scholar 

  20. Lai, W.S., Huang, J.B., Ahuja, N., et al.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  21. Tong, T., Li, G., Liu, X., et al.: Image super-resolution using dense skip connections. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4809–4817. IEEE (2017)

    Google Scholar 

  22. Huang, G., Liu, Z., Weinberger, K.Q., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  23. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1e–4 (2016)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  25. Xie, S., et al. Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  26. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610.02357 (2016)

  27. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  28. Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)

  29. He, K., Zhang, X., Ren, S., et al.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  30. Lim, B., et al.: Enhanced deep residual networks for single image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017)

    Google Scholar 

  31. Zhao, H., Gallo, O., Frosio, I., et al.: Loss functions for neural networks for image processing. Computer Science (2015)

    Google Scholar 

  32. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Computer Science (2014)

    Google Scholar 

  33. Timofte, R., Agustsson, E., Van Gool, L., et al.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1110–1121. IEEE (2017)

    Google Scholar 

  34. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  35. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  36. Martin, D., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of Eighth IEEE International Conference on Computer Vision (2001)

    Google Scholar 

  37. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the CVPR (2015)

    Google Scholar 

  38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  39. Timofte, R., Rothe, R., Van Gool, L.: Seven ways to improve example-based single image super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

Download references

Acknowledgements

This research supported by National Nature Science Foundation of China Grand No: 61371156. The authors would like to thank the anonymous reviews for their helpful and constructive comments and suggestions regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zang, H., Li, Q., Chen, A., Chen, J., Zhan, S. (2019). Shuffle Dense Networks for Biometric Authentication. In: Vaidya, J., Zhang, X., Li, J. (eds) Cyberspace Safety and Security. CSS 2019. Lecture Notes in Computer Science(), vol 11982. Springer, Cham. https://doi.org/10.1007/978-3-030-37337-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37337-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37336-8

  • Online ISBN: 978-3-030-37337-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics