Skip to main content

DeT: Defending Against Adversarial Examples via Decreasing Transferability

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11982))

Included in the following conference series:

Abstract

Deep neural networks (DNNs) have made great progress in recent years. Unfortunately, DNNs are found to be vulnerable to adversarial examples that are injected with elaborately crafted perturbations. In this paper, we propose a defense method named DeT, which can (1) defend against adversarial examples generated by common attacks, and (2) correctly label adversarial examples with both small and large perturbations. DeT is a transferability-based defense method, which to the best of our knowledge is the first such attempt. Our experimental results demonstrate that DeT can work well under both black and gray box attacks. We hope that DeT will be a benchmark in the research community for measuring DNN attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The details of reformers will be explained in Sect. 3.

  2. 2.

    https://github.com/Trevillie/MagNet.

References

  1. Cao, X., Gong, N.Z.: Mitigating evasion attacks to deep neural networks via region-based classification. In: Proceedings of the 33rd Annual Computer Security Applications Conference, pp. 278–287. ACM (2017)

    Google Scholar 

  2. Carlini, N., Wagner, D.: MagNet and efficient defenses against adversarial attacks are not robust to adversarial examples. arXiv preprint arXiv:1711.08478 (2017)

  3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  4. Du, T., Ji, S., Li, J., Gu, Q., Wang, T., Beyah, R.: SirenAttack: generating adversarial audio for end-to-end acoustic systems. arXiv preprint arXiv:1901.07846 (2019)

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. Computer Science (2014)

    Google Scholar 

  6. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  8. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  9. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), pp. 21–26. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2016)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. Li, J., Ji, S., Du, T., Li, B., Wang, T.: TextBugger: generating adversarial text against real-world applications. In: NDSS (2019)

    Google Scholar 

  14. Li, X., et al.: Adversarial examples versus cloud-based detectors: a black-box empirical study. arXiv preprint arXiv:1901.01223 (2019)

  15. Ling, X., et al.: DEEPSEC: a uniform platform for security analysis of deep learning model. In: IEEE S&P (2019)

    Google Scholar 

  16. Meng, D., Chen, H.: MagNet: a two-pronged defense against adversarial examples. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 135–147. ACM (2017)

    Google Scholar 

  17. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  18. Papernot, N., et al.: Cleverhans v2. 0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768 (2016)

  19. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277 (2016)

  20. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 582–597. IEEE (2016)

    Google Scholar 

  21. Shi, C., et al.: Adversarial captchas. arXiv preprint arXiv:1901.01107 (2019)

  22. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  25. Xu, L., Zhang, D., Jayasena, N., Cavazos, J.: HADM: hybrid analysis for detection of malware. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 16, pp. 702–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56991-8_51

    Chapter  Google Scholar 

  26. Xu, Y., et al.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1626–1630. IEEE (2014)

    Google Scholar 

  27. Zhang, X., Wang, N., Shen, H., Ji, S., Luo, X., Wang, T.: Interpretable deep learning under fire. In: USENIX Security (2020)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by NSFC under No. 61772466 and U1836202, the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars under No. LR19F020003, and the Provincial Key Research and Development Program of Zhejiang, China under No. 2017C01055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouling Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Weng, H., Ji, S., Dong, J., He, Q. (2019). DeT: Defending Against Adversarial Examples via Decreasing Transferability. In: Vaidya, J., Zhang, X., Li, J. (eds) Cyberspace Safety and Security. CSS 2019. Lecture Notes in Computer Science(), vol 11982. Springer, Cham. https://doi.org/10.1007/978-3-030-37337-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37337-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37336-8

  • Online ISBN: 978-3-030-37337-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics