Skip to main content

A Computational Framework for Interpretable Anomaly Detection and Classification of Multivariate Time Series with Application to Human Gait Data Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11979))

Abstract

Sensor-based methods for human gait analysis often utilize electromyography capturing rich time-series data. Then, for transparent and explainable analysis interpretable methods are of prime importance. This paper presents analytical approaches in a framework for interpretable anomaly detection and classification of multivariate time series for human gait analysis. We exemplify the application utilizing a real-world medical dataset in the biomechanical orthopedics domain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  2. Ardestani, M.M., Malloy, P., Nam, D., Rosenberg, A.G., Wimmer, M.A.: TKA patients with unsatisfying knee function show changes in neuromotor synergy pattern but not joint biomechanics. J. Electromyogr. Kinesiol. 37, 90–100 (2017)

    Article  Google Scholar 

  3. Atzmueller, M.: Onto explicative data mining: exploratory, interpretable and explainable analysis. In: Proceedings of the DBDBD 2017. TU Eindhoven, Netherlands (2017)

    Google Scholar 

  4. Atzmueller, M.: Declarative aspects in explicative data mining for computational sensemaking. In: Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP -2017. LNCS (LNAI), vol. 10997, pp. 97–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00801-7_7

    Chapter  Google Scholar 

  5. Atzmueller, M., Baumeister, J., Hemsing, A., Richter, E.-J., Puppe, F.: Subgroup mining for interactive knowledge refinement. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 453–462. Springer, Heidelberg (2005). https://doi.org/10.1007/11527770_61

    Chapter  Google Scholar 

  6. Atzmueller, M., Baumeister, J., Puppe, F.: Semi-automatic learning of simple diagnostic scores utilizing complexity measures. Artif. Intell. Med. 37(1), 19–30 (2006)

    Article  Google Scholar 

  7. Atzmueller, M., Hayat, N., Schmidt, A., Klöpper, B.: Explanation-aware feature selection using symbolic time series abstraction: approaches and experiences in a petro-chemical production context. In: Proceedings of the IEEE International Conference on Industrial Informatics. IEEE, Boston (2017)

    Google Scholar 

  8. Atzmueller, M., Puppe, F., Buscher, H.P.: Profiling examiners using intelligent subgroup mining. In: Proceedings of the 10th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology, Aberdeen, Scotland, pp. 46–51 (2005)

    Google Scholar 

  9. Atzmueller, M., Roth-Berghofer, T.: The mining and analysis continuum of explaining uncovered. In: Bramer, M., Petridis, M., Hopgood, A. (eds.) SGAI 2010, pp. 273–278. Springer, London (2010). https://doi.org/10.1007/978-0-85729-130-1_20

    Chapter  Google Scholar 

  10. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. DMKD 31(3), 606–660 (2017)

    MathSciNet  Google Scholar 

  11. Chandola, V., Mithal, V., Kumar, V.: Comparative evaluation of anomaly detection techniques for sequence data. In: Proceedings of the ICDM, pp. 743–748. IEEE (2008)

    Google Scholar 

  12. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series FeatuRe extraction on basis of scalable hypothesis tests. Neurocomputing 307, 72–77 (2018)

    Article  Google Scholar 

  13. Christ, M., Kempa-Liehr, A.W., Feindt, M.: Distributed and Parallel Time Series Feature Extraction for Industrial Big Data Applications. arXiv preprint arXiv:1610.07717 (2016)

  14. Keleş, S., Subaşı, A.: Classification of EMG signals using decision tree methods. In: Proceedings of the International Symposium on Sustainable Development (ISSD) (2012)

    Google Scholar 

  15. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min. Knowl. Disc. 7(4), 349–371 (2003)

    Article  MathSciNet  Google Scholar 

  16. Keogh, E., Lin, J., Fu, A.: Hot sax: efficiently finding the most unusual time series subsequence. In: Proceedings of the ICDM. IEEE (2005)

    Google Scholar 

  17. Lakany, H.: Extracting a diagnostic gait signature. Pattern Recogn. 41(5), 1627–1637 (2008)

    Article  Google Scholar 

  18. Le Nguyen, T., Gsponer, S., Ilie, I., O’Reilly, M., Ifrim, G.: Interpretable time series classification using linear models and multi-resolution multi-domain symbolic representations. Data Mining Knowl. Discov. 1–40 (2019)

    Google Scholar 

  19. Liao, T.W.: Clustering of time series data – a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  Google Scholar 

  20. Masiala, S., Huijbers, W., Atzmueller, M.: Feature-Set-Engineering for Detecting Freezing of Gait in Parkinson’s Disease using Deep Recurrent Neural Networks. CoRR abs/1909.03428 (2019)

    Google Scholar 

  21. Merino, S., Atzmueller, M.: Behavioral topic modeling on naturalistic driving data. In: Proceedings of the BNAIC. JADS, Den Bosch (2018)

    Google Scholar 

  22. Miller, R.A.: Medical diagnostic decision support systems – past, present, and future: a threaded bibliography and brief commentary. J. Am. Med. Inform. Assoc. 1(1), 8–27 (1994)

    Article  Google Scholar 

  23. Nalepa, G.J., van Otterlo, M., Bobek, S., Atzmueller, M.: From context mediation to declarative values and explainability. In: Proceedings of the IJCAI/ECAI Workshop on Explainable Artificial Intelligence (XAI 2018). IJCAI, Stockholm (2018)

    Google Scholar 

  24. Ngai, V., Wimmer, M.A.: Kinematic evaluation of cruciate-retaining total knee replacement patients during level walking: a comparison with the displacement-controlled ISO standard. J. Biomech. 42(14), 2363–2368 (2009)

    Article  Google Scholar 

  25. Puppe, F.: Systematic Introduction to Expert Systems: Knowledge Representations and Problem-Solving Methods. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-77971-8

    Book  MATH  Google Scholar 

  26. Puppe, F., Atzmueller, M., Buscher, G., Huettig, M., Lührs, H., Buscher, H.P.: Application and evaluation of a medical knowledge-system in sonography (SonoConsult). In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 683–687 (2008)

    Google Scholar 

  27. Rani, S., Sikka, G.: Recent techniques of clustering of time series data: a survey. Int. J. Comput. Appl. 52(15) (2012)

    Google Scholar 

  28. Schäfer, P., Leser, U.: Multivariate Time Series Classification with WEASEL+ MUSE. arXiv preprint arXiv:1711.11343 (2017)

  29. Senin, P., et al.: Time series anomaly discovery with grammar-based compression. In: Proceedings of the International Conference on Extending Database Technology, pp. 481–492 (2015)

    Google Scholar 

  30. Shortliffe, E.H.: Computer programs to support clinical decision making. JAMA 258(1), 61–66 (1987)

    Article  Google Scholar 

  31. Shortliffe, E.H., Sepúlveda, M.J.: Clinical decision support in the era of artificial intelligence. JAMA 320(21), 2199–2200 (2018)

    Article  Google Scholar 

  32. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  33. Tabard-Fougère, A., Rose-Dulcina, K., Pittet, V., Dayer, R., Vuillerme, N., Armand, S.: EMG normalization method based on grade 3 of manual muscle testing: within and between day reliability of normalization tasks and application to gait analysis. Gait Posture 60, 6–12 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Atzmueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramirez, E., Wimmer, M., Atzmueller, M. (2019). A Computational Framework for Interpretable Anomaly Detection and Classification of Multivariate Time Series with Application to Human Gait Data Analysis. In: Marcos, M., et al. Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. KR4HC TEAAM 2019 2019. Lecture Notes in Computer Science(), vol 11979. Springer, Cham. https://doi.org/10.1007/978-3-030-37446-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37446-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37445-7

  • Online ISBN: 978-3-030-37446-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics