Skip to main content

Adopting Standard Clinical Descriptors for Process Mining Case Studies in Healthcare

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 362))

Abstract

Process mining can provide greater insight into medical treatment processes and organizational processes in healthcare. A review of the case studies in the literature has identified several different common aspects for comparison, which include methodologies, algorithms or techniques, medical fields and healthcare specialty. However, from a medical perspective, the clinical terms are not reported in a uniform way and do not follow a standard clinical coding scheme. Further, the characteristics of the event log data are not always described. In this paper, we identified 38 clinically-relevant case studies of process mining in healthcare published from 2016 to 2018 that described the tools, algorithms and techniques utilized, and details on the event log data. We then assigned the clinical aspects of patient encounter environment, clinical specialty and medical diagnoses using the standard clinical coding schemes SNOMED CT and ICD-10. The potential outcomes of adopting a standard approach for describing event log data and classifying medical terminology using standard clinical coding schemes are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://browser.ihtsdotools.org/.

  2. 2.

    https://icd.who.int/browse10/2016/en.

  3. 3.

    https://www.promtools.org.

  4. 4.

    https://fluxicon.com/disco/.

  5. 5.

    https://www.nature.com/documents/nr-reporting-summary-flat.pdf.

References

  1. Alharbi, A., Bulpitt, A., Johnson, O.: Improving pattern detection in healthcare process mining using an interval-based event selection method. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNBIP, vol. 297, pp. 88–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65015-9_6

    Chapter  Google Scholar 

  2. Alvarez, C., Rojas, E., Arias, M., Munoz-Gama, J., et al.: Discovering role interaction models in the emergency room using process mining. J. Biomed. Inform. 78, 60–77 (2018)

    Article  Google Scholar 

  3. Andrews, R., et al.: Pre-hospital retrieval and transport of road trauma patients in Queensland. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 199–213. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_16

    Chapter  Google Scholar 

  4. Baek, H., Cho, M., Kim, S., Hwang, H., Song, M., Yoo, S.: Analysis of length of hospital stay using electronic health records: a statistical and datamining approach. PLoS One 13(4) (2018)

    Google Scholar 

  5. Baker, K., Dunwoodie, E., et al.: Process mining routinely collected electronic health records to define real-life clinical pathways during chemotherapy. Int. J. Med. Inf. 103, 32–41 (2017)

    Article  Google Scholar 

  6. Bakken, S.: The journey to transparency, reproducibility, and replicability. J. Am. Med. Inf. Assoc. 26, 185–187 (2019)

    Article  Google Scholar 

  7. Benson, T., Grieve, G.: Principles of Health Interoperability: SNOMED CT, HL7and FHIR. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-30370-3

    Book  Google Scholar 

  8. Chen, J., Sun, L., Guo, C., Wei, W., Xie, Y.: A data-driven framework of typical treatment process extraction and evaluation. J. Biomed. Inform. 83, 178–195 (2018)

    Article  Google Scholar 

  9. Chen, Y., et al.: Learning bundled care opportunities from electronic medical records. J. Biomed. Inform. 77, 1–10 (2018)

    Article  Google Scholar 

  10. Conca, T., et al.: Multidisciplinary collaboration in the treatment of patients with type 2 diabetes in primary care: analysis using process mining. J. Med. Internet Res. 20(4), e127 (2018)

    Article  Google Scholar 

  11. Dagliati, A., et al.: Temporal electronic phenotyping by mining careflows of breast cancer patients. J. Biomed. Inform. 66, 136–147 (2017)

    Article  Google Scholar 

  12. Duma, D., Aringhieri, R.: An ad hoc process mining approach to discover patient paths of an Emergency Department. Flex. Serv. Manuf. J. 1–29 (2018)

    Google Scholar 

  13. Erdogan, T.G., Tarhan, A.: A goal-driven evaluation method based on process mining for healthcare processes. Appl. Sci. 8(6), 894 (2018)

    Article  Google Scholar 

  14. Erdogan, T.G., Tarhan, A.: Systematic mapping of process mining studies in healthcare. IEEE Access 6, 24543–24567 (2018)

    Article  Google Scholar 

  15. Fernandez-Llatas, C., et al.: Analyzing medical emergency processes with process mining: the stroke case. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 214–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_17

    Chapter  Google Scholar 

  16. Fox, F., Aggarwal, V.R., Whelton, H., Johnson, O.: A data quality framework for process mining of electronic health record data. In: International Conference on Healthcare Informatics (ICHI), pp. 12–21. IEEE (2018)

    Google Scholar 

  17. Funkner, A.A., Yakovlev, A.N., Kovalchuk, S.V.: Data-driven modeling of clinical pathways using electronic health records. Proc. Comput. Sci. 121, 835–842 (2017)

    Article  Google Scholar 

  18. Gatta, R., et al.: A framework for event log generation and knowledge representation for process mining in healthcare. In: International Conference on Tools with Artificial Intelligence (ICTAI), pp. 647–654. IEEE (2018)

    Google Scholar 

  19. Huang, Z., Dong, W., Ji, L., He, C., Duan, H.: Incorporating comorbidities into latent treatment pattern mining for clinical pathways. J. Biomed. Inform. 59, 227–239 (2016)

    Article  Google Scholar 

  20. Huang, Z., Ge, Z., Dong, W., He, K., Duan, H.: Probabilistic modeling personalized treatment pathways using electronic health records. J. Biomed. Inform. 86, 33–48 (2018)

    Article  Google Scholar 

  21. Jimenez-Ramirez, A., Barba, I., Reichert, M., Weber, B., Del Valle, C.: Clinical processes - the killer application for constraint-based process interactions? In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 374–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_23

    Chapter  Google Scholar 

  22. Johnson, O.A., Ba Dhafari, T., Kurniati, A., Fox, F., Rojas, E.: The clearpath method for care pathway process mining and simulation. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 239–250. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_19

    Chapter  Google Scholar 

  23. Kirchner, K., Marković, P.: Unveiling hidden patterns in flexible medical treatment processes – a process mining case study. In: Dargam, F., Delias, P., Linden, I., Mareschal, B. (eds.) ICDSST 2018. LNBIP, vol. 313, pp. 169–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90315-6_14

    Chapter  Google Scholar 

  24. Kirchner, K., Marković, P., Delias, P.: Automatic creation of clinical pathways - a case study. Data Sci. Bus. Intell. 179, 188 (2016)

    Google Scholar 

  25. Kurniati, A.P., Rojas, E., Hogg, D., Hall, G., Johnson, O.: The assessment of data quality issues for process mining in healthcare using Medical Information Mart for Intensive Care III, a freely available e-health record database. Health Inform. J. 25(4), 1878–1893 (2018)

    Article  Google Scholar 

  26. Lismont, J., Janssens, A.S., Odnoletkova, I., et al.: A guide for the application of analytics on healthcare processes: a dynamic view on patient pathways. Comput. Biol. Med. 77, 125–134 (2016)

    Article  Google Scholar 

  27. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: CEUR Workshop Proceedings, vol. 1859, pp. 72–80 (2017)

    Google Scholar 

  28. Mannhardt, F., Toussaint, P.J.: Revealing work practices in hospitals using process mining. In: Building Continents of Knowledge in Oceans of Data: The Future of Co-Created eHealth (2018)

    Google Scholar 

  29. Metsker, O., Yakovlev, A., Bolgova, E., Vasin, A., Koval-chuk, S.: Identification of pathophysiological subclinical variances during complex treatment process of cardiovascular patients. Proc. Comput. Sci. 138, 161–168 (2018)

    Article  Google Scholar 

  30. Munafò, M.R., Nosek, B.A., Bishop, D.V.M., et al.: A manifesto for reproducible science. Nat. Hum. Behav. 1(1), 21 (2017)

    Article  Google Scholar 

  31. Najjar, A., Reinharz, D., Girouard, C., Gagné, C.: A two-step approach for mining patient treatment pathways in administrative healthcare databases. Artif. Intell. Med. 87, 34–48 (2018)

    Article  Google Scholar 

  32. Neira, R.A.Q., de Vries, G.J., Caffarel, J., Stretton, E.: Extraction of data from a hospital information system to perform process mining. In: MedInfo, pp. 554–558 (2017)

    Google Scholar 

  33. Rinner, C., Helm, E., Dunkl, R., Kittler, H., Rinderle-Ma, S.: Process mining and conformance checking of long running processes in the context of melanoma surveillance. Int. J. Env. Res. Public Health 15(12), 2809 (2018)

    Article  Google Scholar 

  34. Rojas, E., Capurro, D.: Characterization of drug use patterns using process mining and temporal abstraction digital phenotyping. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 187–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5_15

    Chapter  Google Scholar 

  35. Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)

    Article  Google Scholar 

  36. Rojas, E., Sepúlveda, M., Munoz-Gama, J., Capurro, D., Traver, V., Fernandez-Llatas, C.: Question-driven methodology for analyzing emergency room processes using process mining. Appl. Sci. 7(3), 302 (2017)

    Article  Google Scholar 

  37. Stefanini, A., Aloini, D., Dulmin, R., Mininno, V.: Service reconfiguration in healthcare systems: the case of a new focused hospital unit. In: Cappanera, P., Li, J., Matta, A., Sahin, E., Vandaele, N., Visintin, F. (eds.) International Conference on Health Care Systems Engineering, vol. 210, pp. 179–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66146-9_16

    Chapter  Google Scholar 

  38. Stell, A., Piper, I., Moss, L.: Automated measurement of adherence to Traumatic Brain Injury (TBI) guidelines using neurological ICU data. In: International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC). SCITEPRESS (2018)

    Google Scholar 

  39. Tóth, K., Machalik, K., Fogarassy, G., Vathy-Fogarassy, Á.: Applicability of process mining in the exploration of healthcare sequences. In: 30th Neumann Colloquium (NC), pp. 151–156. IEEE (2017)

    Google Scholar 

  40. de Vries, G.J., Neira, R.A.Q., Geleijnse, G., Dixit, P., Mazza, B.F.: Towards process mining of EMR data. In: International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC) (2017)

    Google Scholar 

  41. World Health Organization: International statistical classification of diseases and related health problems, vol. 2. World Health Organization (2004)

    Google Scholar 

  42. Yan, H., Van Gorp, P., Kaymak, U., et al.: Aligning event logs to task-time matrix clinical pathways in BPMN for variance analysis. J. Biomed. Health Inform. 22(2), 311–317 (2018)

    Article  Google Scholar 

  43. Yang, S., Sarcevic, A., Farneth, R.A., et al.: An approach to automatic process deviation detection in a time-critical clinical process. J. Biomed. Inform. 85, 155–167 (2018)

    Article  Google Scholar 

  44. Yang, S., et al.: Medical workflow modeling using alignment-guided state-splitting HMM. In: International Conference on Healthcare Informatics (ICHI), pp. 144–153. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Process-Oriented Data Science for Healthcare Alliance (PODS4H Alliance).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Helm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Helm, E., Lin, A.M., Baumgartner, D., Lin, A.C., Küng, J. (2019). Adopting Standard Clinical Descriptors for Process Mining Case Studies in Healthcare. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds) Business Process Management Workshops. BPM 2019. Lecture Notes in Business Information Processing, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-37453-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37453-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37452-5

  • Online ISBN: 978-3-030-37453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics