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Abstract. System-on-Chip (SoC) designs are used in every aspect of
computing and their optimization is a difficult but essential task in to-
day’s competitive market. Data taken from SoCs to achieve this is often
characterised by very long concurrent bit vectors which have unknown re-
lationships to each other. This paper explains and empirically compares
the accuracy of several methods used to detect the existence of these
relationships in a wide range of systems. A probabilistic model is used
to construct and test a large number of SoC-like systems with known re-
lationships which are compared with the estimated relationships to give
accuracy scores. The metrics Ċov and Ḋep based on covariance and inde-
pendence are demonstrated to be the most useful, whereas metrics based
on the Hamming distance and geometric approaches are shown to be less
useful for detecting the presence of relationships between SoC data.

Keywords: binary time series · bit vector · correlation · similarity ·
system-on-chip

1 Introduction

SoC designs include the processors and associated peripheral blocks of silicon
chip based computers and are an intrinsic piece of modern computing, owing
their often complex design to lifetimes of work by hundreds of hardware and
software engineers. The SoC in a RaspberryPi [11] for example includes 4 ARM
processors, memory caches, graphics processors, timers, and all of the associated
interconnect components. Measuring, analysing, and understanding the behavior
of these systems is important for the optimization of cost, size, power usage,
performance, and resiliance to faults.

Sampling the voltage levels of many individual wires is typically infeasible due
to bandwidth and storage constraints so sparser event based measurements are
often used instead; E.g. Observations like “cache miss @ 123 ns”. This gives rise
to datasets of very long concurrent streams of binary occurrence/non-occurrence
data so an understanding of how these event measurements are related is key
to the design optimization process. It is therefore desirable to have an effective
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estimate of the connectedness between bit vectors to indicate the existence of
pairwise relationships. Given that a SoC may perform many different tasks the
relationships may change over time which means that a windowed or, more
generally, a weighted approach is required. Relationships between bit vectors
are modelled as boolean functions composed of negation (NOT), conjunction
(AND), inclusive disjunction (OR), and exclusive disjunction (XOR) operations
since this fits well with natural language and has previously been successfully
applied to many different system types [5]; E.g. Relationships of a form like
“flush occurs when filled AND read access occur together”.

This paper provides the following novel contributions:

– A probabilistic model for SoC data which allows a large amount of represen-
tative data to be generated and compared on demand.

– An empirical study on the accuracy of several weighted correlation and sim-
ilarity metrics in the use of relationship estimation.

A collection of previous work is reviewed, and the metrics are formally defined
with the reasoning behind them. Next, assumptions about the construction of
SoC relationships are explained and the design of the experiment is described
along with the method of comparison. Finally results are presented as a series
of Probability Density Function (PDF) plots and discussed in terms of their
application.

2 Previous Work

An examination of currently available hardware and low-level software profiling
methods is given by Lagraa [9] which covers well known techniques such as using
counters to generate statistics about both hardware and software events – effec-
tively a low cost data compression. Lagraa’s thesis is based on profiling SoCs
created specifically on Xilinx MPSoC devices, which although powerful, ensures
it may not be applied to data from non-Field Programmable Gate Array (FPGA)
sources such as designs already manufactured in silicon which is often the end
goal of SoC design. Lo et al [10] described a system for describing behavior with
a series of statements using a search space exploration process based on boolean
set theory. While this work has a similar goal of finding temporal dependen-
cies it is acknowledged that the mining method does not perform adequately
for the very long traces often found in real-world SoC data. Ivanovic et al [7]
review time series analysis models and methods where characteristic features
of economic time series are described such as drawn from noisy sources, high
auto-dependence and inter-dependence, high correlation, and non-stationarity.
SoC data is expected to have these same features, together with full binarization
and much greater length. The expected utility approach to learning probabilistic
models by Friedman and Sandow [3] minimises the Kullbach-Leibler distance be-
tween observed data and a model, attempting to fit that data using an iterative
method. As noted in Friston et al [4] fully learning all parameters of a Bayesian
network through empirical observations is an intractable analytic problem which
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simpler non-iterative measures can only roughly approximate. The approach of
modelling relationships as boolean functions has been used for measuring com-
plexity and pattern detection in a variety of fields including complex biological
systems from the scale of proteins to groups of animals [20].

‘Correlation’ is a vague term which has several possible interpretations [18]
including treating data as high dimensional vectors, sets, and population sam-
ples. A wide survey of binary similarity and distance measures by Choi et al [1]
tabulates 76 methods from various fields and classify them as either distance,
non-correlation, or correlation based. A similarity measure is one where a higher
result is produced for more similar data, whereas a distance measure will give a
higher results for data which are further apart, i.e, less similar. The distinction
between correlation and similarity can be shown with an example: If it is noticed
over a large number of parties that the pattern of attendance between Alice and
Bob is similar then it may be inferred that there is some kind of relationship
connecting them. In this case the attendance patterns of Alice and Bob are both
similar and correlated. However, if Bob is secretly also seeing Eve it would be
noticed that Bob only attends parties if either Alice or Eve attend, but not both
at the same time. In this case Bob’s pattern of attendance may not be similar
to that of either Alice or Eve, but will be correlated with both. It can therefore
be seen that correlation is a more powerful approach for detecting relationships,
although typically involves more calculation.

In a SoC design the functionallity is split into a number of discrete logical
blocks such as a timer or an ARM processor which communicate via one or more
buses. The configuration of many of these blocks and buses is often specified with
a non-trivial set of parameters which affects the size, performance, and cost of
the final design. The system components are usually a mixture of hardware and
software which should all be working in harmony to achieve the designer’s goal
and the designer will usually have in mind how this harmony should look. For
example the designer will have a rule that they would like to confirm “software
should use the cache efficiently” which will be done by analysing the interaction
of events such as cache miss and enter someFunction. By recording events and
measuring detecting inter-event relationships the system designer can decide if
the set of design parameters should be kept or changed [14], thus aiding the SoC
design optimization process.

3 Metrics

A measured stream of events is written as fi where i is an identifier for one
particular event source such as cache miss. Where fi(t) = 1 indicates event i
was observed at time t, and fi(t) = 0 indicating i was not observed at time t. A
windowing or weighting function w is used to create a weighted average of each
measurement to give an expectation of an event occurrence.

E[fi] =
1∑

t w(t)

∑
t

w(t) ∗ fi(t) ∈ [0, 1] (1)
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Bayes theorem may be rearranged to find the conditional expectation.

Pr(X|Y ) =
Pr(Y |X) Pr(X)

Pr(Y )
=

Pr(Y ∩X)

Pr(Y )
, if Pr(Y ) 6= 0 (2)

E[fx|fy] :=


NaN : E[fy] = 0

E[fx ∗ fy]

E[fy]
: otherwise

(3)

It is not sufficient to look only at conditional expectation to determine if X
and Y are related. For example, the result Pr(X|Y ) = 0.9 may arise from X’s
relationship with Y , but may equally arise from the case Pr(X) = 0.9.

A näıve approach might be to estimate how similar a pair of bit vectors are
by counting the number of matching bits. The expectation that a pair of corre-
sponding bits are equal is the Hamming Similarity [6], as shown in equation (4).
Where X and Y are typical sets [12] this is equivalent to |E[X]− E[Y ]|. The ab-
solute difference |X − Y | may also be performed on binary data using a bitwise
XOR operation.

Ḣam(fx, fy) := 1− E[|fx − fy|] (4)

The dot in the notation is used to show that this measure is similar to, but not
necessarily equivalent to the standard definition. Modifications to the standard
definitions may include disallowing NaN, restricting or expanding the range to
[0, 1], or reflecting the result. For example, reflecting the result of E[|fx − fy|] in

the definition of Ḣam a metric is given where 0 indicates fully different and 1
indicates exactly the same.

A similar approach is to treat a pair of bit vectors as a pair of sets. The
Jaccard index first described for comparing the distribution of alpine flora [8],
and later refined for use in general sets is defined as the ratio of size the intersec-
tion to the size of the union. Tanimoto’s reformulation [19] of the Jaccard index
shown in Equation (5) was given for measuring the similarity of binary sets.

J(X,Y ) =
|X ∩ Y |
|X ∪ Y |

=
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
, |X ∪ Y | 6= ∅ (5)

Ṫmt(fx, fy) :=
E[fx ∗ fy]

E[fx] + E[fy]− E[fx ∗ fy]
(6)

Treating measurements as points in bounded high dimensional space allows
the Euclidean distance to be calculated, then reflected and normalized to [0, 1]
to show closeness rather than distance. This approach is common for problems
where the alignment of physical objects is to be determined such as facial detec-
tion and gene sequencing [2].

Ċls(fx, fy) := 1−
√
E
[
|fx − fy|2

]
(7)
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It can be seen that this formulation is similar to using the Hamming distance,
albeit growing quadratically rather than linearly as the number of identical bits
increases. Another geometric approach is to treat a pair of measurements as
bounded high dimensional vectors and calculate the angle between them using
the cosine similarity as is often used in natural language processing [15] and data
mining [17].

CosineSimilarityX,Y =
X · Y
|X| |Y |

, X, Y 6= 0 ∈ [−1, 1] (8)

Ċos(fx, fy) :=
E[fx ∗ fy]√
E[f2

x ]
√
E
[
f2
y

] ∈ [0, 1] (9)

The strict interval of the measured bit vectors fx, fy ∈ [0, 1] mean that Ċos is
always positive.

The above metrics attempt to uncover relationships by finding pairs of bit
vectors which are similar to each other. These may be useful for simple rela-
tionships of forms similar to “X leads to Y” but may not be useful for finding
relationships which incorporate multiple measurements via a function of boolean
operations such as “A AND B XOR C leads to Y”. Treating measurement data as
samples from a population invites the use of covariance or the Pearson correla-
tion coefficient as a distance metric. The covariance, as shown in Equation (10),
between two bounded-value populations is also bounded, as shown in Equa-
tion (11). This allows the Ċov metric to be defined, again setting negative cor-
relations to 0. For binary measurements with equal weights Ċov can be shown
to be equivalent to the Pearson correlation coefficient.

cov(X,Y ) = E[(X − E[X]) (Y − E[Y ])] = E[XY ]− E[X]E[Y ] (10)

X,Y ∈ [0, 1] =⇒ −1

4
6 cov(X,Y ) 6

1

4
(11)

Ċov(fx, fy) := 4
∣∣∣E[fx ∗ fy]− E[fx]E[fy]

∣∣∣ ∈ [0, 1] (12)

Using this definition it can be seen that if two random variables are independent
then Ċov(X,Y ) = 0, however the reverse is not true in general as the covariance
of two dependent random variables may be 0. The definition of independence in
Equation (13) may be used to define a metric of dependence.

X ⊥⊥ Y ⇐⇒ Pr(X) = Pr(X|Y ) (13)

Ḋep(fx, fy) :=

∣∣∣∣∣E[fx|fy]− E[fx]

E[fx|fy]

∣∣∣∣∣, if E[fx] 6 E[fx|fy] (14)

Normalizing the difference in expectation E[fx|fy] − E[fx] to the range [0, 1]

allows this to be rearranged showing that Ḋep(X,Y ) is an undirected similarity,
i.e. the order of X and Y is unimportant.

Ḋep(fx, fy) =
E[fx|fy]− E[fx]

E[fx|fy]
= 1− E[fx]E[fy]

E[fx ∗ fy]
= Ḋep(fy, fx) (15)
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The metrics defined above Ḣam, Ṫmt, Ċls, Ċos, Ċov, and Ḋep all share
the same codomain [0, 1] where 1 means the strongest relationship. In order to
compare these correlation metrics an experiment has been devised to quantify
their effectiveness, as described in section 4.

4 Experimental Procedure

This experiment constructs a large number of SoC-like systems according to a
probabilistic structure and records event-like data from them. The topology of
each system is fixed which means relationships between bit vectors in each system
are known in advance of applying any estimation metric. The metrics above are
then applied to the recorded data and compared to the known relationships
which allows the effectiveness of each metric to be demonstrated empirically.

The maximum number of measurement nodes 2nmaxm is set to 100 to keep the
size of systems within reasonable limits. Each system is composed of a number
of measurement nodes ei∈[1,m] such that m = msrc + mdst of either type ‘src’
or ‘dst’ arranged in a bipartite graph as shown in Fig. 1. In each system the
numbers of measurement nodes are chosen at random msrc,mdst ∼ U(1, nmaxm).
Src nodes are binary random variables with a fixed densitity ∼ Arcsin(0, 1) where
the approximately equal number of high and low density bit vectors represents
equal importance of detecting relationships and anti-relationships. The value of
each dst node is formed by combining a number of edges ∼ Lognormal(0, 1)
from src nodes. There are five types of systems which relate to the method by
which src nodes are combined to produce the value at a dst node. One fifth of
systems use only AND operations (∧) to combine connections to each dst node,
another fifth uses only OR (∨), and another fifth uses only XOR (⊕). The fourth
type of system uniformly chooses one of the ∧, ∨, ⊕ methods to give a mix of
homogeneous functions for each dst node. The fifth type gets the values of each
dst node by applying chains of operations ∼ U({∧,∨,⊕}) combine connections,
implemented as Left Hand Associative (LHA). By keeping different connection
strategies separate it is easier to see how the metrics compare for different types
of relationships.

The known relationships were used to construct an adjacency matrix where
Kij = 1 indicates that node i is connected to node j, with 0 otherwise. The
diagonal is not used as these tautological relationships will provide a perfect
score with every metric without providing any new information about the met-
ric’s accuracy or effectiveness. Each metric is applied to every pair of nodes to
construct an estimated adjacency matrix E. Each element Eij is compared with
Kij to give an amount of True-Positive (TP) and False-Negative (FN) where
Kij = 1 or an amount of True-Negative (TN) and False-Positive (FP) where
Kij = 0. For example if a connection is known to exist (Kij = 1) and the metric
calculated a value of 0.7 then the True-Positive and False-Negative values would
be 0.7 and 0.3 respectively, with both True-Negative and False-Positive equal
to 0. Alternatively if a connection is know to not exist (Kij = 0) then True-
Negative and False-Positive would be 0.3 and 0.7, with True-Positive and False-
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dst0 dst1 dst2

src0 src1 src2 src3

Fig. 1: Example system with src and dst nodes connected via binary operations.

Negative equal to 0. These are used to construct the confusion matrix and subse-
quently give scores for the True Positive Rate (Sensitivity) (TPR), True Negative
Rate (Specificity) (TNR), Positive Predictive Value (Precision) (PPV), Negative
Predictive Value (NPV), Accuracy (ACC), Balanced Accuracy (BACC), Book-
Maker’s Informedness (BMI), and Matthews Correlation Coefficient (MCC).

TP =
∑
i,j

min(Kij , Eij)

FP =
∑
i,j

min(1−Kij , Eij)

TPR =
TP

TP + FN

PPV =
TP

TP + FP

ACC =
TP + TN

TP + FN + TN + FP

FN =
∑
i,j

min(Kij , 1− Eij)

TN =
∑
i,j

min(1−Kij , 1− Eij)

TNR =
TN

TN + FP

NPV =
TN

TN + FN

BACC =
TPR + TNR

2
BMI = TPR + TNR− 1

MCC =
TP× TN− TP× TN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

To create the dataset 1000 systems were generated, with 10000 samples of
each node taken from each system. This procedure was repeated for each metric
for each system and the PDF of each metric’s accuracy is plotted using Kernel
Density Estimation (KDE) to see an overview of how well each performs over a
large number of different systems.
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5 Results and Discussion

The metrics defined in section 3 function as binary classifiers therefore it is rea-
sonable to compare their effectiveness using some of the statistics common for
binary classifiers noted above. The TPR measures the proportion of connections
which are correctly estimated and the TNR similarly measures the proportion of
non-connections correctly estimated. The PPV and NPV measures the propor-
tion of estimates which are correctly estimated to equal the known connections
and non-connections. ACC measures the likelihood of an estimation matching a
known connection or non-connection. For imbalanced data sets ACC is not nec-
essarily a good way of scoring the performance of these metrics as it may give an
overly optimistic score. Normalizing TP and TN by the numbers of samples gives
the Balanced Accuracy [16] which may provide a better score for large systems
where the adjacency matrices are sparse. Matthews Correlation Coefficient finds
the covariance between the known and estimated adjacency matrices which may
also be interpreted as a useful score of metric performance. Youden’s J statis-
tic, also known as Book-Maker’s Informedness similarly attempts to capture the
performance of a binary classifier by combining the sensitivity and specifitiy to
give the probability of an informed decision.

Each statistic was calculated for each metric for each system. Given the large
number of systems of various types, PDFs of these statistics are shown in Fig. 2
where more weight on the right hand side towards 1.0 indicates a better metric.

Fig. 2a shows that Ċov and Ḋep correctly identify the existence of around
25% of existing connections and other metrics identify many more connections.
However, fig. 2b shows that Ċov and Ḋep are much more likely to correctly
identify non-connections than other metrics, especially Ḣam and Ċov.

For a metric to be considered useful for detecting connections the expected
value of both PPV and NPV must be greater than 0, and ACC must be greater
than 0.5. It can be seen in fig. 2d that all metrics score highly for estimating
negatives; I.e. when a connection does not exist they give a result close to 0.
On its own this does not carry much meaning as a constant 0 will always give
a correct answer. Similarly, a constant 1 will give a correct answer for positive
links so the plots in the middle and right columns must be considered together
with the overall accuracy to judge the usefulness of a metric.

Given that ACC is potentially misleading for imbalanced data sets such as
this one it is essential to check against BACC. Ḣam usually has ACC of close
to 0.5 which alone indicates than it is close to useless for detecting connections
in binary SoC data. The wider peaks of Ċos and Ṫmt in both ACC and BACC
indicate that these metrics are much more variable in their performance than
the likes of Ċls, Ċov, and Ḋep. In this pair of plots where Ċov and Ḋep both
have much more weight towards the right hand side this indicates that these
metrics are more likely to give a good estimate of connectedness.

Finally, using fig. 2h and fig. 2g as checks it can be see again that Ċov
and Ḋep outperform the other metrics. MCC actually has an interval of [−1, 1]
though the negative side is not plotted here, and given that all all metrics have
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weight on the positive side this shows that all of the defined metrics contain at
least some information on the connectedness.

The overall results indicate that Ḣam, Ṫmt, Ċos and Ċls are close to useless
for detecting connections in datasets resembling the SoC data model described
above.

A characteristic feature employed by both Ṫmt and Ċos is the convolution
fx ∗ fy, whereas Ḣam and Ċls employ an absolute difference |fx − fy|. The best

performing metrics Ċov and Ḋep have consistently higher accuracy scores and
employ both the convolution, and the product of expectations E[fx]E[fy].

The simplicity of these metrics allows hints about the system function to be
found quickly in an automated manner, albeit without further information about
the formulation or complexity of the relationships. Any information which can
be extracted from a dataset about the workings of its system may be used to
ease the work of a SoC designer. For example, putting the results into a suitable
visualization provides an easy to consume presentation of how related a set of
measurements are during a given time window. This allows the SoC designer
to make a more educated choice about the set of design parameters in order to
provide a more optimal design for their chosen market.

6 Conclusion

The formulation and rationale behind six methods of measuring similarity or
correlation to estimate relationships between weighted bit vectors has been given.
The given formulations may also be applied more generally to bounded data in
the range [0, 1], though this is not explored in this paper and may be the subject
of future work. Other directions of future work include testing and comparing
additional metrics or designing specialized metrics for .

It has been shown that using methods which are common in other fields
such as the Hamming distance, Tanimoto distance, Euclidean distance, or Co-
sine similarity are not well suited to low-cost relationship detection when the
relationships are potentially complex. This result highlights a potential pitfall of
not considering the system construction for data scientists working with related
binary data streams.

The metrics Ċov and Ḋep are shown to consistently estimate the existance of
relationships in SoC-like data with higher accuracy than the other metrics. This
result gives confidence that detection systems may employ these approaches in
order to make meaningful gains in the process of optimizing SoC behavior. By
using more accurate metrics unknown relationships may be uncovered giving
SoC designer the information they need to optimize their designs and sharpen
their competitive edge.

The Python code used to perform the experiments is available online [13].
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(d) Negative Predictive Value.
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(f) Balanced Accuracy.
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(g) Book-Maker’s Informedness.
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(h) Matthews Correlation Coefficient.

Fig. 2: KDE plots of score PDFs averaged across all system types. More weight
on the right hand side is always better.
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