
BowTie - A deep learning feedforward neural network for
sentiment analysis
Apostol Vassilev

National Institute of Standards and Technology

apostol.vassilev@nist.gov

Abstract

How to model and encode the semantics of human-written text and select the
type of neural network to process it are not settled issues in sentiment analysis.
Accuracy and transferability are critical issues in machine learning in general.
These properties are closely related to the loss estimates for the trained model. I
present a computationally-efficient and accurate feedforward neural network for
sentiment prediction capable of maintaining low losses. When coupled with an
effective semantics model of the text, it provides highly accurate models with low
losses. Experimental results on representative benchmark datasets and
comparisons to other methods1show the advantages of the new approach.

Introduction
When approaching the problem of applying deep learning to sentiment analysis one
faces at least five classes of issues to resolve. First, what is the best way to encode the
semantics in natural language text so that the resulting digital representation captures
well the semantics in their entirety and in a way that can be processed reliably and
efficiently by a neural network and result in a highly accurate model? This is a critically
important question in machine learning because it directly impacts the viability of the
chosen approach. There are multiple ways to encode sentences or text using neural
networks, ranging from a simple encoding based on treating words as atomic units
represented by their rank in a vocabulary [3], to using word embeddings or distributed
representation of words [13], to using sentence embeddings. Each of these encoding
types have different complexity and rate of success when applied to a variety of tasks.
The simple encoding method offers simplicity and robustness. The usefulness of word
embeddings has been established in several application domains, but it is still an open
question how much better it is than simple encoding in capturing the entire semantics
of the text in natural language processing (NLP) to provide higher prediction accuracy
in sentiment analysis. Although intuitively one may think that because word
embeddings do capture some of the semantics contained in the text this should help, the
available empirical test evidence is inconclusive. Attempts to utilize sentence
embeddings have been even less successful [4].

Second, given an encoding, what kind of neural network should be used? Some
specific areas of applications of machine learning have an established leading network
type. For example, convolutional neural networks are preferred in computer vision.

1DISCLAIMER: This paper is not subject to copyright in the United States. Commercial products
are identified in order to adequately specify certain procedures. In no case does such identification
imply recommendation or endorsement by the National Institute of Standards and Technology, nor does
it imply that the identified products are necessarily the best available for the purpose.

1/12

ar
X

iv
:1

90
4.

12
62

4v
1

 [
cs

.I
R

]
 1

8
A

pr
 2

01
9

However, because of the several different types of word and sentence encoding in natural
language processing (NLP), there are multiple choices for neural network architectures,
ranging from feedforward to convolutional and recurrent neural networks.

Third, what dataset should be used for training? In all cases the size of the training
dataset is very important for the quality of training but the way the dataset is
constructed and the amount of meta-data it includes also play a role. For example, the
Keras IMDB Movie reviews Dataset [10] (KID) for sentiment classification contains
human-written movie reviews. A larger dataset of similar type is the Stanford Large
Movie Review Dataset (SLMRD) [1]. I consider KID and SLMRD in detail in
Sections 1.3 and 1.4. Generally, simpler encodings and models trained on large amounts
of data tend to outperform complex systems trained on smaller datasets [13].

Fourth, what kind of training procedure should be employed - supervised or
unsupervised? Traditionally, NLP systems are trained on large unsupervised corpora
and then applied on new data. However, researchers have been able to leverage the
advantages of supervised learning and transfer trained models to new data by retaining
the transfer accuracy [4].

Fifth, when training a model for transfer to other datasets, what are the model
characterizing features that guarantee maintaining high/comparable transfer accuracy
on the new dataset? Certainly, training and validation accuracy are important but so
are the training and validation losses. Some researchers argue that the gradient descent
method has an implicit bias that is not yet fully understood, especially in cases where
there are multiple solutions that properly classify a given dataset [14]. Thus, it is
important to have a neural network with low loss estimates for a trained model to hope
for a good and reliable transfer accuracy.

The primary goal of this paper is to shed light on how to address these issues in
practice. To do this, I introduce a new feedforward neural network for sentiment
analysis and draw on the experiences from using it with two different types of word
encoding: a simple one based on the word ranking in the dataset vocabulary; the other
judiciously enhanced with meta-data related to word polarity. The main contribution of
this paper is the design of the BowTie neural network in Section 2.

1 Data encoding and datasets
As discussed above, there are many different types of encodings of text with different
complexity and degree of effectiveness. Since there is no convincing positive correlation
established in the literature between complexity of the encoding and higher prediction
accuracy, it is important to investigate the extent to which simple data encodings can
be used for sentiment analysis. Simpler encodings have been shown to be robust and
efficient [3]. But can they provide high prediction accuracy in sentiment analysis?

I investigate this open question by evaluating the accuracy one may attain using two
types of text encoding on representative benchmark datasets.

1.1 Multi-hot encoding
The first encoding is the multi-hot encoding of text [6] which can be defined as follows.

2/12

Figure 1. A multi-hot en-
coded text in D,ΠD with M =
88 587.

0 20000 40000 60000 80000

0.0

0.2

0.4

0.6

0.8

1.0

Let π be a linguistic type (e.g.
morpheme, word) and let ΠD be the set
of all such linguistic types in a dataset
D. Let M = |ΠD| be the cardinality
of ΠD. Let ψ be a linguistic text type
(e.g., a movie review) and let ΨD be
the set of all texts in D. Let N = |ΨD|
be the cardinality of ΨD. Let
ΠD and ΨD be finite sets such that the
elements in each set are enumerated
by {0, ...,M} and {0, ..., N}
respectively. Let TNxM be a tensor
of real numbers of dimensions N by
M , whose elements are set as follows:

{τjk} =


1, if πk ∈ ψj ;

0, otherwise.
(1)

The multi-hot encoding (1) represents a very simple model of the semantics in ψ,
∀ψ ∈ ΨD. An example of a multi-hot encoded text is shown in Figure 1.

1.2 Polarity-weighted multi-hot encoding
The second encoding I consider is similar to the multi-hot encoding in the sense it has
the same non-zero elements but their values are weighted by the cumulative effect of the
polarity of each word present in a given text π, as computed by [19]. Let cπ,ψ be the
number of tokens of the linguistic type π in a text ψ. Let ξπ be the polarity rating of
the token π ∈ ΠD. Naturally, I assume that if ΞD is the set of all polarity ratings for
tokens π ∈ ΠD, then |ΞD| = |ΠD|. Let ωξπψ = ξπ ∗ cπ,ψ be the cumulative polarity of π
in the text ψ. Let ΩD = {ωi}Mi=0 and CD = {ci}Mi=0.

Figure 2. A polarity-
weighted multi-hot encoded
text in D,ΠD with M = 89 527.

0 20000 40000 60000 80000
6

4

2

0

2

4

Let ΘNxM be a tensor
of real numbers of dimensions N by
M , whose elements are set as follows:

{θjk} =


ωξkπkψj

, if πk ∈ ψj ;

0, otherwise.
(2)

The polarity-weighted multi-hot
encoding (2) represents a more
comprehensive model of the semantics
in ψ, ∀ψ ∈ ΨD, that captures more
information about ψ. I will attempt
to investigate if and how much this
additional information helps to improve
the sentiment predictions in Section 3.

An example of a polarity-weighted multi-hot encoded text is shown in Figure 2.

1.3 The Keras IMDB Dataset (KID)
The KID [10] contains 50 000 human-written movie reviews that are split in equal
subsets of 25 000 for training and testing and further into equal categories labeled as

3/12

positive or negative. For convenience, the reviews have been pre-processed and each
review is encoded as a sequence of integers, representing the ranking of the
corresponding word in ΠD with |ΠD| = 88 587. As such, it can be easily encoded by the
multi-hot encoding (1).

1.4 The Stanford Large Movie Review Dataset (SLMRD)
SLMRD contains 50 000 movie reviews, 25 000 of them for training and the rest for
testing. The dataset comes also with a processed bag of words and a word polarity
index [1, 12]. SLMRD contains also 50 000 unlabeled reviews intended for unsupervised
learning. It comes with a ΠD, polarity ratings ΩD, and word counts CD with
|ΩD| = |CD| = |ΠD| = 89 527.

2 The BowTie2 feedforward neural network

Figure 3. The classic bow tie.
The bow tie originated among
Croatian mercenaries during the
Thirty Years’ War of the 17th cen-
tury. It was soon adopted by the
upper classes in France, then a
leader in fashion, and flourished
in the 18th and 19th centuries.
(Wikipedia)

As discussed above, the ability
of the network to provide accurate predictions
and maintain low losses is very important
for allowing it to transfer to other datasets
and maintain the same or higher prediction
accuracy as on the training dataset.

I now introduce a
feedforward neural network with that criteria
in mind. By way of background [5], logistic
regression computes the probability of a
binary output ŷi given an input xi as follows:

P (ŷ|X,w) =
n∏
i=1

Ber[ŷi|sigm(xiw)], (3)

where Ber[] is the Bernouli distribution, sigm() is the sigmoid function, w is a
vector of weights. The cost function to minimize is C(w) = − logP (ŷ|X,w). This
method is particularly suitable for sentiment prediction. One critical observation is that
logistic regression can be seen as a special case of the generalized linear model. Hence, it
is analogous to linear regression. In matrix form, linear regression can be written as

ŷ = Xw + ε, (4)

where ŷ is a vector of predicted values ŷi that the model predicts for y, X is a
matrix of row vectors xi called regressors, w are the regression weights, and ε is an
error that captures all factors that may influence ŷ other than the regressors X.

The gradient descent algorithm used for solving such problems [5] may be written as

w(k+1) = w(k) − ρ(k)g(k) + ε(k), (5)

where g(k) is the gradient of the cost function C(w), ρ(k) is the learning rate or step
size, and ε(k) is the error at step k of the iterative process. One error-introducing factor
in particular is the numerical model itself and the errors generated and propagated by
the gradient descent iterations with poorly conditioned matrices run on a computer
with limited-precision floating-point numbers. Even if regularization is used, the specific
parameters used to weigh them in the equation (e.g., the L2-term weight or the dropout

2The name is inspired by the classic image of the bow tie - see Figure 3

4/12

rate) may not be optimal in practice thus leading to potentially higher numerical error.
This is why it is important to look for numerical techniques that can reduce the
numerical error effectively. This observation inspires searching for techniques similar to
multigrid from numerical analysis that are very effective at reducing the numerical
error [2].

The neural network design

Dense Dropout

@Dictionary_Size

@64

Dense

Dense
Dense

Dense

Dense

Dense

Sigmoid

@32

@16
@8

@16

@32

@64 @64

@1

Linear
w/ L2-reg

Linear
w/ L2-reg

Linear
w/ L2-reg Linear

w/ L2-reg Linear
w/ L2-reg

Linear
w/ L2-reg

Linear
w/ L2-regEncoder

Data P(yi|xi,wi)

xi

i=1,...,N

Z9

Z8Z7

Z6

Z5Z4

Z3

Z2

Z1

Z0

Figure 4. The BowTie neural network. The estimated probability P (ŷ(i)|x(i),w(i))
may be fed into a post-processing discriminator component to assign a category (pos/neg)
for the input x(i) with respect to a discriminator value δ ∈ [0, 1]. All experiments
presented in this paper use δ = 0.5.

The feedforward neural network in Figure 4 consists of one encoding layer, a cascade
of dense linear layers with L2-regularizers and of appropriate output size followed by a
dropout regularizer and a sigmoid. The encoder takes care of encoding the input data
for processing by the neural network. In this paper I experiment with the two encodings
defined in Section 1: the simple multi-hot encoding and the polarity-weighted multi-hot
encoding.

The sigmoid produces the estimated output probability P (ŷ(i)|x(i),w(i)), which may
be used to compute the negative log-loss or binary cross-entropy as

−
[
y log(P (ŷ(i)|x(i),w(i))) + (1− y) log(1− P (ŷ(i)|x(i),w(i)))

]
. (6)

The binary cross-entropy provides a measure for quality and robustness of the
computed model. If the model predicts correct results with higher probability, then the
binary-cross entropy tends to be lower. If however the model predicts correct results
with probability close to the discriminator value or predicts an incorrect category, the
binary cross-entropy tends to be high. Naturally, it is desirable to have models that
confidently predict correct results. It is also important to have models that maintain
low binary cross-entropy for many training epochs because, depending on the training
dataset, the iterative process (5) may need several steps to reach a desired validation
accuracy. Models that quickly accumulate high cross-entropy estimates tend to overfit
the training data and do poorly on the validation data and on new datasets.

Hyperparameters. There are several hyperparameters that influence the behavior of
BowTie, see Table 1. For optimal performance the choice of the dense layer activation
should be coordinated with the choice for the L2-regularization weight. This
recommendation is based on the computational experience with BowTie and is in line
with the findings in [8] about the impact of the activation layer on the training of neural
networks in general. The linear network (no dense layer activation) runs better with

5/12

Table 1. BowTie hyperparameters.
Hyperparameters

name values/range
L2-regularization weight 0.01 - 0.02

Dropout rate 0.2 - 0.5
Optimizer NADAM, ADAM, or RMSProp

Dense Layer Activation None (Linear network), RELU

L2-regularization weight close to 0.02 but rectified linear unit (RELU) activation runs
better with L2-regularization weight close to 0.01. The network can tolerate a range of
dropout rates but a dropout rate of 0.2 is commonly recommended in the literature and
works well here too. The choice of the optimizer can affect the learning rate, the highest
accuracy attained and the stability over several epochs. BowTie performs well with
adaptive momentum (ADAM), Nesterov adaptive momentum (NADAM) and Root
Mean Square Propagation (RMSPRop), no dense layer activation, L2-regularization set
to 0.019 (this value resulting from hyperparameter optimization) and a dropout rate of
0.2. It is interesting to note that RMSProp tends to converge faster to a solution and
sometimes with a higher validation accuracy than NADAM but the transfer accuracy of
the models computed with NADAM tends to be higher than for models computed with
RMSPRop. For example, a model trained on SLMRD with validation accuracy of 89.24
%, higher than any of the data in Table 4 below, yielded 91.04 % transfer accuracy over
KID, which is lower than the results in Table 4. This experimental finding is consistent
over many tests with the two optimizers and needs further investigation in future
research to explore the theoretical basis for it.

3 Training and transfer scenarios
This section defines the objectives for the testing of the BowTie neural network shown
in Figure 4 in terms of four training and transfer scenarios.

But first it is important to decide on the type of training to employ - supervised or
unsupervised. I embark on supervised training based on the findings in [4] about the
advantages of supervised training and the availability of corpora of large labeled
benchmark datasets [10] and [1].

These are the scenarios to explore:

• Scenario 1 (Train and validate): Explore the accuracy and robustness of the
BowTie neural network with the simple multi-hot encoding by training and
validating on KID.

• Scenario 2 (Train and validate): Explore the accuracy and robustness of the
BowTie neural network with the simple multi-hot encoding by training and
validating on SLMRD.

• Scenario 3 (Train and validate): Explore the accuracy and robustness of the
BowTie neural network with the polarity-weighted multi-hot encoding by training
and validating on SLMRD.

• Scenario 4 (Train, validate, and transfer): Explore the transfer accuracy of
the BowTie neural network with polarity-weighted multi-hot encoding by training
on SLMRD and predicting on KID.

The primary goal of this exploration is to establish some baseline ratings of the
properties of the BowTie neural network with the different encodings and compare

6/12

against similar results for other neural networks with other types of encoding. This
provides a quantitative criteria for comparative judging.

Results
In this section I report the results from executing Scenarios 1-4 from Section 3 using
TensorFlow [6], version 1.12, on a 2017 MacBook Pro with 3.1 GHz Intel Core i7 and 16
GB RAM without Graphics Processing Unit (GPU) acceleration. The test code is
written in Python 3 and executes under a Docker image [7] configured with 10 GB of
RAM and 4 GB swap.

Scenario 1. In this test, the BowTow neural network is tested with encoding 1. The
results in Table 2 show high accuracy and low binary cross-entropy estimates.

Table 2. Scenario 1 results. Data from experiments with training a model on KID
until it attains some validation accuracy grater than 88 %. Note that each time the data
is loaded for training, it is shuffled randomly, hence the small variation in computational
results.

Training and validating on KID
validation accuracy (%) validation binary cross-entropy

88.08 0.2955
88.18 0.2887
88.21 0.2945

To assess the relative computational efficiency of the BowTie neural network, I
compared it to the convolutional neural network in [11] with a 10 000 word dictionary.
The network reached accuracy of 88.92 % at Epoch 4 with binary cross entropy of
0.2682. However, it took 91 seconds/Epoch, which matched the numbers reported by
the authors for the CPU-only computational platform. In addition, after Epoch 4, the
binary cross-entropy started to increase steadily while the accuracy started to decline.
For example, the binary cross-entropy reached 0.4325 at Epoch 10 with validation
accuracy of 87.76 % and 0.5536 and 87.40 % correspondingly at Epoch 15.

Figure 5. BowTie accu-
racy and cross-entropy re-
sults. The neural network keeps
the cross-entropy estimate low
over the course of 20 epochs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
c

Vcyclelrnn binary_crossentropy Val
Vcyclelrnn binary_crossentropy Train
Vcyclelrnn acc Val
Vcyclelrnn acc Train

In comparison, BowTie took only 3
seconds/Epoch for the same dictionary
size and attained accuracy of 88.20
% with binary cross-entropy of 0.2898.
The binary cross-entropy stays stable
below 0.38 for a number of Epochs. In
other words, BowTie is 30-times faster,
attains comparable accuracy and
maintains stable binary-cross entropy.

Scenario 2 SLMRD is
more challenging than KID for reasons
that are visible in the test results
for Scenarios 3 and 4, hence the slightly
lower validation accuracy attained by

BowTie using the simple encoding 1 - it easily meets or exceeds the threshold accuracy
of 87.95 % but could not surpass the 88 % limit in several experiments.

7/12

Table 3. Scenario 2 results. Data from experiments with training a model on KID
until it attains some validation accuracy was equal to or grater than 87.95 %. Note
that each time the data is loaded for training, it is shuffled randomly, hence the small
variation in computational results.

Training and validating on SLMRD
validation accuracy (%) validation binary cross-entropy

87.98 0.2959
87.95 0.2996
87.96 0.3001

Scenarios 3 and 4. I combine the reporting for Scenarios 3 and 4 because once the
model is trained under Scenario 3 it is then transferred to compute predictions on KID.
To perform the transfer testing on KID one needs to reconcile the difference in
|ΠSLMRD| and |ΠKID|. As I noted in Section 1, |ΠSLMRD| = 89 527 and
|ΠKID| = 88587. Moreover, ΠKID 6⊂ ΠSLMRD. Let Π∆ = ΠKID \ (ΠKID ∩ΠSLMRD).
It turns out that

Π∆ =


0′s, 1990s, 5, 18th, 80s, 90s, 2006, 2008,
85, 86, 0, 5, 10, tri, 25, 4, 40′s, 70′s, 1975,
1981, 1984, 1995, 2007, dah,walmington,
19, 40s, 12, 1938, 1998, 2, 1940′s, 3, 000, 15, 50.

 .

Clearly, |Π∆| is small and of the words in Π∆, only ’walmington’ looks like a plausible
English word but it is the name of a fictional town in a British TV series from the
1970’s. As such it has no computable polarity index and is semantically negligible.
Based on this, I dropped all these words during the mapping of π ∈ Π∆ into the
corresponding π′ ∈ ΠSLRMD. Note that this π → π′ mapping enables the encoding of
the semantics of the texts in KID according to 2.

Some simple but revealing statistics about the data. With encoding 2, the
matrix TSLMRD for the training set in SLMRD shows cumulative polarity in the range
[-50.072 837, 58.753 546] and the cumulative polarity of the elements of the matrix
TSLMRD for the test set is in the range [-48.960 107, 63.346 164]. This suggests that
SLMRD is pretty neutral and an excellent dataset for training models. In contrast, the
elements of the matrix TKID are in the range [-49.500 000, 197.842 862].

Table 4. Scenarios 3 and 4 results. Data from experiments with training a model on
SLMRD until it attains some validation accuracy grater than 89 % and then using that
same model to predict the category for each labeled review in KID. Note that the transfer
accuracy is computed over the entire set of 50 000 reviews in KID.

Training on SLMRD Predicting on KID
validation accuracy (%) validation binary cross-entropy Prediction transfer accuracy (%)

89.02 0.2791 91.56
89.12 0.2815 91.63
89.17 0.2772 91.76

8/12

Figure 6. BowTie accu-
racy and cross-entropy re-
sults. The neural network
keeps the cross-entropy estimate
in check over the course of 100
epochs.

0 20 40 60 80
Epochs

0.2

0.4

0.6

0.8

Ac
c

Vcyclelrnn binary_crossentropy Val
Vcyclelrnn binary_crossentropy Train
Vcyclelrnn acc Val
Vcyclelrnn acc Train

Table 4 contains
the results from executing Scenarios 3
and 4. The validation and transfer
accuracy results in Table 4 are better
than those shown in Tables 2 and
3. This shows the value word polarity
brings in capturing the semantics
of the text. The transfer accuracy
over KID is also higher than the results
obtained by using the convolutional
neural network [11] on KID.

The results in Table4 are higher
than the results reported for sentiment
prediction of movie reviews in [4] but

also in agreement with the reported experience by these authors of consistently
improved accuracy from supervised learning on a large representative corpus before
transferring the model for prediction to a corpus of interest.

Note also that the validation accuracy results for the BowTie neural network on
SLMRD are substantially higher than the results for the same dataset in [12]. The
observation in [12] that even small percentage improvements result in a significant
number of correctly classified reviews applies to the data in Table 4: that is, there are
between 172 and 210 more correctly classified reviews for BowTie. In addition, BowTie
is computationally stable and retains low cross-entropy losses over a large number of
epochs, see Figures 5 and 6, which is a desirable property.

The speed of computation improves on platforms with GPU acceleration. For
example, experiments on a system with eight Tesla V100-SXM2 GPUs yield speedups of
nearly a factor of two in training but the acceleration plateaued if more than two GPUs
were used. The computational speedup was better during prediction computations with
a trained model: the time needed to calculate prediction for the entire set of 50 000
reviews reduced from 44 secs on one GPU to 31 secs on two GPUs, to 28 secs on four
GPUs and to 26 secs on eight GPUs.

Discussion and next steps
The experimental results from sentiment prediction presented above show the great
potential deep learning has to enable automation in areas previously considered
impossible. At the same time, we are witnessing troubling trends of deterioration in
cybersecurity that have permeated the business and home environments: people often
cannot access the tools they need to work or lose the data that is important to
them [20]. Traditionally, governments and industry groups have approached this
problem by establishing security testing and validation programs whose purpose is to
identify and eliminate security flaws in IT products before adopting them for use.

One area of specific concern in cybersecurity is cryptography. Society recognizes
cryptography’s fundamental role in protecting sensitive information from unauthorized
disclosure or modification. The cybersecurity recommendations in [20] list relying on
cryptography as a means of data protection as one of the top recommendations to the
business community for the past several years. However, the validation programs to this
day remain heavily based on human activities involving reading and assessing
human-written documents in the form of technical essays - see Fig. 7 for an illustration
of the structure of the Cryptographic Module Validation Program (CMVP) [18]
established in 1995 to validate cryptographic modules against the security requirements

9/12

in Federal Information Processing Standard (FIPS) Publication 140-2 [15].
This validation model worked well for the level of the technology available at the

time when the programs were created more than two decades ago. As technology has
advanced, however, this model no longer satisfies current day industry and government
operational needs in the context of increased number and intensity of cybersecurity
breaches [20].

Figure 7. CMVP structure
and processes Processes rely
entirely on human actors and
human-readable artifacts (English
essays)

There are several factors
for this. First, current cybersecurity
recommendations [20] require
that every organization relying on
technology today patch promptly,
including applying patches to
cryptographic modules. Technology
products are very complex
and the cost of testing them
fully to guarantee trouble-free use
is prohibitively high. As a result,
products contain vulnerabilities
that hackers and technology

producers are competing to discover first: the companies to fix, the hackers to exploit.
Patching products changes the game for hackers and slows down their progress. Thus,
patching promptly is a way of staying ahead of security breaches. However, patching
changes also the environment in which a cryptographic module runs and may also
change the module itself, thus invalidating the previously validated configuration. Users
who depend on validated cryptography face a dilemma when frequent updates and
patches are important for staying ahead of the attackers, but the existing validation
process does not permit rapid implementation of these updates while maintaining a
validated status because of the slow human-based activities illustrated in Fig. 7.

The second factor hindering the effectiveness of the traditional validation model
shown in Fig. 7 is the demand for speed in the context of the cognitive abilities of the
human brain. Rapid changes in technology and related steep learning curves are
stretching the resources at the testing laboratories. When evaluation package
submissions finally reach the validation queue, inconsistent and possibly incomplete
evidence presentation further strains the ability for a finite number of reviewers to
provide timely turnaround. Recent scientific research points out that humans are
limited in their ability to process quickly and objectively large amounts of complex
data [9]. Two systems drive the way humans think: the fast, intuitive, and emotional
System 1; the slower, more deliberative, and more logical System 2. Systems 1 and 2
constantly interact but System 1 is always in the driver’s seat. This leads to faults and
biases, of fast thinking, and reveals the pervasive influence of intuitive impressions on
human thoughts and behavior. These are the primary reasons why we cannot trust
human intuitions when dealing with highly complex data.

Going back to the results on sentiment analysis with deep learning from above and
in spite of that success people may always question the ability of machines to replace
humans in solving such cognitive and analytical tasks. They will always ask why the
accuracy is not one hundred percent? Or, notwithstanding the available scientific
evidence [9], say that if a human was reviewing the text she would have never made a
mistake.

Changing public opinion may be a slow process. Besides, it seems that cybersecurity
and machine learning/artificial intelligence (AI) will always be joined at the hip because
the more we rely on machines to solve ever more complex tasks, the higher the risk
those machines may be attacked to subvert their operation. Can AI fight back though?

10/12

The successful results presented in this paper suggest that computer-based validation of
cryptographic test evidence may be the only viable alternative that would allow
objective and accurate assessment of large volumes of data at the speed required by the
cybersecurity reality [20]. This paper demonstrates that deep learning neural networks
are capable of tackling the core tasks in security validations and thereby automate
existing programs [17]. If this effort is indeed successful one may reason that by helping
to improve the process of validation and thereby increase cybersecurity, albeit indirectly,
AI will in fact be defending itself from cybersecurity threats. Over time, this may lead
to societal acceptance of AI into sensitive domains such as the validation of critical
components for the IT infrastructure.

Next steps. The importance of incorporating word polarity into the model is
illustrated clearly by the results presented in this paper. However, the type of language
used in the validation test reports tends to be different than the colloquial English used
in movie reviews. The technical jargon in test reports uses many common words whose
meaning changes in this context. Moreover, the assessments for each test requirement
in [16] are written in a way very different from movie reviews. Here the author provides
arguments that justify her conclusion about compliance. The challenge is to distinguish
weak/faulty arguments from solid ones. Therefore, a new type of polarity needs to be
developed. Related to that is the task of assembling a representative corpus of labeled
validation test report data for training and validation.

Acknowledgments
I thank the NIST Information Technology Laboratory (ITL) and especially Elham
Tabassi for the research funding and support under ITL Grant #7735282-000.

References
1. Andrew Maas. Large movie review dataset.

http://ai.stanford.edu/˜amaas/data/sentiment/, 2011.

2. J. H. Bramble. Multigrid Methods. Wiley, 1993. Pitman Research Notes in
Mathematics Vol. 294.

3. T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large language models in
machine translation. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (Prague), pages 858–867, June 2007.

4. A. Conneau, D. Kiela, H. Schwenk, L. Barraul, and A. Bordes. Supervised
learning of universal sentence representations from natural language inference
data. In Proceedings of the 2017 Conference on Emprical Methods in Natural
Language Processing (Copenhagen, Denmark, September 7-11)), Association of
Computational Linguistics, pages 670–680, 2017, See also update at
https://arxiv.org/abs/1705.02364v5.

5. I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

6. Google LLC. Tensorflow: An open source machine learning framework for
everyone. https://www.tensorflow.org/, 2019.

11/12

http://ai.stanford.edu/~amaas/data/sentiment/
https://arxiv.org/abs/1705.02364v5
http://www.deeplearningbook.org
https://www.tensorflow.org/

7. Google LLC. Tensorflow: Docker.
https://www.tensorflow.org/install/docker, 2019.

8. S. Hayou, A. Doucet, and J. Rousseau. On the impact of the activation function
on deep neural networks training. https://arxiv.org/abs/1902.06853, 2019.

9. D. Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, New York,
2011.

10. Keras Documentation. Imdb movie reviews sentiment classification.
https://keras.io/datasets/, 2018.

11. Keras Team. Demonstration of the use of convolution1d for text classification.
https:
//github.com/keras-team/keras/blob/master/examples/imdb_cnn.py,
2019.

12. A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies,
pages 142–150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics.

13. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013, see also
https://arxiv.org/abs/1310.4546.

14. M. S. Nacson, J. Lee, S. Gunasekar, P. H. P. Savarese, N. Srebro, and D. Soudry.
Convergence of gradient descent on separable data.
https://arxiv.org/abs/1803.01905v2, 2018.

15. NIST. Security requirements for cryptographic modules, federal infomation
processing standard (FIPS) 140-2.
https://doi.org/10.6028/NIST.FIPS.140-2, 2001.

16. NIST. Derived test requirements for fips pub 140-2, security requirements for
cryptographic modules. https://csrc.nist.gov/CSRC/media/Projects/
Cryptographic-Module-Validation-Program/documents/fips140-2/
FIPS1402DTR.pdf, 2011.

17. NIST. Automated cryptographic validation testing.
https://csrc.nist.gov/projects/acvt/, 2018.

18. NIST. Cryptographic Module Validation Program. https:
//csrc.nist.gov/projects/cryptographic-module-validation-program,
2018.

19. C. Potts. On the negativity of negation. In Proceedings of Semantics and
Linguistic Theory, volume 20, pages 636–659, 2011.

20. Verizon. 2018 data breach investigations report.
https://enterprise.verizon.com/resources/reports/dbir/, 2018.

12/12

https://www.tensorflow.org/install/docker
https://arxiv.org/abs/1902.06853
https://keras.io/datasets/
https://github.com/keras-team/keras/blob/master/examples/imdb_cnn.py
https://github.com/keras-team/keras/blob/master/examples/imdb_cnn.py
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1803.01905v2
https://doi.org/10.6028/NIST.FIPS.140-2
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402DTR.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402DTR.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402DTR.pdf
https://csrc.nist.gov/projects/acvt/
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://enterprise.verizon.com/resources/reports/dbir/

	1 Data encoding and datasets
	1.1 Multi-hot encoding
	1.2 Polarity-weighted multi-hot encoding
	1.3 The Keras IMDB Dataset (KID)
	1.4 The Stanford Large Movie Review Dataset (SLMRD)

	2 The BowTieThe name is inspired by the classic image of the bow tie - see Figure ?? feedforward neural network
	3 Training and transfer scenarios

