Skip to main content

Multi-task Learning by Pareto Optimality

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11943))

Abstract

Deep Neural Networks (DNNs) are often criticized because they lack the ability to learn more than one task at a time: Multitask Learning is an emerging research area whose aim is to overcome this issue. In this work, we introduce the Pareto Multitask Learning framework as a tool that can show how effectively a DNN is learning a shared representation common to a set of tasks. We also experimentally show that it is possible to extend the optimization process so that a single DNN simultaneously learns how to master two or more Atari games: using a single weight parameter vector, our network is able to obtain sub-optimal results for up to four games.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theoret. Comput. Sci. 425, 75–103 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–259 (2013)

    Article  Google Scholar 

  3. Brockman, G., et al.: Openai gym (2016)

    Google Scholar 

  4. Caruana R.: Multitask learning. In: Thrun S., Pratt L. (eds) Learning to Learn, pp. 95–133. Springer, Boston (1998). https://doi.org/10.1007/978-1-4615-5529-2_5

  5. Conti, E., Madhavan, V., Petroski Such, F., Lehman, J., Stanley, K.O., Clune, J.: Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. In: NeurIPS 2018, Montreal, Canada (2018)

    Google Scholar 

  6. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1157–1163 (2006)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016) http://www.deeplearningbook.org

  8. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Statist. 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694

    Article  MathSciNet  MATH  Google Scholar 

  9. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 1189–1197. Curran Associates, Inc. (2010)

    Google Scholar 

  10. Maurer, A., Pontil, M., Romera-Paredes, B.: Sparse coding for multitask and transfer learning. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 28, pp. 343–351. PMLR, Atlanta, Georgia, USA, 17–19 June 2013. http://proceedings.mlr.press/v28/maurer13.html

  11. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning (2016)

    Google Scholar 

  12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  13. Murugesan, K., Carbonell, J.: Self-paced multitask learning with shared knowledge. IJCAI-17 (2017)

    Google Scholar 

  14. Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N., Pontil, M.: Multilinear multitask learning. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 28, pp. 1444–1452. PMLR, Atlanta, Georgia, USA, 17–19 June 2013. http://proceedings.mlr.press/v28/romera-paredes13.html

  15. Ruder, S.: An overview of multi-task learning in deep neural networks. CoRR (2017)

    Google Scholar 

  16. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv e-prints arXiv:1703.03864, March 2017

  17. Schmidhuber, J.: Ultimate cognition à la gödel. Cognitive Comput. 1(2), 177–193 (2009). https://doi.org/10.1007/s12559-009-9014-y

    Article  Google Scholar 

  18. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362, 1140–1144 (2018)

    Article  MathSciNet  Google Scholar 

  19. Stanley, K., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks through neuroevolution. Nat. Mach. Intell. (2019). https://doi.org/10.1038/s42256-018-0006-z

  20. Stracquadanio, G., Nicosia, G.: Computational energy-based redesign of robust proteins. Comput. Chem. Eng. (2010). https://doi.org/10.1016/j.compchemeng.2010.04.005

    Article  Google Scholar 

  21. Zhang, Y., Yang, Q.: An overview of multi-task learning. Nat. Sci. Rev. 5(1), 30–43 (2018). https://doi.org/10.1093/nsr/nwx105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Nicosia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dyankov, D., Riccio, S.D., Di Fatta, G., Nicosia, G. (2019). Multi-task Learning by Pareto Optimality. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science(), vol 11943. Springer, Cham. https://doi.org/10.1007/978-3-030-37599-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37599-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37598-0

  • Online ISBN: 978-3-030-37599-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics