Skip to main content

Thermal Face Recognition Based on Transformation by Residual U-Net and Pixel Shuffle Upsampling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11961))

Abstract

We present a thermal face recognition system that first transforms the given face in the thermal spectrum into the visible spectrum, and then recognizes the transformed face by matching it with the face gallery. To achieve high-fidelity transformation, the U-Net structure with a residual network backbone is developed for generating visible face images from thermal face images. Our work mainly improves upon previous works on the Nagoya University thermal face dataset. In the evaluation, we show that the rank-1 recognition accuracy can be improved by more than \(10\%\). The improvement on visual quality of transformed faces is also measured in terms of PSNR (with 0.36 dB improvement) and SSIM (with 0.07 improvement).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, C., Ross, A.: Matching thermal to visible face images using a semantic-guided generative adversarial network. In: Proceedings of IEEE International Conference on Automatic Face & Gesture Recognition (2019)

    Google Scholar 

  2. Chu, W.T., Liu, Y.H.: Thermal facial landmark detection by deep multi-task learning. In: Proceedings of IEEE International Workshop on Multimedia Signal Processing. IEEE (2019)

    Google Scholar 

  3. Chu, W.T., Wu, J.N.: A parametric study of deep perceptual model on visible to thermal face recognition. In: Proceedings of IEEE Visual Communications and Image Processing (2018)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  5. Hu, S., Choi, J., Chan, A.L., Schwartz, W.R.: Thermal-to-visible face recognition using partial least squares. J. Opt. Soc. Am. A 32(3), 431–442 (2015)

    Article  Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  7. Iranmanesh, S.M., Dabouei, A., Kazemi, H., Nasrabadi, N.M.: Deep cross polarimetric thermal-to-visible face recognition. In: Proceedings of International Conference on Biometrics (2018)

    Google Scholar 

  8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  9. Kresnaraman, B., Deguchi, D., Takahashi, T., Mekada, Y., Ide, I., Murase, H.: Reconstructing face image from the thermal infrared spectrum to the visible spectrum. Sensors 16(4), 568 (2016)

    Article  Google Scholar 

  10. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape of neural nets. In: Proceedings of Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  11. Riggan, B.S., Short, N.J., Hu, S.: Thermal to visible synthesis of face images using multiple regions. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (2018)

    Google Scholar 

  12. Riggan, B.S., Short, N.J., Hu, S., Kwon, H.: Estimation of visible spectrum faces from polarimetric thermal faces. In: Proceedings of IEEE International Conference on Biometrics Theory, Applications and Systems (2016)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Sarfraz, M.S., Stiefelhagen, R.: Deep perceptual mapping for thermal to visible face recognition. Int. J. Comput. Vis. 122(3), 426–438 (2017)

    Article  Google Scholar 

  15. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of International Conference on Learning Representations (2015)

    Google Scholar 

  17. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  19. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

Download references

Acknowledgement

This work was partially supported by the Ministry of Science and Technology under the grant 108-2221-E-006-227-MY3, 107-2221-E-006-239-MY2, 107-2923-E-194-003-MY3, 107-2627-H-155-001, and 107-2218-E-002-055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Ta Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatterjee, S., Chu, WT. (2020). Thermal Face Recognition Based on Transformation by Residual U-Net and Pixel Shuffle Upsampling. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11961. Springer, Cham. https://doi.org/10.1007/978-3-030-37731-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37731-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37730-4

  • Online ISBN: 978-3-030-37731-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics