Skip to main content

No Reference Image Quality Assessment by Information Decomposition

  • Conference paper
  • First Online:
  • 2724 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11961))

Abstract

No reference (NR) image quality assessment (IQA) is to automatically assess image quality as would be perceived by human without reference images. Currently, almost all state-of-the-art NR IQA approaches are trained and tested on the databases of synthetically distorted images. The synthetically distorted images are usually produced by superimposing one or several common distortions on the clean image, but the authentically distorted images are often simultaneously contaminated by several unknown distortions. Therefore, most IQA performances will greatly drop on the authentically distorted images. Recent researches on the human brain demonstrate that the human visual system (HVS) perceives image scenes by predicting the primary information and avoiding residual uncertainty. According to this theory, a new and robust NR IQA approach is proposed in this paper. By the proposed approach, the distorted image is decomposed into the orderly part and disorderly part to be separately processed as its primary information and uncertainty information. Global features of the distorted image are also calculated to describe the overall image contents. Experimental results on the synthetically and authentically image databases demonstrate that the proposed approach makes great progress in IQA performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gu, K., Zhai, G., Yang, X., Zhang, W.: Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Trans. Broadcast. 60(3), 555–567 (2014)

    Article  Google Scholar 

  2. Li, Q., Lin, W., Fang, Y.: No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Sig. Process. Lett. 23(4), 541–545 (2016)

    Article  Google Scholar 

  3. Dai, T., Gu, K., Xu, Z., Tang, Q.: Blind quality assessment of multiply-distorted images based on structural degradation. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 171–175. IEEE (2017)

    Google Scholar 

  4. Ghadiyaram, D., Bovik, A.C.: Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image Process. 25(1), 372–387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghadiyaram, D., Bovik, A.C.: Perceptual quality prediction on authentically distorted images using a bag of features approach. J. Vis. 17(1), 32–32 (2017)

    Article  Google Scholar 

  6. Knill, D.C., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27(12), 712–719 (2004)

    Article  Google Scholar 

  7. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  8. Wu, J., Lin, W., Shi, G., Liu, A.: Reduced-reference image quality assessment with visual information fidelity. IEEE Trans. Multimed. 15(7), 1700–1705 (2013)

    Article  Google Scholar 

  9. Wu, J., Lin, W., Shi, G., Liu, A.: Perceptual quality metric with internal generative mechanism. IEEE Trans. Image Process. 22(1), 43–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qian, X., Zhou, W., Li, H.: No-reference image quality assessment based on internal generative mechanism. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10132, pp. 264–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51811-4_22

    Chapter  Google Scholar 

  11. Hughes, H.C., Nozawa, G., Kitterle, F.: Global precedence, spatial frequency channels, and the statistics of natural images. J. Cogn. Neurosci. 8(3), 197–230 (1996)

    Article  Google Scholar 

  12. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  13. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  14. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 194–201 (2011)

    Google Scholar 

  15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  16. Jayaraman, D., Mittal, A., Moorthy, A.K., Bovik, A.C.: Objective quality assessment of multiply distorted images. In: 2012 Conference Record of 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1693–1697, November 2012

    Google Scholar 

  17. Jayant, N., Johnston, J., Safranek, R.: Signal compression based on models of human perception. In: Proceedings of the IEEE, pp. 1385–1422. IEEE, October 1993

    Article  Google Scholar 

  18. Zhang, X.H., Lin, W.S., Xue, P.: Improved estimation for just-noticeable visual distortion. Signal Process. 85(4), 795–808 (2005)

    Article  MATH  Google Scholar 

  19. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)

    Article  Google Scholar 

  20. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Tech. 2(3), 27 (2011). https://www.csie.ntu.edu.tw/~cjlin/libsvm/

    Article  Google Scholar 

  21. Video Quality Experts Group: Final report from the video quality experts group on the validation of objective models of video quality assessment, VQEG, March 2000

    Google Scholar 

  22. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  23. Gu, K., Li, L., Lu, H., Lin, W.: A fast reliable image quality predictor by fusing micro-and macro-structures. IEEE Trans. Ind. Electron. 64(5), 3903–3912 (2017)

    Article  Google Scholar 

  24. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006 (2010)

    Article  Google Scholar 

  25. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  27. Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y., Moorthy, A.K., Chandler, D.M., Bovik, A.C.: C-DIIVINE: no-reference image quality assessment based on local magnitude and phase statistics of natural scenes. Signal Process.: Image Commun. 29(7), 725–747 (2014)

    Google Scholar 

  32. Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, L., Dong, H., Huang, H., Bovik, A.C.: No-reference image quality assessment in curvelet domain. Sig. Process.: Image Commun. 29(4), 494–505 (2014)

    Google Scholar 

  34. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 3rd edn. Chapman and Hall/CRC, New York (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ci Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, J., Wang, C., Liu, S. (2020). No Reference Image Quality Assessment by Information Decomposition. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11961. Springer, Cham. https://doi.org/10.1007/978-3-030-37731-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37731-1_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37730-4

  • Online ISBN: 978-3-030-37731-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics