Skip to main content

Insight into Adaptive Differential Evolution Variants with Unconventional Randomization Schemes

  • Conference paper
  • First Online:
Book cover Swarm, Evolutionary, and Memetic Computing and Fuzzy and Neural Computing (SEMCCO 2019, FANCCO 2019)

Abstract

The focus of this work is the deeper insight into arising serious research questions connected with the growing popularity of combining metaheuristic algorithms and chaotic sequences showing quasi-periodic patterns. This paper reports an analysis of population dynamics by linking three elements like distribution of the results, population diversity, and differences between strategies of Differential Evolution (DE). Experiments utilize two frequently studied self-adaptive DE versions, which are simpler jDE and SHADE, further an original DE variant for comparisons, and totally ten chaos-driven quasi-random schemes for the indices selection in the DE. All important performance characteristics and population diversity are recorded and analyzed for the CEC 2015 benchmark set in 30D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization, Berlin. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  2. Weber, M., Neri, F., Tirronen, V.: A study on scale factor in distributed differential evolution. Inf. Sci. 181(12), 2488–2511 (2011)

    Article  Google Scholar 

  3. Zamuda, A., Brest, J.: Self-adaptive control parameters׳ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 25, 72–99 (2015)

    Article  Google Scholar 

  4. Meng, H.J., Zheng, P., Mei, G.H., Xie, Z.: Particle swarm optimization algorithm based on chaotic series. Control Decis. 21(3), 263 (2006)

    Google Scholar 

  5. Liu, H., Abraham, A., Clerc, M.: Chaotic dynamic characteristics in swarm intelligence. Appl. Soft Comput. 7(3), 1019–1026 (2007)

    Article  Google Scholar 

  6. Liu, H., Abraham, A.: Chaos and swarm intelligence. In: Kocarev, L., Galias, Z., Lian, S. (eds.) Intelligent Computing Based on Chaos, pp. 197–212. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95972-4_9

    Chapter  Google Scholar 

  7. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)

    Article  Google Scholar 

  8. Coelho, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos Solitons Fractals 39(2), 510–518 (2009)

    Article  Google Scholar 

  9. Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Comput. Math Appl. 60(4), 1088–1104 (2010)

    Article  Google Scholar 

  10. Ozer, A.B.: CIDE: chaotically initialized differential evolution. Expert Syst. Appl. 37(6), 4632–4641 (2010)

    Article  Google Scholar 

  11. Pluhacek, M., Senkerik, R., Davendra, D.: Chaos particle swarm optimization with Eensemble of chaotic systems. Swarm Evol. Comput. 25, 29–35 (2015)

    Article  Google Scholar 

  12. Wang, G.G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search. Soft. Comput. 20(9), 3349–3362 (2016)

    Article  Google Scholar 

  13. Fister Jr., I., Perc, M., Kamal, S.M., Fister, I.: A review of chaos-based firefly algorithms: perspectives and research challenges. Appl. Math. Comput. 252, 155–165 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010)

    Article  Google Scholar 

  15. Metlicka, M., Davendra, D.: Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol. Comput. 25, 15–28 (2015)

    Article  Google Scholar 

  16. Zhang, J., Lin, S., Qiu, W.: A modified chaotic differential evolution algorithm for short-term optimal hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 65, 159–168 (2015)

    Article  Google Scholar 

  17. Mokhtari, H., Salmasnia, A.: A Monte Carlo simulation based chaotic differential evolution algorithm for scheduling a stochastic parallel processor system. Expert Syst. Appl. 42(20), 7132–7147 (2015)

    Article  Google Scholar 

  18. Das, S.: Chaotic patterns in the discrete-time dynamics of social foraging swarms with attractant–repellent profiles: an analysis. Nonlinear Dyn. 82(3), 1399–1417 (2015)

    Article  MathSciNet  Google Scholar 

  19. Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., Zamuda, A.: Distance based parameter adaptation for success-history based differential evolution. Swarm Evol. Comput. 50, 100462 (2018)

    Article  Google Scholar 

  20. Sudholt, D.: The benefits of population diversity in evolutionary algorithms: a survey of rigorous runtime analyses. arXiv preprint arXiv:1801.10087 (2018)

  21. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput. 22(5), 720–732 (2018)

    Article  Google Scholar 

  22. Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T., Zelinka, I.: How unconventional chaotic pseudo-random generators influence population diversity in differential evolution. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 524–535. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_49

    Chapter  Google Scholar 

  23. Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T., Oplatkova, Z.K.: Differential evolution and chaotic series. In: 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–5. IEEE, June 2018

    Google Scholar 

  24. Senkerik, R., et al.: Population diversity analysis in adaptive differential evolution variants with unconventional randomization schemes. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 506–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_46

    Chapter  Google Scholar 

  25. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)

    Article  Google Scholar 

  26. Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution – an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  27. Brest, J., Greiner, S., Bosković, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  28. Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)

    Google Scholar 

  29. Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  30. Chen, Q., Liu, B., Zhang, Q., Liang, J.J., Suganthan, P.N., Qu, B.Y.: Problem definition and evaluation criteria for CEC 2015 special session and competition on bound constrained single-objective computationally expensive numerical optimization. Technical report, Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological University, Singapore (2014)

    Google Scholar 

  31. Poláková, R., Tvrdík, J., Bujok, P., Matoušek, R.: Population-size adaptation through diversity-control mechanism for differential evolution. In: MENDEL, 22th International Conference on Soft Computing, pp. 49–56 (2016)

    Google Scholar 

  32. Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T.: On the population diversity for the chaotic differential evolution. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, July 2018

    Google Scholar 

  33. Das, S., Abraham, A., Chakraborty, U., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)

    Article  Google Scholar 

  34. Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4797–4803. IEEE, July 2016

    Google Scholar 

  35. Wu, G., Mallipeddi, R., Suganthan, P.N.: Ensemble strategies for population-based optimization algorithms–a survey. Swarm Evol. Comput. 44, 695–711 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

Authors RS, AV, TK and MP acknowledge the support of project No. LO1303 (MSMT-7778/2014) by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme, further the project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 under the European Regional Development Fund. Authors AV and TK also acknowledge the Internal Grant Agency of Tomas Bata University under the project No. IGA/CebiaTech/2019/002. This work is also based upon support by COST Action CA15140 (ImAppNIO), and the resources of A.I.Lab at the Faculty of Applied Informatics, TBU in Zlin (ailab.fai.utb.cz). Finally, Author Ivan Zelinka acknowledges the support of grant SGS 2019/137, VSB-Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Senkerik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senkerik, R., Viktorin, A., Kadavy, T., Pluhacek, M., Zelinka, I. (2020). Insight into Adaptive Differential Evolution Variants with Unconventional Randomization Schemes. In: Zamuda, A., Das, S., Suganthan, P., Panigrahi, B. (eds) Swarm, Evolutionary, and Memetic Computing and Fuzzy and Neural Computing. SEMCCO FANCCO 2019 2019. Communications in Computer and Information Science, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-37838-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37838-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37837-0

  • Online ISBN: 978-3-030-37838-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics