Skip to main content

Demand Response and Ancillary Services for Supercomputing and Datacenters

  • Conference paper
  • First Online:
Book cover Supercomputing (ISUM 2019)

Abstract

This article describes a proposal for the participation of supercomputing platforms and datacenters in the electric market, by implementing demand response techniques and ancillary services. Supercomputing and datacenters are appropriate candidates to adjust their power consumption in order to help the electric network to fulfill specific goals, either by consuming available surplus of energy to execute complex tasks, or by deferring activities when energy is more expensive or generation is lower than normal. Their thermal/cooling infrastructures demand about half of the energy consumption and provide a large inertia that can be carefully used to interact with the power grid. These strategies allow implementing a smart management of the electric grid, achieving a rational utilization of renewable energy sources, and the correct utilization of information technologies to improve decision-making processes. A specific case study is presented: The National Supercomputing Center in Uruguay (Cluster-UY), for which strategies for optimal planning of the execution of tasks and energy utilization are proposed, taking into account the energy consumption, the Quality of Service provided to the users, and the thermal/cooling demands of the infrastructure. In addition, the business opportunities and business models for supercomputing and datacenters in the electric market are revisited. Results suggest the effectiveness of the proposed strategies to implement demand response techniques and provide ancillary services under the smart grid paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beloglazov, A., Buyya, R., Choon Lee, Y., Zomaya, A.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82, 47–111 (2010)

    Article  Google Scholar 

  2. Chen, F., Grundy, J., Yang, Y., Schneider, J.G., He, Q.: Experimental analysis of task-based energy consumption in cloud computing systems. In: 4th ACM/SPEC International Conference on Performance Engineering, pp. 295–306 (2013)

    Google Scholar 

  3. Chen, L., Li, N., Low, S., Doyle, J.: Two market models for demand response in power networks. In: First IEEE International Conference on Smart Grid Communications (2010)

    Google Scholar 

  4. Chen, N., Ren, X., Ren, S., Wierman, A.: Greening multi-tenant data center demand response. Perform. Eval. 91, 229–254 (2015)

    Article  Google Scholar 

  5. Chen, T., Marques, A., Giannakis, G.: DGLB: distributed stochastic geographical load balancing over cloud networks. IEEE Trans. Parallel Distrib. Syst. 7, 1866–1880 (2017)

    Article  Google Scholar 

  6. DallAnese, E., Baker, K., Summers, T.: Chance-constrained ac optimal power flow for distribution systems with renewables. IEEE Trans. Power Syst. 32(5), 3427–3438 (2017)

    Article  Google Scholar 

  7. Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A.Y., Talbi, E.G., Bouvry, P.: A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems. Sustain. Comput.: Inf. Syst. 4(4), 252–261 (2014)

    Google Scholar 

  8. Du Bois, K., Schaeps, T., Polfliet, S., Ryckbosch, F., Eeckhout, L.: Sweep: evaluating computer system energy efficiency using synthetic workloads. In: 6th International Conference on High Performance and Embedded Architectures and Compilers, pp. 159–166 (2011)

    Google Scholar 

  9. Gonze, X., et al.: ABINIT: first-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180(12), 2582–2615 (2009)

    Article  Google Scholar 

  10. Iturriaga, S., Dorronsoro, B., Nesmachnow, S.: Multiobjective evolutionary algorithms for energy and service level scheduling in a federation of distributed datacenters. Int. Trans. Oper. Res. 24(1–2), 199–228 (2017)

    Article  MathSciNet  Google Scholar 

  11. Iturriaga, S., Nesmachnow, S.: Scheduling energy efficient data centers using renewable energy. Electronics 5(4), 71 (2016)

    Article  Google Scholar 

  12. Iturriaga, S., García, S., Nesmachnow, S.: An empirical study of the robustness of energy-aware schedulers for high performance computing systems under uncertainty. In: Hernández, G., et al. (eds.) CARLA 2014. CCIS, vol. 485, pp. 143–157. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45483-1_11

    Chapter  Google Scholar 

  13. Jie, B., Tsuji, T.: An analysis of market mechanism and bidding strategy for power balancing market in micro-grid. In: China International Conference on Electricity Distribution (2016)

    Google Scholar 

  14. Johari, R., Tsitsiklis, J.N.: Parameterized supply function bidding: equilibrium and efficiency. Oper. Res. 59(5), 1079–1089 (2011)

    Article  MathSciNet  Google Scholar 

  15. Klemper, P.D., Meyer, M.A.: Supply function equilibria in oligopoly under uncertainty. Econometrica 57(6), 1243–1277 (1989)

    Article  MathSciNet  Google Scholar 

  16. Kopytov, A.: Sysbench repository. https://github.com/akopytov/sysbench. Accessed Jan 2019

  17. Kurowski, K., Oleksiak, A., Piatek, W., Piontek, T., Przybyszewski, A., Weglarz, J.: Dcworms–a tool for simulation of energy efficiency in distributed computing infrastructures. Simul. Model. Pract. Theory 39, 135–151 (2013)

    Article  Google Scholar 

  18. Momoh, J.: Smart Grid: Fundamentals of Design and Analysis. Wiley-IEEE Press (2012)

    Google Scholar 

  19. Montes de Oca, S., Belzarena, P., Monzon, P.: Optimal demand response in distribution networks with several energy retail companies. In: IEEE Multi-Conference on Systems and Control, pp. 1092–1097 (2016)

    Google Scholar 

  20. Muraña, J., Nesmachnow, S., Armenta, F., Tchernykh, A.: Characterization, modeling and scheduling of power consumption of scientific computing applications in multicores. Cluster Computing (2019). https://doi.org/10.1007/s10586-018-2882-8. Accessed Jan 2019

    Article  Google Scholar 

  21. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods for optimisation. Int. J. Metaheuristics 3(4), 320–347 (2014)

    Article  Google Scholar 

  22. Nesmachnow, S., Iturriaga, S.: Cluster-UY: scientific HPC in Uruguay. In: International Supercomputing in México, pp. 1–15 (2019)

    Google Scholar 

  23. Nesmachnow, S., Perfumo, C., Goiri, Í.: Multiobjective energy-aware datacenter planning accounting for power consumption profiles. In: Hernández, G., et al. (eds.) CARLA 2014. CCIS, vol. 485, pp. 128–142. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45483-1_10

    Chapter  Google Scholar 

  24. Nesmachnow, S., Perfumo, C., Goiri, Í.: Holistic multiobjective planning of datacenters powered by renewable energy. Cluster Comput. 18(4), 1379–1397 (2015)

    Article  Google Scholar 

  25. Phillips, J., et al.: Scalable molecular dynamics with namd. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  26. Rockafellar, R., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)

    Article  Google Scholar 

  27. Rong, H., Zhang, H., Xiao, S., Li, C., Hu, C.: Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 58, 674–691 (2016)

    Article  Google Scholar 

  28. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Conference on Power Aware Computing and Systems, pp. 1–5 (2008)

    Google Scholar 

  29. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented tool suite for x86 multicore environments. In: 39th International Conference on Parallel Processing Workshops, pp. 207–216 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Iturriaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nesmachnow, S. et al. (2019). Demand Response and Ancillary Services for Supercomputing and Datacenters. In: Torres, M., Klapp, J. (eds) Supercomputing. ISUM 2019. Communications in Computer and Information Science, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-38043-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38043-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38042-7

  • Online ISBN: 978-3-030-38043-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics