Skip to main content

Discretization of the Convection-Diffusion Equation Using Discrete Exterior Calculus

  • Conference paper
  • First Online:
Book cover Supercomputing (ISUM 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1151))

Included in the following conference series:

Abstract

A discretization of the Convection-Diffusion equation is developed based on Discrete Exterior Calculus (DEC). While DEC discretization of the diffusive term in the equation is well understood, the convective part (with non-constant convective flow) had not been DEC discretized. In this study, we develop such discretization of the convective term using geometric arguments. We can discretize the convective term for both compressible and incompressible flow. Moreover, since the Finite Element Method with linear interpolation functions (FEML) and DEC local matrix formulations are similar, this numerical scheme is well suited for parallel computing. Using this feature, numerical tests are carried out on simple domains with coarse and fine meshes to compare DEC and FEML and show numerical convergence for stationary problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griebel, M., Rieger, C., Schier, A.: Upwind schemes for scalar advection-dominated problems in the discrete exterior calculus. In: Bothe, D., Reusken, A. (eds.) Transport Processes at Fluidic Interfaces. AMFM, pp. 145–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56602-3_6

    Chapter  Google Scholar 

  2. Mohamed, M.S., Hirani, A.N., Samtaney, R.: Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes. J. Comput. Phys. 312, 175–191 (2016)

    Article  MathSciNet  Google Scholar 

  3. Esqueda, H., Herrera, R., Botello, S., Moreles, M.A.: A geometric description of discrete exterior calculus for general triangulations. arXiv preprint arXiv:1802.01158 (2018)

  4. Hirani, A.N., Nakshatrala, K.B., Chaudhry, J.H.: Numerical method for darcy flow derived using discrete exterior calculus. Int. J. Comput. Methods Eng. Sci. Mech. 16(3), 151–169 (2015). https://doi.org/10.1080/15502287.2014.977500

    Article  MathSciNet  Google Scholar 

  5. Hirani, A.N.: Discrete exterior calculus. Dissertation, California Institute of Technology (2003)

    Google Scholar 

  6. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  7. Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech.

    Google Scholar 

  8. Hughes, T.J.R., Franca, L.P., Hulbert, G.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  MathSciNet  Google Scholar 

  9. Choporov, S.: Parallel computing technologies in the finite element method. In: 3th International Conference on HPC-UA 2013 (2013)

    Google Scholar 

  10. Vollaire, C., Nicolas, L., Nicolas, A.: Parallel computing for the finite element method. Eur. Phys. J. Appl. Phys. 1(3), 305–314 (1998)

    Article  Google Scholar 

  11. Savic, S.V., Ilic, A.Z., Notaros, B.M., Ilic, M.M.: Acceleration of higher order FEM matrix filling by OpenMP parallelization of volume integrations. In: Telecommunications Forum (TELFOR), pp. 1183–1184 (2012)

    Google Scholar 

  12. Mahinthakumar, G., Saied, F.: A hybrid MPI-OpenMP implementation of an implicit finite-element code on parallel architectures. Int. J. High Perform. Comput. Appl. 16(4), 371–393 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Noguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noguez, M.A., Botello, S., Herrera, R. (2019). Discretization of the Convection-Diffusion Equation Using Discrete Exterior Calculus. In: Torres, M., Klapp, J. (eds) Supercomputing. ISUM 2019. Communications in Computer and Information Science, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-38043-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38043-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38042-7

  • Online ISBN: 978-3-030-38043-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics