Skip to main content

Capability-Based Non-fungible Tokens Approach for a Decentralized AAA Framework in IoT

  • Chapter
  • First Online:
Book cover Blockchain Cybersecurity, Trust and Privacy

Part of the book series: Advances in Information Security ((ADIS,volume 79))

Abstract

The proliferation of IoT devices across various application domains led to a high level of heterogeneity which introduced new device management challenges. These challenges include, bringing the capability of the service delivery and the underlying accounting, authentication and authorization mechanisms. Moreover, IoT devices tend to no longer require a centralized authority to authenticate and authorize access to the services offered. In this work, we address this by introducing a decentralized Authentication, Authorization and Accounting (AAA) framework using Capability-based Tokens based on the ERC721 standard to provide secure authentication and authorization for IoT devices. The approach is tested on a private Ethereum Blockchain node to analyze performance factors related to access time, timeout ratio and overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gartners, Inc. The value and impact of IoT on business, 2015. http://www.gartner.com/newsroom/id/3114217

  2. E. Bertino, N. Islam, Botnets and internet of things security. Computer 50(2), 76–79 (2017)

    Article  Google Scholar 

  3. B. Ali, A.I. Awad, Cyber and physical security vulnerability assessment for IoT-based smart homes. Sensors (Basel, Switzerland) 18(3), 817 (2018)

    Article  Google Scholar 

  4. OAuth 2.0. https://oauth.net/2

  5. D. Recordon, D. Reed, OpenID 2.0: a platform for user centric identity management, in DIM ’06: Proceedings of the 2nd ACM Workshop on Digital Identity Management, 2006, pp. 11–16

    Google Scholar 

  6. M. Nakhjiri, M. Nakhjiri, AAA and network security for mobile access: radius, diameter, EAP, PKI and IP mobility. (Wiley, New York, 2005), pp. 1–24

    Book  Google Scholar 

  7. General Data Protection Regulation, 2018. https://gdpr-info.eu

  8. O. Liberg, M. Sundberg, E. Wang, J. Bergman, J. Sachs, Cellular Internet of Things: Technologies, Standards, and Performance (Academic Press, London, 2018)

    Book  Google Scholar 

  9. V. Buterin, Ethereum: a next-generation smart contract and decentralized application platform. Ethereum Foundation. 2014. https://github.com/ethereum/wiki/wiki/White-Paper

  10. A. Sghaier Omar, O. Basir, Identity management in IoT networks using Blockchain and smart contracts, in Proceedings of the 2018 IEEE International Conference on Blockchain, Halifax, NS, Canada, 2018

    Google Scholar 

  11. G. Wood, Ethereum: a secure decentralised generalised transaction ledger, 2014. http://gavwood.com/paper.pdf

  12. Solidity Documentation. https://solidity.readthedocs.io/en/v0.4.25/

  13. F. Vogelsteller, V. Buterin, ERC 20 Token Standard, 2015. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

  14. W. Entriken, D. Shirley, J. Evans, N. Sachs. ERC-721 Non-fungible token standard, 2018. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md

  15. Non-fungible token Market. https://nonfungible.com

  16. R. Xu, Y. Chen, E. Blasch, G. Chen, Blendcac: a Blockchain-enabled decentralized capability-based access control for iots, in IEEE International Conference on Blockchain, Selected Areas in IoT and Blockchain, 2018

    Google Scholar 

  17. D. Ferraiolo, R. Kuhn, Role-based access controls, in Proceedings of the 15th National Computer Security Conference, 1992, pp. 554–563

    Google Scholar 

  18. S. Gavrila, J. Barkley, Formal specification for role based access control user/role and role/role relationship management, in Proceedings of the 3rd ACM Workshop on Role-Based Access Control (RBAC’98), 1998, pp. 81–90

    Google Scholar 

  19. G. Zhang, J. Tian, An extended role based access control model for the internet of things, in Proceedings of the International Conference on Information, Networking and Automation, Proceedings, 2010, pp. 319–323

    Google Scholar 

  20. J.L. Hernandez-Ramos, A.J. Jara, L. Marin, A.F. Skarmeta, Distributed capability-based access control for the internet of things. J. Internet Serv. Inform. Secur. 3(3/4), 1–16 (2013)

    Google Scholar 

  21. A. Ouaddah, A. Abou Elkalam, A. Ait Ouahman, Fairaccess: a new Blockchain-based access control framework for the internet of things. Secur. Comm. Network. 9(18), 5943–5964 (2016)

    Article  Google Scholar 

  22. R. Xu, Y. Chen, E. Blasch, G. Chen, A federated capability-based access control mechanism for internet of things (iots), in SPIE Defense & Commercial Sensing. Conference on Sensors and Systems for Space Applications, 2018

    Google Scholar 

  23. S. Gusmeroli, S. Piccione, D. Rotondi, A capability-based security approach to manage access control in the internet of things. Math. Comput. Model., 1189–1205 (2013)

    Article  Google Scholar 

  24. A. Ouaddah, H. Mousannif, A.A. Elkalam, A.A. Ouahman, Access control in the internet of things: big challenges and new opportunities. Comput. Netw. 112, 237–262 (2017)

    Article  Google Scholar 

  25. Study of Authorization Architecture for Supporting Heterogeneous Access Control Policies (2016) OneM2M Technical Report, TR-0016-V-2.0

    Google Scholar 

  26. IPFS Documentation, Protocol Labs, https://docs.ipfs.io

  27. L. Chen, G. Guang, Communication System Security (Chapman & Hall/CRC, London/Boca Raton, 2012)

    Book  Google Scholar 

  28. M. Collina, COAP Node.js Library, https://github.com/mcollina/node-coap

  29. Web3.js Ethereum Javascript API. https://github.com/ethereum/wiki/wiki/JavaScript-API

  30. Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP), IETF RFC 7252, 2014. http://tools.ietf.org/html/rfc7252

  31. S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, Internet Engineering Task Force (IETF) RFC 8200, 2017. https://tools.ietf.org/html/rfc8200

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sghaier Omar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sghaier Omar, A., Basir, O. (2020). Capability-Based Non-fungible Tokens Approach for a Decentralized AAA Framework in IoT. In: Choo, KK., Dehghantanha, A., Parizi, R. (eds) Blockchain Cybersecurity, Trust and Privacy. Advances in Information Security, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-030-38181-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38181-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38180-6

  • Online ISBN: 978-3-030-38181-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics