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Knowledge Engineering and Planning for Social
Human-Robot Interaction: A Case Study

Ronald P. A. Petrick and Mary Ellen Foster

Abstract The core task of automated planning is goal-directed action selection; this
task is not unique to the planning community, but is also relevant to numerous other
research areas within AI. One such area is interactive systems, where a fundamental
component called the interactionmanager selects actions in the context of conversing
with humans using natural language. Although this has obvious parallels to auto-
mated planning, using a planner to address the interaction management task relies on
appropriate engineering of the underlying planning domain and planning problem
to capture the necessary dynamics of the world, the agents involved, their actions,
and their knowledge. In this chapter, we describe work on using domain-independent
automated planning for action section in social human-robot interaction, focusing
on work from the JAMES (Joint Action for Multimodal Embodied Social Systems)
robot bartender project.

1 Introduction

At a high level, automated planning can be viewed as a problem of context-dependent
action selection: given a set of initial state conditions, action descriptions, and goals,
the planner must generate a sequence of actions whose application to the initial
state will bring about the goal conditions. However, this view of action selection is
not unique to planning. One important area where this problem is also of primary
concern is in interactive systems, a subfield of natural language dialogue that is
focused on implementing tools and applications for interacting with human users.
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A fundamental component in the construction of an interactive system, such
as a robot that is able to converse with a human using natural language, is the
interaction manager (Bui, 2006), whose primary task is to carry out a form of
action selection: based on the current state of the interaction and of the world, the
interaction manager makes a high-level decision as to which spoken, non-verbal, and
task-based actions should be taken next by the system as a whole. Compared with
more formal, descriptive accounts of dialogue which aim to model the full generality
of language use (Asher and Lascarides, 2003), work on interaction management has
concentrated primarily on developing end-to-end systems that operate in specific
task settings, and on evaluating them through interaction with human users (Jokinen
and McTear, 2009; McTear et al., 2016).

In contrast, the planning community has addressed the problem of high-level
action selection through the development of domain-independent planners: systems
that employ general-purpose problem-solving techniques that can be applied to a
wide range of planning domains and problems, modelled in common representa-
tion language such as PDDL (McDermott et al., 1998). Action selection strategies
are regularly compared within this common context, especially through events like
the International Planning Competitions (ICAPS, 2019), while the representation
languages themselves are often studied to better understand their expressiveness
and applicability (Rintanen, 2004). Applying planning tools to a complex scenario
therefore involves appropriate engineering of the underlying planning domain and
planning problem, to capture the necessary dynamics of the world, the agents in-
volved, their actions, and their knowledge, for a suitable choice of planning system
and representation language—and then often integrated as part of a larger system.

While the link between automated planning and natural language processing has
a long tradition, the planning approach to natural language interaction has for the
most part been largely overlooked more recently. In this chapter, we describe work
on using domain-independent automated planning for action section in human-robot
interaction, using an application from the JAMES (Joint Action for Multimodal
Embodied Social Systems)1 robot bartender project (Petrick and Foster, 2013). We
survey recent work in the interactive systems community in the form of toolkits used
for constructing interactive dialogue systems. We then describe how we use knowl-
edge engineering techniques to perform similar tasks with an epistemic automated
planning system. In the specific context of the JAMES robot system, we show how
social states are inferred from low-level sensors, using vision and speech as input
modalities; how planning domains and problems aremodelled for the bartending sce-
nario; and how an epistemic planner is used to construct plans with task, dialogue,
and social actions, as an alternative to other methods of interaction management.

1 http://james-project.eu/
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2 Interaction Management

Since both interaction management and automated planning deal with goal-directed
action selection, in principle interaction management presents an opportunity for
showcasing planning tools and demonstrating how different approaches can be ap-
plied, benchmarked, and compared. Although early applications of planning in this
area can be traced back to the 1980s (Perrault and Allen, 1980; Appelt, 1985; Hovy,
1988; Cohen and Levesque, 1990; Young and Moore, 1994), the planning approach
has for the most part been largely overlooked more recently. Instead, interactive
systems researchers tend to use purpose-built toolkits for constructing end-to-end
dialogue systems. Foster and Petrick (2017) present a survey of such toolkits; we
summarise the main features of some of these toolkits below.

An interaction management toolkit generally incorporates three main features.
First, it provides a representational formalism for specifying states and actions.
Second, the state/action representation is usually tightly linked to a reasoning strategy
that is used to carry out action selection. Finally, most toolkits also include a set
of infrastructure building tools designed to support modular system development.
While these three features can clearly simplify the task of implementing an individual
end-to-end system, the fact that the features are so tightly connected does complicate
the task of comparing representational formalisms or reasoning strategies: in general,
to carry out such a comparison, there is no alternative but to re-implement the entire
system in multiple frameworks (Peltason and Wrede, 2011; Olaso et al., 2016).

Historically, one of themost widely used approaches to dialoguemanagement was
the Information State Update (ISU) approach, which is exemplified by the TrindiKit
toolkit (Larsson and Traum, 2000). The core of this approach is the use of an in-
formation state which represents the state of the dialogue and which is updated by
applying update rules following a given update strategy. A similar ISU approach
has also been taken in more recent dialogue systems, but using other infrastructures
(Johnston et al., 2002; Janarthanam et al., 2015). A more recent approach is ex-
emplified by OpenDial (Lison, 2015), an open-source toolkit designed to support
robust dialogue management, using a hybrid framework that combines logical and
statistical approaches through probabilistic rules to represent the internal models of
the framework. OpenDial also includes a Java-based blackboard architecture where
all modules are connected to a central information hub which represents the dialogue
state, along with a plugin framework allowing new modules to be integrated.

Many modern interactive systems are built with online toolkits such as the Ama-
zon Alexa Skills Kit (Amazon, 2020) or DialogFlow (Google, 2020)—these toolk-
its generally use machine learning to learn the correct responses to user actions
given sample inputs. One current interactive system which does incorporate aspects
of automated planning is the MuMMER social robot Papaioannou et al. (2018),
which combines a planner used for action selection with a more traditional dialogue
manager. Other approaches (Koller and Stone, 2007; Benotti, 2008; Brenner and
Kruijff-Korbayová, 2008) have also explored the use of planning for dialogue and
interaction, while recent work on explainable planning (Fox et al., 2017) has also
highlighted the links between planning and user interaction.
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Fig. 1 The robot bartender and bar setting (left) and the software architecture for the robot (right).

3 Task-Based Social Interaction: A Robot Bartender Scenario

The goal of this work is to use domain-independent planning as the high-level
decision-making mechanism for action selection in an interactive robot system. In
particular, the target domain for this work is a task-based human-robot interaction
scenario involving a bartending robot, as shown in Figure 1 (left). In this setting, the
robot acts as a bartender that serves customers that approach the bar area seeking
attention. The robot hardware itself consists of two 6 degrees-of-freedom indus-
trial manipulator arms with grippers, mounted to resemble human arms. Sitting on
the main robot torso is an animatronic talking head capable of producing facial
expressions, rigid head motion, and lip-synchronised synthesised speech.

A sample bartender interaction is shown in Figure 2. In this example, two people
enter the bar area and attempt to order drinks from the robot. During the interaction, a
third person approaches the bar and attempts to attract the attention of the bartender.
When the third customer appears while the bartender is engaged with the first two
customers, the bartender reacts appropriately by telling the third customer to wait,
finishing the transactionwith the first two people, and then serving the third customer.

Even this simple interaction presents challenges to the robot system tasked with
the role of the bartender (see Figure 1, right): the visual processor system must
track the locations and body postures of the agents; the speech recogniser must
detect and deal with speech in an open setting and, using the parser, transform the
input into a logical form representing the speech; the state manager must make
sense of the social scene using the processed input modalities; the planner and
execution monitor must determine who requires attention and should ensure that
they are served correctly, while appropriately responding to unexpected outcomes
as they arise; while the output plannermust select and execute concrete behaviours
for each output channel to correctly realise high-level actions, communicating with
the talking-head controller and robot motion planner.

From a high-level planning perspective, the task of applying planning in this
scenario centres around the knowledge engineering task of accurately modelling the
states, actions, and goals that reflect the types of activities the robot is expected
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Interaction Action type

Two people, A and B, each individually approach and look at the robot bartender
ROBOT: [Looks at Person A] How can I help you? Sensing action
PERSON A: A pint of cider, please.
Person C approaches the bar and tries to attract the attention of the bartender
ROBOT: [Looks at Person C] One moment, please. Social action
ROBOT: [Serves Person A] Physical action
ROBOT: [Looks at Person B] What will you have? Sensing action
PERSON B: A glass of red wine.
ROBOT: [Serves Person B] Physical action
ROBOT: [Looks at Person C] Thanks for waiting. Social action

How can I help you? Sensing action
PERSON C: I’d like a pint of beer.
ROBOT: [Serves Person C] Physical action

Fig. 2 An example interaction in the robot bartending scenario.

to perform. Considering the sample interaction, this includes a mixture of physical
actions in the underlying task domain (e.g., serving the actual drinks), sensing actions
that acquire new information (e.g., asking a customer for a drink order), and social
actions that help facilitate the interactive context (e.g., thanking a customer). As a
result, we also require a suitably expressive representation that enables such actions
to co-exist within a planning domain. This task is further complicated by the fact
that the planner is a single component situated in a much larger architecture, with
the representation of states, actions, and goals having connections to the input and
output modalities processed by other system components.

4 Modelling Social Human-Robot Interaction for Planning

In this section, we describe how planning techniques are applied to the problem of
social human-robot interaction in the robot bartender scenario by considering how
states, actions, and goals are modelled. We begin by presenting an overview of the
particular planner used in this work, the epistemic PKS planner; we then describe
how states are inferred from the low-level sensor data and how those states are
translated into the representations used by PKS in the context of user interaction.

4.1 Planning with Knowledge and Sensing

The high-level planner is responsible for selecting robot actions to respond appropri-
ately in the current scenario state. Since the activities of the robot include a mix of
physical, dialogue, and social behaviours, the representation language of the planner
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must be able to support such action models. In this work, we use PKS (Planning with
Knowledge and Sensing) (Petrick and Bacchus, 2002, 2004), a contingent planner
that works with incomplete information and sensing actions. PKS is an epistemic
planner that operates at the knowledge level and reasons about how its knowledge
state, rather than the world state, changes due to action. To do this, PKS works
with a restricted first-order language with limited inference. While features such as
functions and run-time variables are supported, these restrictions mean that some
types of knowledge (e.g., general disjunctive information) cannot be modelled.

PKS is based on a generalisation of STRIPS (Fikes andNilsson, 1971). In STRIPS,
the state of the world is modelled by a single database. Actions update this database
and, by doing so, update the planner’s world model. In PKS, the planner’s knowledge
state is represented by a set of five databases, each of which models a particular type
of knowledge, and can be understood in terms of amodal logic of knowledge. Actions
can modify any of the databases, which update the planner’s knowledge state. To
ensure efficient inference, PKS restricts the type of knowledge it can represent:

Kf : This database is like a STRIPS database except that both positive and negative
facts are permitted and the closed world assumption is not applied. Kf is used to
model action effects that change the world and can include any ground literal or
function (in)equality mapping `, where ` ∈ Kf means “the planner knows `.”

Kw : This database models the plan-time effects of sensing actions that have one
of two possible outcomes. φ ∈ Kw means that at plan time the planner either
“knows φ or knows ¬φ,” and that at run time this disjunction will be resolved.
PKS uses such information to build contingent branches in a plan, where each
branch assumes one of the possible outcomes is true.

Kv : This database stores information about function values that will become known
at execution time. Kv can model the plan-time effects of sensing actions that
return a range of possible constants, where any unnested function term f ∈ Kv
means that at plan time the planner “knows the value of f .” At execution time,
the planner will have definite information about f ’s value. As a result, PKS can
use Kv terms as run-time variables in its plans, and can build conditional plan
branches when the set of possible mappings for a function is restricted.

Kx : This database models the planner’s “exclusive-or” knowledge. Entries in Kx
have the form (`1|`2|...|`n), where each `i is a ground literal. Such formulae
represent a type of disjunctive knowledge common in planning domains, namely
that “exactly one of the `i is true.”

(A fifth database modelling local closed world (LCW) information, is not used.)
Questions about the knowledge state are answered using a set of primitive queries:

K(φ): is φ known to be true?
Kw(φ): does the planner know whether φ is true or not?
Kv(t): does the planner know the value of t?

The negation of the queries is also permitted. An inference procedure evaluates the
queries by checking the database contents and applying a set of reasoning rules.
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Table 1 Excerpt of a social state identified by the state manager

Property Value Confidence

seeksAttention(A1) true 0.75
seeksAttention(A2) false 0.45
lastSpeaker() A1 1.00
lastEvent() userSpeech(A1) 1.00
drinkOrder(A1) green lemonade 0.68

blue lemonade 0.32
lastAct(A1) greet 0.25

Actions in PKS are modelled by a set of preconditions that query the knowledge
state and a set of effects that update the knowledge state. Preconditions are simply
a list of primitive queries. Effects are described by a collection of STRIPS-style
“add” and “delete” operations that modify the contents of individual databases. E.g.,
add(Kf, φ) adds φ to the Kf database, while del(Kw, φ) removes φ from Kw.

PKS builds plans by reasoning about actions in a forward-chaining manner: if
the preconditions of a chosen action are satisfied by the knowledge state then the
action’s effects are applied to produce a newknowledge state. Planning then continues
from the resulting state. PKS can also build plans with branches, by considering the
possible outcomes of its Kw and Kv knowledge. Planning continues along each branch
until it satisfies the goal conditions, also specified as a list of primitive queries.

4.2 State Management

For PKS to operate successfully in the context of the larger robot system, it requires a
discrete representation of theworld, the robot, and all entities in the scene, integrating
social, interaction-based, and task-based properties. Converting the continuous, low-
level sensor information into the discrete states is the job of the state manager.

The social state is represented as a list of properties and their values, where
every relation in the state has an associated confidence value, represented as a
number between 0 and 1. In addition, every relation in the state can potentially
have multiple values, with each possible value having its own confidence. Table 1
shows a sample social state using this representation, including multiple possible
values for the drinkOrder(A1) relation. Social state properties fall into two main
categories: properties that are directly transferred from the input sensors such as
headPos (which tracks the 3D position of each customer’s head), as well as derived
properties such as lastSpeaker and seeksAttention which are computed by the
state manager based on the input data.

For speech, the speech recogniser produces an n-best list of recognition hypothe-
ses, each with an estimated confidence score, along with an estimate of the sound
source angle and the angle confidence. The recognised hypotheses are parsed to
extract the syntactic and semantic information using a grammar implemented in
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OpenCCG (White, 2006), while the source angle is used together with the loca-
tion information from vision to estimate which of the customers in the scene is
most likely to have been speaking (lastSpeaker). If a possible speaker is found,
the semantic information from speech is used to update lastAct. In the case that
the customer says something regarding their drink order, we also update the value
of drinkOrder, using a generic belief tracking procedure proposed by Wang and
Lemon (2013), which maintains beliefs over user goals based on a small number
of domain-independent rules using basic probability operations. This enables us
to maintain a dynamically-updated list of the possible drink orders made by each
customer, with an associated confidence value for each.

Information from the robot bartender’s vision system (Pateraki et al., 2013) pro-
vides a continuous estimate of the location, gaze behaviour, and body language of
all people in the scene in real time. Every feature reported by the vision system
includes an estimated confidence value, which is incorporated into the state and also
used for further processing. The information from the vision system contributes to
the processing of speech as outlined above; it is also used to estimate which cus-
tomer(s) are currently seeking attention (seeksAttention). seeksAttention is
one of the most important properties required for the bartender scenario, and we
have experimented with several methods of estimating it, including a rule based on
the observation of customers in a real bar (Loth et al., 2013) and a set of classifiers
trained on annotated robot bartender interactions (Foster et al., 2017).

4.3 Representing Properties, Actions, Objects, and Goals

The properties, actions, and goals that make up the planning domain definition are
built on the state properties defined by the state manager but exist at a higher level of
representation local to the planning system. All of the robot’s high-level actions in
the bartending scenario (physical, dialogue, and social) are modelled as part of the
same planning domain, rather than using specialised tools for certain aspects of the
problem (e.g., separating task and dialogue) as is common practice in many modern
interactive systems. As a result, the planning domain representation must capture
the dynamics of the task, the world, the agents, and the available objects.

Planning domain properties in the bartender scenario are shown in Table 2 (left).
These properties are defined at a high level of abstraction and in many cases are
based on the properties defined by the state manager. For instance, the planning prop-
erty seeksAttn(?a) corresponds to the state manager property seeksAttention,
while a property like badASR(?a) is extracted from the confidence values of
other properties maintained by the state manager. Other planning properties like
greeted(?a) or served(?a) do not have a direct analogue in the state manager
but are instead derived from a set of properties being tracked at that level.

Actions in the bartending domain are also described at a high level of abstraction,
and are inspired by studies of human customers ordering drinks from real bartenders
in real bars (Loth et al., 2013). A list of the available actions is given in Table 2
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Table 2 Example of properties and action in the robot bartender domain.

Properties Actions

seeksAttn(?a) ?a is seeking attention greet(?a) greet ?a
greeted(?a) ?a has been greeted ask-drink(?a) ask ?a for a drink order
ordered(?a) ?a has ordered ack-order(?a) acknowledge ?a’s order
ackOrder(?a) ?a’s order has been acknowledged serve(?a,?d) serve drink ?d to ?a
served(?a) ?a has been served wait(?a) tell ?a to wait
otherAttnReq other agents are seeking attention ack-wait(?a) thank ?a for waiting
badASR(?a) ?a was not understood inform(?a,?d) tell ?a about drink ?d
transEnd(?a) the transaction with ?a has ended bye(?a) end interaction with ?a
inTrans=?a the robot is interacting with ?a not-understood(?a) alert that ?a was
request(?a)=?d ?a has requested drink ?d not understood

(right) with the PKS encoding for a selection of actions shown in Figure 4.3. The
available list includes a mix of physical, dialogue, and social actions to reflect some
of the behaviours that arise in typical interactions (e.g., as in Figure 2). For instance,
serve is a standard planning action with a deterministic effect (i.e., it adds definite
knowledge to PKS’s Kf database so the planner comes to know particular facts
like the customer has been served); however, when executed it causes the robot to
hand over a drink to an agent and confirm the drink order through speech. Actions
like greet, ack-order, and bye are modelled in a similar way, but only map
to speech output at run time (e.g., “hello”, “okay”, and “good-bye”). The inform
action is used to supply information about specific drinks in response to a customer
query. The most interesting action is ask-drink which is modelled as a sensing or
knowledge-producing action: the function term request is added to the planner’s
Kv database as an effect, indicating that this piece of information will become known
at execution time. In other words, the planner will come to know the value of the
drink the customer requested. The not-understand action is used as a directive to
the speech output system to produce an utterance that (hopefully) causes the agent to
repeat its last response. The wait and ack-wait actions control interactions when
multiple agents are seeking the attention of the bartender.

The planning domain model also includes a list of the objects (drinks) and agents
(customers) in the bar. This information is not hard-coded but is instead provided
to the planner dynamically by the state manager, based on real-time observations
provided by the input sensors, and defined as part of the planning problem’s initial
state (denoted in PKS syntax using two defined types, drink and agent). Changes
in the object or agent list, when identified by the state manager, are also sent to the
planner, causing it to update its domain model. Initially, the inTrans function is
initially set to nil to indicate that the robot isn’t interacting with any customers. The
planner’s goal is simply to serve each agent seeking attention, i.e.,

forallK(?a : agent) K(seeksAttn(?a)) ⇒ K(transEnd(?a)).

This goal is viewed as a rolling target which is reassessed each time a state update is
received from the state manager.
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action greet(?a : agent) action bye(?a : agent)
preconds: K(inTrans = nil) preconds: K(inTrans = ?a)

!K(greeted(?a)) K(served(?a))
K(seekAttn(?a)) !K(otherAttnReq)
!K(ordered(?a)) !K(badASR(?a))
!K(otherAttnReq) effects: add(Kf,inTrans = nil)
!K(badASR(?a))

effects: add(Kf,greeted(?a))
add(Kf,inTrans = ?a)

action ask-drink(?a : agent) action serve(?a : agent, ?d : drink)
preconds: K(inTrans = ?a) preconds: K(inTrans = ?a)

!K(ordered(?a)) K(ordered(?a))
!K(otherAttnReq) Kv(request(?a))
!K(badASR(?a)) K(request(?a) = ?d)

effects: add(Kf,ordered(?a)) !K(otherAttnReq)
add(Kv,request(?a)) !K(badASR(?a))

effects: add(Kf,served(?a))

Fig. 3 Example encoding of PKS actions in the robot bartender domain.

5 Planning for Social Human-Robot Interaction

Using the planning model defined above, plans can now be generated to respond to
many common interactive situations that arise in the bartender domain. This process
is triggered by the appearance of agents (customers) in the scene which are reported
to be seeking attention by the state manager. The planner responds by attempting to
generate a plan to achieve the goal of serving all agents in the bar. Here we consider
the generated behaviour in a number of common scenarios.

5.1 Ordering a Drink

The simplest interactive situation in the bartender domain is the case where a single
agent A1 is seeking attention in the bar, represented by the state manager adding
a a new fact seeksAttn(A1) to the initial Kf database. Initially, the robot is not
interacting with any agent (inTrans = nil ∈ Kf). In response, the planner can
build the following plan to achieve the goal:

greet(A1) Greet agent A1
ask-drink(A1) Ask A1 for drink order
ack-order(A1) Acknowledge A1’s drink order
serve(A1,request(A1)) Serve A1 the drink they requested
bye(A1) End the transaction

Initially, the planner can choose greet(A1) since no transaction is taking place
(inTrans = nil ∈ Kf) and A1 is seeking attention (seeksAttn(A1) ∈ Kf). The
other preconditions of greet(A1) are trivially satisfied (i.e., none of greeted(A1),
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ordered(A1), otherAttnReq, or badASR(A1) are in Kf). After greeting A1, the
ask-drink(A1) action is then chosen, updating the planner’s knowledge state so
that ordered(A1) ∈ Kf and request(A1) ∈ Kv, i.e., the planner knows that A1 has
ordered and knows the value of the drink that was requested. The ack-order(A1)
is then selected to acknowledge the drink order to the customer. The most interesting
action in the plan is serve(A1,request(A1)) which, intuitively, has the effect
of “serving A1 the drink that A1 requested”. This follows as a consequence of the
planner knowing the value of request(A1), which is recorded in the planner’s
Kv database. Thus, request(A1) acts as a run-time variable whose definite value
(A1’s actual drink order) will become known at run time. Finally, after serving the
drink the bye(A1) action can be selected, resulting in inTrans = nil ∈ Kf and
transEnd(A1) ∈ Kf, thereby ending the transaction and satisfying the goal.

5.2 Ordering Drinks with Multiple Agents

The planning domainmodel also enables more than one agent to be served if multiple
customers are reported as seeking attention. For instance, in the case of two agents,
A1 and A2, the following plan might be built:

wait(A2) Tell agent A2 to wait
greet(A1) Greet agent A1
ask-drink(A1) Ask A1 for drink order
ack-order(A1) Acknowledge A1’s drink order
serve(A1,request(A1)) Give the drink to A1
bye(A1) End A1’s transaction
ack-wait(A2) Thank A2 for waiting
ask-drink(A2) Ask A2 for drink order
ack-order(A2) Acknowledge A2’s drink order
serve(A2,request(A2)) Give the drink to A2
bye(A2) End A2’s transaction

Thus, A1’s drink order is taken and processed, followed by A2’s order. The wait and
ack-wait actions (which aren’t needed in the single agent plan) act as social actions
that are used to defer a transaction with A2 until A1’s transaction has finished. (The
otherAttnReq property, whose value depends on seeksAttn, ensures that other
agents seeking attention are told to wait before an agent is served.)

Larger number of customers result in plans with the same general structure. E.g.,
a plan for three agents, A1, A2, and A3, would look like the following:
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wait(A2) Tell agent A2 to wait
wait(A3) Tell agent A3 to wait
greet(A1) Greet agent A1
... Transact with A1
bye(A1) End A1’s transaction
ack-wait(A2) Thank A2 for waiting
... Transact with A2
bye(A2) End A2’s transaction
ack-wait(A3) Thank A3 for waiting
... Transact with A3
bye(A3) End A3’s transaction

Similarly, if a new customer appears it is dynamically reported to the planner,
possibly triggering a replanning operation: the newly built plan might result in the
extension of an existing plan (which might reflect a transaction currently in progress)
to include actions for interacting with the new agent if they are seeking attention.
However, it is important to note that we are not just stitching together single-agent
plans to account for the number of agents in the scenario. Instead, the planner
generates a plan appropriate to the social context in response to the state information
reported to it by the state manager.

5.3 Ordering a Drink with Restricted Drink Choices

From a planning point of view, the above plans rely on the planner’s ability to reason
about particular types of knowledge (e.g., functions like request(A1)) which act
as variables in parameterised plans. However, an alternative type of plan can also be
built in the case that the possible set of drinks is explicitly restricted. For instance,
consider a single agent A1 seeking attention, where the planner also told there are
three possible drinks that can be ordered: juice, water, and beer. This information is
represented in the planner as a type of “exclusive or” knowledge in the Kx database:

request(A1) = juice | request(A1) = water | request(A1) = beer

The planner can now build a plan of the following form to serve the customer:

greet(A1) Greet agent A1
ask-drink(A1) Ask A1 for drink order
ack-order(A1) Acknowledge A1’s order
branch(request(A1)) Form conditional plan
K(request(A1) = juice): If juice was requested
...
serve(A1,juice) Serve juice to A1

K(request(A1) = water): If water was requested
...
serve(A1,water) Serve water to A1

K(request(A1) = beer): If beer was requested
...
serve(A1,beer) Serve beer to A1

bye(A1) End the transaction
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In this case, a contingent plan is built with branches for each possible mapping
of request(A1). E.g., in the first branch request(A1) = juice is assumed to
be true; in the second branch request(A1) = water is true; and so on. Plan-
ning continues along each branch under the given assumption. (We note that this
type of branching is only possible here because the planner had initial Kx knowl-
edge that restricted request(A1), combined with Kv knowledge provided by the
ask-drink action.) Along each branch, an appropriate serve action is added to
deliver the appropriate drink. The places in the plan indicated by “...” indicate
places where drink-specific interactions (subdialogues) could be inserted. For in-
stance, each branch may require different actions to serve a drink, such as putting
the drink in a special glass, or requesting additional information from the customer
(i.e., “would you like ice in your water?”).

6 Plan Execution, Monitoring, and Recovery

Once a plan is built, it is executed by the robot one action at a time. A plan execution
monitor tracks the plan, comparing the expected plan states against sensed states
provided by the state manager, to determine whether a plan should continue to be
executed. To do this, it tries to ensure that a state still permits the next action (or set
of actions) in the plan to be executed and that effects needed by actions or goals later
in the plan have been achieved as expected. In the case of a mismatch, the planner is
directed to build a new plan, using the sensed state as a new initial state.

The execution of individual actions is handled by dividing each high-level planned
action into specific output modalities—speech, head motions, and arm manipulation
behaviour—that can be executed by the robot. This mapping is specified by a simple
rule-based structure containing specifications of each output (Isard and Matheson,
2012). The resulting structure is then passed to the multimodal output planner, which
mediates execution to each output channel. Language output is specified in terms
of communicative acts based on Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988), using a generation module that translates RST into speech by the
robot’s animatronic head. The robot also expresses itself through facial expressions,
gaze, and arm motions. The animatronic head can express a number of predefined
expressions, while the robot arm can perform tasks like grasping objects (e.g., to
hand over a drink to a customer). Multimodal behaviour is coordinated across the
various output channels to ensure they are synchronised temporally and spatially. For
instance, an action serve(?a,?d) to serve an agent a drink might be transformed
into multimodal outputs that result in the robot smiling at ?a (an animatronic head
facial expression) while physically handing over drink ?d (a robot arm manipulation
action) and saying to the customer “here is your drink” (speech output).

If the plan execution monitor detects a situation where a plan has failed, for
instance, due to unexpected outcomes like action failure, the planner is invoked to
construct a new plan. This method is particularly useful for responding to unexpected
responses by agents interacting with the robot. For example, if the planner receives
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a report that an agent A1’s response to ask-drink(A1) was not understood due to
low-confidence automatic speech recognition, the state report sent to the planner will
have no value for request(A1), and badASR(A1) will be set to true. This situation
will be detected by the plan execution monitor and the planner will be directed to
build a new plan. One possible result is a modified version of the original plan that
first informs A1 they were not understood before repeating the ask-drink action
and continuing the plan:

ask-drink(A1) Ask A1 for drink order
??? A1 was not understood
[Replan] Replan
not-understood(A1) Alert A1 it was not understood
ask-drink(A1) Ask A1 again for drink order
...

Another consequence of this approach is that certain types of overanswering
can be handled through plan execution monitoring and replanning. For instance,
a greet(A1) action by the robot might cause the customer to respond with an
utterance that includes a drink order:

greet(A1) Greet A1
??? A1 says “I’d like a beer”
[Replan] Replan
ack-order(A1) Acknowledge A1’s drink order
serve(A1,request(A1)) Serve A1 their drink
...

In this case, the state manager would include request(A1) = beer in its state
report, along with ordered(A1). The execution monitor would detect that the
preconditions of ask-drink(A1) aren’t met and direct the planner to replan. A
new plan could then omit ask-drink and proceed to acknowledge and serve the
requested drink.

7 Discussion and Conclusions

This chapter has described how automated planning can be applied to the problem
of social human-robot interaction in the JAMES robot bartending domain, as an
alternative to mainstream approaches to interaction management. In particular, we
have shown how the planning representation is engineered from social states induced
from different input modalities, and how plans are built incorporating a mix of task,
dialogue, and social actions, with execution involving various output modalities on
the robot. The use of the epistemic PKS planner has also provided certain benefits
during the work, such as enabling sensing actions to be used to model certain
types of dialogue actions, generating parameterised high-level plans, and considering
subdialogues with contingent branches.

The planning approach has also presented certain technical advantages. For in-
stance, the JAMES robot system has been evaluated through a series of user studies
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aimed at exploring socially-appropriate interaction in the bartender scenario, where
participants successfully ordered and received drinks from the bartender (Foster
et al., 2012). An interesting variant of the study compared the full planning domain
described above with a domain that dealt with task-based actions only. From a repre-
sentation point of view, this was done by simply removing the social actions from the
domain model. Results showed that the social version led to more efficient dialogues
(Giuliani et al., 2013). Another variant of multiple customer drink ordering also
considered different ordering strategies when agents arrive in groups (e.g., interact-
ing with a group representative versus transacting with all agents in a single group
before moving to another group). Again, the changes required to support planning
in this new setting resulted from modifications to the domain model: in this case
adding a new property to track agents in groups, and introducing another type of
drink ordering action to accommodate multiple agents ordering drinks in a group.

More generally, interactive systems also offer several opportunities for the au-
tomated planning community to showcase their tools and techniques. For instance,
interaction problems could form the the basis for new challenge domains in planning,
and the standard planning representation languages offer an approach to modelling
problems that break the tight link between representation and reasoning that is often
found in interaction toolkits. There are lessons that the planning community can
also learn from the interactive systems community. For example, the issue of user
evaluation is at the heart of interactive systems research, with a focus on (non-expert)
users interacting with the developed tools. The fact that interactive systems are also
inherently application driven means that planning must be situated in the context
of larger, more complex systems, requiring a degree of maturity and robustness in
development that often goes beyond lab settings, but which could facilitate the wider
adoption of planning approaches in such settings. Our ongoing research aims to
address some of these issues by adapting our planning techniques to other types of
service robots and scenarios that involve interacting with humans in public spaces.
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