
MyPDDL: Tools for efficiently creating PDDL

domains and problems

Volker Strobel∗1 and Alexandra Kirsch2

1IRIDIA, Université Libre de Bruxelles, Belgium
2Independent Scientist

Abstract

The Planning Domain Definition Language (PDDL) is the state-of-
the-art language for specifying planning problems in artificial intelligence
research. Writing and maintaining these planning problems, however, can
be time-consuming and error prone. To address this issue, we present
myPDDL—a modular toolkit for developing and manipulating PDDL do-
mains and problems. To evaluate myPDDL, we compare its features to
existing knowledge engineering tools for PDDL. In a user test, we addi-
tionally assess two of its modules, namely the syntax highlighting feature
and the type diagram generator. The users of syntax highlighting de-
tected 36 % more errors than non-users in an erroneous domain file. The
average time on task for questions on a PDDL type hierarchy was reduced
by 48 % when making the type diagram generator available. This implies
that myPDDL can support knowledge engineers well in the PDDL design
and analysis process.

1 Introduction

Being a key aspect of artificial intelligence (AI), planning is concerned with
devising a sequence of actions to achieve a desired goal [7]. AI planning has
made remarkable progress in solving planning problems in large state spaces
that would be impossible for humans to handle. The International Planning
Competition1 has led to a number of open source planners that are ready to be
used by practitioners and researchers outside the AI planning field.

However, the effectiveness of planning largely depends on the quality of the
problem formalization [18]. pddl (Planning Domain Definition Language) [11]
is the de facto standard for the description of planning tasks [10]. It divides the
description of a planning task into a domain model and problem descriptions:
the description of a household with its objects and locations would be a domain,

∗vstrobel@ulb.ac.be (corresponding author)
1http://www.icaps-conference.org/index.php/Main/Competitions/

1

ar
X

iv
:2

00
8.

11
06

9v
1

 [
cs

.H
C

]
 2

4
A

ug
 2

02
0

http://www.icaps-conference.org/index.php/Main/Competitions/

with possible tasks such as making breakfast, cleaning the windows, or changing
a light bulb. Someone with a non-planning background, for example, from
robotics, has to get used to the pddl syntax and its possibilities to describe
the world. She also has to keep track of the facts in the domain model and
the different planning tasks. While automated planning can save vast amounts
of time to find a valid solution, creating the planning task specifications is a
complex, error-prone, and cumbersome task. An ill-defined problem is often the
reason for finding suboptimal plans or no plan at all. The household domain
in this example comes with another challenge. For many tasks the distances
between objects or other numerical input may be necessary. pddl is by its
very nature as a planning language designed for symbolic specifications. To use
numerical data efficiently, it must often be preprocessed.

In this chapter, we describe myPddl (Figure 1), a knowledge engineering
toolkit that supports knowledge engineers in the entire design cycle of speci-
fying planning tasks without having to become an expert in AI planning. In
the initial stages, it allows for the creation of structured pddl projects that
should encourage a disciplined design process. With the help of snippets, that
is, code templates, often used syntactic constructs can be inserted into pddl
files. A syntax highlighting feature that speeds up the error-detection supports
intermediate stages. Understanding the textual representation of complex type
hierarchies in domain files can be confusing, so an additional tool enables their
visualization. pddl’s limited modeling capabilities were bypassed by developing
an interface that converts pddl code into code of the functional programming
language Clojure [8] and vice versa. Within this project, the interface was
employed for a feature that calculates distances between objects specified in
a problem model, but the interface provides numerous other possibilities and
could also be used to further automate the modeling process. A basic planner
integration allows for quickly running a desired planner. All of the features were
integrated into the customizable and extensible Sublime Text2 editor.

Since the main aim in the development of the toolkit was for it to be easy to
use and maintain, it is evaluated with regard to these criteria. Another aim was
to make planning more accessible in real-life tasks and to enable inexperienced
users to get started with planning problems. Therefore, myPddl’s usability
was assessed by means of a user test with eight subjects that had no prior
experience with AI planning. The results show that myPddl facilitates both
error-detection and the understanding of a given domain.

2http://www.sublimetext.com/

2

http://www.sublimetext.com/

myPDDL

-new
Create new pddl project

-snippet
Code templates

-syntax
Context-aware syntax highlighting

-clojure
Preprocessor for pddl files via Clojure

-distance
Distance calculation in spatial domains

-diagram
Visualization of type hierarchy

-plan
Planner integration

Figure 1: myPddl is a highly customizable and extensible modular system,
designed for supporting knowledge engineers in the process of writing, analyzing
and expanding pddl files and thereby promoting the collaboration between
knowledge engineers and the use of pddl in real-world applications. It consists
of the parts shown in the figure.

This chapter is an extended version of work published in a previous pa-
per [20]. The remainder of this chapter is structured as follows. Section 2
compares pddl knowledge engineering tools to lay a foundation for myPddl.
Section 3 describes the different modules of myPddl and their design principles.
Section 4 evaluates myPddl via a user test. Section 5 concludes the chapter
and outlines future work.

2 Related Work

This section introduces, compares, and discusses knowledge engineering tools
that allow text-based editing of pddl files to set the stage for myPddl (Table 1).

pddl studio [15] is an IDE (integrated development environment) for cre-
ating and managing pddl projects, that is, a collection of pddl files. Its main
features are syntax highlighting, error detection, context sensitive code com-
pletion, code folding, project management, and planner integration. Many of
these features are based on a parser, which continuously analyzes the code and
divides it into syntactic elements. These elements and the way in which they
relate to each other can then be identified. The syntax highlighter is a tool that
colors constructs according to their syntactical meaning within the code. In the
case of pddl studio, it colors names, variables, errors, keywords, predicates,
types, and brackets each in a different customizable color. pddl studio’s er-
ror detection can recognize both syntactic (missing keywords, parentheses, etc.)
and semantic (wrong type of predicate parameters, misspelled predicates, etc.)
errors. This means that pddl studio can detect errors based on a mismatch
between domain and problem file in real time. The code completion feature

3

offers recommendations for standard pddl constructs as well as for previously
used terms. Code folding allows the knowledge engineer to hide currently not
needed code blocks. In this case only the first line of the block is displayed.
Lastly, a command-line interface allows the integration of planners in order to
run and compare different planning software.

Unlike pddl studio, which provides a text based editor for pddl, the it-
Simple [22] editor has, as its main feature, a graphical approach that allows
designing planning tasks in an object-oriented approach using uml (Unified
Modeling Language). In the process leading up to itSimple, uml.p—uml in a
Planning Approach—was proposed, which is a uml variant specifically designed
for modeling planning domains and problems [21].

The main purpose of itSimple is supporting knowledge engineers in the
initial stages of the design phase by making tools available that help transform
the informality of the real world to formal specifications of domain models. The
professed aim of the project is to provide a means to a “disciplined process of
elicitation, organization and analysis of requirements” [22]. However, subse-
quent design stages are also supported. Once domain and problem models have
been created, pddl representations can be generated from the uml.p diagrams,
edited, and then used as input to a number of different integrated planning
systems.

With itSimple, it is possible to directly input the domains and problems into
a planner and to inspect the output from the planning system using the built-in
plan analysis. This consists of a plan visualization, which shows the interaction
between the plan and the domain by highlighting every change caused by an
action. itSimple’s modeling workflow is unidirectional as changes in the pddl
domain do not affect the uml model and uml models have to be modeled
manually, meaning that they cannot by generated using pddl.

Starting in version 4.0, itSimple expanded its features to allow the creation
of pddl projects from scratch, that is, without the uml to pddl translation
process [23]. So far, a basic syntax highlighting feature recognizes pddl key-
words, variables, and comments. itSimple also provides templates for pddl
constructs, such as requirement specifications, predicates, actions, initial state,
and goal definitions.

pddl-mode3 for Emacs builds on the sophisticated features of the widely
used Emacs editor and uses its extensibility and customizability. pddl-mode
provides syntax highlighting by way of basic pattern matching of keywords,
variables, and comments. Additional features are automatic indentation and
code completion as well as bracket matching. Code snippets for the creation of
domains, problems, and actions are also available. Finally, pddl-mode keeps
track of action and problem declarations by adding them to a menu and thus
intending to allow for easy and fast code navigation.

pddl-mode for Emacs supports pddl versions up to 2.2, which includes
derived predicates and timed initial predicates [3], but does not recognize later
features like object-fluents.

3http://rakaposhi.eas.asu.edu/planning-list-mailarchive/msg00085.html

4

http://rakaposhi.eas.asu.edu/planning- list-mailarchive/msg00085.html

The online tool editor.planning.domains allows for editing pddl files in a
web browser. Its features comprise syntax highlighting, code folding, pddl-
specific auto-completion, and multi-tab support. The editor is part of the
Planning-Domains4 initiative which aims at providing three pillars to the plan-
ning community: (1) an API to access existing pddl domains and problems;
(2) a planner-in-the-cloud service which be be accessed via a RESTful API; and
(3) an online pddl editor. The online editor is also connected to the planner in
the cloud.

The pddl plugin vscode-pddl5 for the editor VS Code (Visual Studio Code)
offers a wide range of editing functions, such as syntax highlighting, code com-
pletion, code folding, and code snippets. It offers a mature planner integration
and plan visualization. Thanks to a pddl parser integration, it is possible to
detect semantic errors immediately when they are made.

2.1 Critical Review

All the above-mentioned tools provide environments for the creation of pddl
code. Their advantages and disadvantages are reviewed in this section. At
the end of each discussed feature, the approach that was used in myPddl is
introduced.

pddl studio, itSimple, and editor.planning.domains for the most part do
not build on existing editors and therefore cannot fall back on refined imple-
mentations of features, such as selection of tab size, defining custom key short-
cuts, customizing the general look and feel, and bracket matching. In contrast,
vscode-pddl and pddl-mode for Emacs are integrated into mature code editors
and can be used in combination with other plugins. To have both basic editor
features and a high customizability, it was decided to use an existing, extensible
text editor to integrate myPddl into.

The tools can also be compared in terms of their syntax highlighting capabil-
ities. In pddl-mode for Emacs (up to pddl 2.2) and editor.planning.domains
(up to pddl 3.1), and vscode-pddl (up to pddl 3.1) keywords, variables, and
comments are highlighted. However, this is only done via pattern matching
without controlling for context. This means that wherever the respective terms
appear within the code they will get highlighted, regardless of the syntactical
correctness. Different colors can be chosen by customizing Emacs and Visual
Studio Code. editor.planning.domains provides two fixed color schemes. itSim-
ple’s syntax highlighting for pddl 3.1 is, except for the pddl version differ-
ence, equally as extensive as that of pddl-mode for Emacs but does not allow
for any customization. pddl studio has advanced syntax highlighting that
distinguishes all different pddl 1.2 constructs depending on the context and
allows knowledge engineers to choose their preferred highlighting colors. One
of the primary objectives of myPddl is to help users in keeping track of their
pddl programs. As a means to this end, it was decided to also implement
sophisticated, context-dependent syntax highlighting.

4http://planning.domains/
5https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl

5

http://planning.domains/
https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl

Another useful feature for fast development is the ability to insert larger
code skeletons or snippets. pddl studio does not support the insertion of code
snippets. itSimple features some code templates for predicates, derived pred-
icates, functions, actions, constraints, types, comments, requirements, objects,
and metrics. However, the templates are neither customizable nor extensible.
pddl-mode for Emacs provides three larger skeletons: one for domains, one for
problems, and one for actions. Further skeletons could be added. Both edi-
tor.planning.domains and vscode-pddl provide many code snippets. myPddl
aims to combine the best of these latter tools and support customizable and
extensible snippets for domains, problems, types, predicates, functions, actions,
and durative actions.

pddl studio, pddl-mode for Emacs, and editor.planning.domains do not
provide visualization options. itSimple, on the other hand, is based entirely
on visually modeling domains and problems. Therefore, since the first version,
the focus has mainly been on exporting from uml.p to pddl and to visualize
plans. myPddl is to reverse this design approach and enable type diagram
visualization of some parts of the pddl code. vscode-pddl does not provide
domain visualization but is able to visualize a found plan.

Searching for errors can be one of the most time consuming parts of the
design process. Hence, any tool that is able to help detect errors faster is of
great value to the knowledge engineer. While pddl-mode for Emacs, itSim-
ple, and editor.planning.domains facilitate error detection only by basic syntax
highlighting, both pddl studio and vscode-pddl are able to detect errors via
a pddl parser. In myPddl, a different approach is taken and syntactic errors
are not highlighted by the syntax highlighting feature, while all correct pddl
code is highlighted.

A major drawback of pddl studio and pddl-mode for Emacs especially is
that they are not updated regularly to support the most recent pddl versions.
pddl studio’s parser is only able to parse pddl 1.2, while the latest pddl
version is 3.1. pddl has significantly evolved since pddl 1.2 and was extended
in pddl 2.1 to include durative actions to model time dependent behaviors, nu-
meric fluents to model non-binary changes of the world state, and plan-metrics
to customize the evaluation of plans. pddl-mode for Emacs is only compat-
ible with pddl versions up to 2.2, which introduced derived predicates and
timed initial predicates but does not recognize later features like object-fluents.
It follows that the range of functions specified in the domain file cannot in-
clude object-types in addition to numbers. itSimple, editor.planning.domains,
vscode-pddl, and myPddl support the latest pddl version.

pddl studio falls short of customization options since they are limited to
the choice of font style and color of highlighted pddl expressions. Furthermore,
pddl studio is written as standalone program, meaning that there are no
pddl-independent extensions. The same holds true for itSimple. Since both
Emacs and VS Code are established editors, pddl-mode and vscode-pddl are
highly customizable and extensible. This is the other major reason why it was
decided that myPddl should be integrated into an existing, extensible, and
customizable text editor. These requirements are met by Sublime Text, a text

6

editor that offers a wide variety of features and plugins.
All in all, myPddl must be understood as complementary to the other ex-

isting knowledge engineering tools. myPddl is distributed as a package for
Sublime Text and provides context-aware syntax highlighting, code snippets,
syntactic error detection, and type diagram visualization. Additionally, it al-
lows for the automation of modeling tasks due to an interface with Clojure that
supports the conversion of pddl code into Clojure code and vice versa. There-
fore, myPddl is intended to support both the initial design process of creating
domains with code snippets, syntax highlighting and the Clojure interface and
the later step of checking the validity of existing domains and problems with
the type diagram generator. Lastly, the visualization capabilities of myPddl
are meant to facilitate collaboration among knowledge engineers.

3 MyPDDL

myPddl is a highly customizable and extensible modular system, designed for
supporting knowledge engineers in the process of writing, analyzing and expand-
ing pddl files and thereby promoting the collaboration between knowledge engi-
neers and the use of pddl in real-world applications. The modules of myPddl
are described in the next section.

3.1 Modules

myPDDL-IDE is an integrated development environment (IDE) for the use
of myPddl in the text and code editor Sublime Text6. Since myPddl-
snippet and -syntax (see below) are devised explicitly for Sublime Text,
their integration is implicit. The other tools described below (myPddl-
new, -diagram, -distance, -plan) can be used independently of Sublime
Text via the command-line but can also be called from the editor.

myPDDL-new helps to organize pddl projects. In many cases pddl do-
mains are created ad hoc [19]. However, each implementation of a pddl
task specification comprises one domain and at least one corresponding
problem file. Since several team members may be working on these files,
keeping pddl projects organized will facilitate collaboration. An auto-
matically created, standardized project folder structure could facilitate
the collaboration between users and the maintenance of consistency across
projects. To this end, myPddl-new creates the following folder structure
when creating a new pddl project:

6http://www.sublimetext.com

7

http://www.sublimetext.com

T
ab

le
1:

C
om

p
ar

is
on

o
f

k
n

ow
le

d
g
e

en
g
in

ee
ri

n
g

to
o
ls

a
n

d
th

ei
r

fe
a
tu

re
s.

F
e
a
tu

re
F
u
n
c
ti

o
n

p
d
d
l
st

u
d
io

it
S
im

p
l
e

p
d
d
l
-m

o
d
e

p
la

n
n
in

g
.d

o
m

a
in

s
v
sc

o
d
e
-p
d
d
l

m
y
P
d
d
l

la
te

st
su

p
p
.
p
d
d
l

v
e
rs

io
n

c
o
n
si

d
e
ri

n
g

re
c
e
n
t
p
d
d
l

fe
a
-

tu
re

s
1
.2

3
.1

2
.2

3
.1

3
.1

3
.1

sy
n
ta

x
h
ig

h
li
g
h
ti

n
g

su
p
p

o
rt

in
g

e
rr

o
r

d
e
te

c
ti

o
n

a
n
d

c
o
d
e

n
a
v
ig

a
ti

o
n

y
e
s

b
a
si

c
b
a
si

c
b
a
si

c
y
e
s

y
e
s

se
m

a
n
ti

c
e
rr

o
r

d
e
te

c
ti

o
n

su
p
p

o
rt

in
g

e
rr

o
r

d
e
te

c
ti

o
n

y
e
s

n
o

n
o

n
o

y
e
s

n
o

a
u
to

m
a
ti

c
in

d
e
n
ta

ti
o
n

su
p
p

o
rt

in
g

re
a
d
a
b
il
it

y
a
n
d

n
a
v
ig

a
ti

o
n

n
o

n
o

y
e
s

n
o

y
e
s

y
e
s

c
o
d
e

c
o
m

p
le

ti
o
n

sp
e
e
d
in

g
-u

p
th

e
k
n
o
w

le
d
g
e

e
n
g
in

e
e
ri

n
g

p
ro

c
e
ss

y
e
s

n
o

y
e
s

y
e
s

y
e
s

y
e
s

c
o
d
e

sn
ip

p
e
ts

sp
e
e
d
in

g
-u

p
th

e
k
n
o
w

le
d
g
e

e
n
g
in

e
e
ri

n
g

p
ro

c
e
ss

n
o

y
e
s

y
e
s

b
a
si

c
y
e
s

y
e
s

e
x
te

rn
a
li
z
in

g
u
se

r’
s

m
e
m

-
o
ry

c
o
d
e

fo
ld

in
g

su
p
p

o
rt

in
g

k
e
e
p
in

g
a
n

o
v
e
rv

ie
w

o
f

th
e

c
o
d
e

st
ru

c
tu

re

y
e
s

n
o

y
e
s

y
e
s

y
e
s

y
e
s

d
o
m

a
in

v
is

u
a
li
z
a
ti

o
n

su
p
p

o
rt

in
g

fa
st

u
n
d
e
r-

st
a
n
d
in

g
o
f

th
e

d
o
m

a
in

st
ru

c
tu

re

n
o

n
o

n
o

n
o

n
o

y
e
s

p
ro

je
c
t

m
a
n
a
g
e
m

e
n
t

su
p
p

o
rt

in
g

k
e
e
p
in

g
a
n

o
v
e
rv

ie
w

o
f

a
ss

o
c
ia

te
d

fi
le

s
y
e
s

y
e
s

n
o

y
e
s

y
e
s

y
e
s

u
m
l

to
p
d
d
l

tr
a
n
sl

a
ti

o
n

su
p
p

o
rt

in
g

in
it

ia
l

m
o
d
e
li
n
g

n
o

y
e
s

n
o

n
o

n
o

n
o

p
la

n
n
e
r

in
te

g
ra

ti
o
n

a
ll
o
w

in
g

fo
r

c
o
n
v
e
n
ie

n
t

p
la

n
n
e
r

a
c
c
e
ss

y
e
s

y
e
s

n
o

y
e
s

y
e
s

y
e
s

p
la

n
v
is

u
a
li
z
a
ti

o
n

su
p
p

o
rt

in
g

u
n
d
e
rs

ta
n
d
in

g
a
n
d

c
ro

ss
ch

e
ck

in
g

th
e

p
la

n
n
o

y
e
s

n
o

n
o

y
e
s

n
o

d
y
n
a
m

ic
a
n
a
ly

si
s

su
p
p

o
rt

in
g

d
y
n
a
m

ic
d
o
-

m
a
in

a
n
a
ly

si
s

n
o

y
e
s

n
o

n
o

n
o

n
o

d
e
c
la

ra
ti

o
n

m
e
n
u

su
p
p

o
rt

in
g

c
o
d
e

n
a
v
ig

a
ti

o
n

n
o

n
o

y
e
s

n
o

y
e
s

n
o

in
te

rf
a
c
e

w
it

h
a
u
to

m
a
ti

n
g

ta
sk

s
n
o

n
o

n
o

n
o

n
o

y
e
s

p
ro

g
ra

m
m

in
g

la
n
g
u
a
g
e

e
x
te

n
d
in

g
p
d
d
l
’s

m
o
d
e
li
n
g

c
a
p
a
b
il
it

ie
s

c
u
st

o
m

iz
a
ti

o
n

fe
a
tu

re
s

a
ck

n
o
w

le
d
g
in

g
in

d
iv

id
u
a
l

n
e
e
d
s

a
n
d

p
re

fe
re

n
c
e
s

b
a
si

c
n
o

y
e
s

b
a
si

c
y
e
s

y
e
s

8

project-name/

domains/

problems/

p01.pddl

solutions/

domain.pddl

README.md

plan

All of the templates to create the files can be customized and new tem-
plates can be added. The domain file domain.pddl and the problem file
p01.pddl initially contain corresponding pddl skeletons. Additionally the
project name is used as the domain name within the files domain.pddl

and p01.pddl. All problem files that are associated with one domain
file are collected in the folder problems/. README.md is a Markdown
file, which is intended for information about the authors of the project,
contact information, informal domain and problem specifications, and li-
censing information. Markdown files can be converted to html by various
hosting services like GitHub or Bitbucket. The basic planner integration
myPddl-plan provided by the file plan is described below.

myPDDL-snippet provides code skeletons, that is, templates for often used
pddl constructs such as domains, problems, type and function declara-
tions, and actions. They can be inserted by typing a triggering keyword.
Table 2 displays descriptions of all available snippets and the correspond-
ing trigger.

Table 2: The snippets that can be inserted into pddl files by typing the trigger.
snippet description trigger

domain skeleton domain

problem skeleton problem

type declaration t1, t2, ...

typed predicate declaration p1, p2, ...

typed function declaration f1, f2, ...

action skeleton action, durative-action

For example, typing action and pressing the tabulator key inserts a skele-
ton to specify an action. pddl constructs with a specified arity can be
generated by adding the arity number to the trigger (p2 would insert the
binary predicate template (pred-name ?x - object ?y - object)).

Every snippet is stored in a separate file, located in the packages folder of
Sublime Text. New snippets can be added and existing snippets can be
customized by changing the templates in this folder.

9

Figure 2: The figure shows the use of myPddl in the text editor Sublime Text.
Syntax errors in the domain are detected by myPddl-syntax’s context-aware
syntax highlighting feature and displayed in white.

myPDDL-syntax is a context-aware syntax highlighting feature for Sublime
Text. It recognizes all pddl constructs up to version 3.1, such as com-
ments, variables, names, and keywords and highlights them in different
colors. Using regular expressions and a sophisticated pattern matching
heuristic, it detects both the start and the end of pddl code blocks and
constructs. It then divides them into scopes, that is, named regions. Sub-
lime Text colorizes the code elements via the assigned scope names and in
accordance with the current color scheme. These scopes allow for a frag-
mentation of the pddl files, so that constructs are only highlighted if they
appear in the correct context. Thus missing brackets, misplaced expres-
sions and misspelled keywords are visually distinct and can be identified
(Figure 2).

myPDDL-clojure provides a preprocessor for pddl files to bypass pddl’s
limited mathematical capabilities, thus reducing modeling time without
overcharging planning algorithms. Since pddl is used to create more and
more complex domains [5, 6], one might need the square root function for a
distance optimization problem or the logarithmic function for modeling an
engineering problem. While these mathematical operations are currently
not supported by pddl itself, preprocessing pddl files in a programming
language and then hardcoding the results back into the file seem to be a
reasonable workaround. With the help of such an interface, the modeling
time can be reduced. We decided to use the functional programming lan-
guage Clojure [8], a modern Lisp dialect, facilitating input and output of
the Lisp-style pddl constructs. Once a part is extracted and represented

10

in Clojure, the processing possibilities are diverse and the full capacities of
Clojure are available. It can be used for generating pddl constructs, read-
ing domain and problem files, handling, using and modifying the input,
and generating pddl files as output.

The interface is provided as a Clojure library and based on two methods
described below.

read-construct(keyword, file) This methods allows for the extraction
of code blocks from pddl files. The following code block shows an ex-
ample in which the goal state (:goal (exploited magicfailureapp))

is extracted from a pddl problem file.

Clojure command:

(read-construct :goal "garys-huge-problem.pddl")

;;=> ((:goal (exploited magicfailureapp)))

add-construct(file, block, part) This methods provides a means for
adding constructs to a specified code block in pddl domain and
problem files. This is illustrated in the following two code blocks
where the predicate (hungry gisela) is added to the (:init ...)

block.

Clojure command:

(add-construct "garys-huge-problem.pddl" :init '((hungry gisela)))

Updated pddl file:

(:init (hungry gary)

(in pizza-box big-pepperoni)

(has-access gisela magicfailureapp))

(hungry gisela))

myPDDL-distance provides special preprocessing functions for distance cal-
culations. In some domains, every object needs a location specified by x
and y coordinates. While the location of objects can be implemented using
the predicate (location ?o - object ?x ?y - number), with x and y

being the spatial coordinates of an object, calculating the Euclidean dis-
tance requires using the square root function. However, pddl 3.1 supports
only the four basic arithmetic operators.

Parkinson and Longstaff [14] describe a workaround for this drawback. By
writing an action calculate-sqrt, they bypass the missing square root

11

function by making use of the Babylonian root method. Although this
method approximates the square root function, it requires many iterations
and would most likely have an adverse effect on plan generation [14].

More usable and probably faster results can be achieved by using the in-
terface between pddl and Clojure as a distance calculator, implemented
in the tool myPddl-distance. It reads a problem file into Clojure and
extracts all locations, defined in the (:init ...) code block. The Eu-
clidean distances between these locations are then calculated and writ-
ten back into a new and now extended copy of the problem file, using
the predicate (distance ?o1 ?o2 - object ?n - number), which spec-
ifies the distance between two objects. The code blocks below show the
(:init ...) block of a pddl problem file before and after using myPddl-
distance.

Before:

(:init ...

(location gary 4 2)

(location pizza 2 3))

After:

(:init ...

(location gary 4 2)

(location pizza 2 3)

(distance gary gary 0.0)

(distance gary pizza 2.2361)

(distance pizza gary 2.2361)

(distance pizza pizza 0.0))

The calculator works on any arity of the specified location predicate, so
that locations can be specified in 1D, 2D, 3D, and even used in higher
dimensions.

A disadvantage of this method is that the calculated distances have to be
stored in the pddl problem file, potentially requiring many lines of code.
If the number of locations is n, the number of calculated distances is n2,
so that every location has a distance to every other location and itself.
Therefore, a sensible next step would be to extend pddl by increasing its
mathematical expressivity [14], perhaps by declaring a requirement :math
that specifies further mathematical operations.

myPDDL-diagram generates a png image based on the type hierarchy of a
pddl domain file (Figure 3). The diagrammatic representation of textual
information helps to quickly understand the connection of hierarchically
structured items and should thus be able to simplify the communication

12

and collaboration between developers. In the diagram, types are repre-
sented with boxes, with every box consisting of two parts:

• The header displays the name of the type.

• The lower part displays all predicates that use the corresponding type
at least once as a parameter. The predicates are written just as they
appear in the pddl code.

Generalization relationships express that every subtype is also an instance
of the illustrated super type (e.g. “a hacker is a person). This relationship
is indicated in the diagram with an arrow from the subtype (here: hacker)
to the super type (here: person).

In order to create the diagram, myPddl-diagram utilizes dot from the
Graphviz package [4] and takes the following steps:

1. A copy of the domain file is stored in the folder domains/.

2. The (:types ...) block is extracted via the PDDL/Clojure inter-
face.

3. In Clojure, the types are split into super types and associated sub-
types using regular expressions and stored in a Clojure hashmap.

4. Based on the hashmap, the description of a directed graph in the
dot language is created and saved in the folder dot/.

5. The dot file is passed to dot, creating a png diagram and saving it
in the folder diagrams/.

6. The png diagram is displayed in a window.

Every time myPddl-diagram is invoked, these steps are executed and,
optionally, the names of the saved files are extended by an ascending
revision number. Thus, one cannot only identify associated pddl, dot
and png files, but also use this feature for basic revision control.

myPDDL-plan is a basic planner integration for myPddl. After creating a
new project with myPddl-new, the file plan in the project folder contains
a shell script for executing a planner with the new domain and problem
files as input. The desired planner can be specified in the file plan or
by editing the templates of myPddl-new. Due to the versatility of shell
scripts, any planner can be used and arbitrary command line options can
be specified. The planner can be invoked from Sublime Text or via the
command line.

In order to provide easy installation and maintenance, myPddl-ide can
be installed using Sublime Text’s Package Control7. The project source code

7https://sublime.wbond.net/about

13

https://sublime.wbond.net/about

object

(in ?o1 - object ?o2 - object)

software

(has-access ?p - person ?s - software)

person

(has-access ?p - person ?s - software)
(hungry ?p - person)

container food

hacker non-hacker box fridge pizza burgers fries

pepperoni supreme

Figure 3: The type diagram generated by myPddl-diagram helps to grasp
the relationship between types in the domain file. Additionally, it displays all
predicates that use the corresponding type at least once as a parameter.

is hosted on GitHub8, providing the possibility to actively participate in the
design process. Additionally, myPddl-clojure is hosted on GitHub 9 as well
as a standalone version to call the functions from a the command line10. The
myPddl project site11 provides room for discussing features and reporting bugs.

4 Validation and Evaluation

To assess the utility of myPddl, we evaluated its performance in terms of col-
laboration, experience, efficiency, and debugging in a user test. We analyzed the
user performance both with and without using myPddl-syntax and myPddl-
diagram.

4.1 User Evaluation

The two most central modules of myPddl are myPddl-syntax and myPddl-
diagram, since they support collaboration, efficiency, and debugging indepen-
dently of the user’s experience with pddl. To evaluate their usability, they
were evaluated in a user study. To this end, we compared the user performance
regarding several tasks, both with and without using the respective module.

8https://github.com/Pold87/myPDDL
9https://github.com/Pold87/pddl-clojure-interface

10https://github.com/Pold87/pddl-clojure-interface-standalone
11http://pold87.github.io/myPDDL/

14

https://github.com/Pold87/myPDDL
https://github.com/Pold87/pddl-clojure-interface
https://github.com/Pold87/pddl-clojure-interface-standalone
http://pold87.github.io/myPDDL/

4.1.1 Participants

In Usability Engineering, a typical number of participants for user tests is five to
ten. Studies have shown that even such small sample sizes identify about 80 %
of the usability problems [12, 9]. Our study design required eight participants.
Three female and five male participants took part in the study (average age
of 22.9, standard deviation of age 0.6). All participants were required to have
basic experience with at least one Lisp dialect in order not to be confused with
the many parentheses, but no experience with pddl or AI planning in general.

4.1.2 Approach

24 hours before the experiment was to take place, participants received the web
link12 to a 30-minute interactive video tutorial on AI planning and pddl. This
method was chosen in order not to pressure the participant with the presence
of an experimenter when trying to understand the material.

4.1.3 Procedure

We defined four tasks (Appendix A): two debugging tasks for testing the syntax
highlighting feature and two type hierarchy tasks for testing the type diagram
generator. A within subjects design was considered most suited due to the
small number of participants. Therefore, it was necessary to construct two
tasks matched in difficulty for each of these two types to compare the effects
of having the tools available. Each participant started either with a debugging
or type hierarchy task and was given the myPddl tools either in the first two
tasks or the second two tasks, so that each participant completed each task type
once with and once without myPddl. This results in 2 (first task is debugging
or hierarchy) × 2 (task variations for debugging and hierarchy) × 2 (starting
with or without myPddl) = 8 individual task orders, one per participant.

• Debugging Tasks

For the debugging tasks, participants were given six minutes (a reasonable
time frame tested on two pilot tests) to detect as many of the errors in the
given domain as possible. They were asked to record each error in a table
using pen and paper with the line number and a short comment. More-
over, they were instructed to immediately correct the errors in the code
if they knew how to, but not to dwell on the correction otherwise. For
the type hierarchy task, participants were asked to answer five questions
concerning the domains, all of which could be facilitated with the type di-
agram generator. One of the five questions (Question 4, see Appendix A.3
and A.4) also required looking into the code. Participants were told that
they should not feel pressured to answer quickly, but to not waste time
either. Also they were asked to say their answer out loud as soon as it

12Tutorial in German: https://www.youtube.com/watch?v=Uck-K8VnNOU&list=
PL3CZzLUZuiIMWEfJxy-G6OxYVzUrvjwuV

15

https://www.youtube.com/watch?v=Uck-K8VnNOU&list=PL3CZzLUZuiIMWEfJxy-G6OxYVzUrvjwuV
https://www.youtube.com/watch?v=Uck-K8VnNOU&list=PL3CZzLUZuiIMWEfJxy-G6OxYVzUrvjwuV

became evident to them. They were not told that the time it took them
to come up with an answer was recorded, since this could have made them
feel pressured and thus led to more false answers.

• Type Hierarchy Tasks

The two tasks to test syntax highlighting presented the user with domains
that were 54 lines in length, consisted of 1605 characters and contained 17
errors each. Errors were distributed evenly throughout the domains and
were categorized into different types. The occurrence frequencies of these
types were matched across domains as well, to ensure equal difficulty for
both domains. To test the type diagram generator, two fictional domains
with equally complex type hierarchies consisting of non-words were de-
signed (five and six layers in depth, 20 and 21 types). The domains were
also matched in length and overall complexity: five and six predicates
with approximately the same distribution of arities, one action with four
predicates in the precondition and two and three predicates in the effect.

• System Usability Scale

At the end of the usability test the participants were asked to evaluate
the perceived usability of myPddl using the system usability scale [2].

16

4.1.4 Analysis

• Debugging Tasks: To compare differences in the debugging tasks, a paired
sample t-test was used; normality was tested with a Shapiro-Wilk test.
To compare the arithmetic means (Ms) of detected errors, the test was
performed two-tailed, since syntax highlighting might both help or hinder
the participants. Arithmetic standard deviations (SDs) were calculated
for each condition.

• Type Hierarchy Tasks: For the type hierarchy tasks, t-tests were per-
formed on the logarithms of the data values to compare the geometric
means for the two conditions for each question; normality was tested with
a Shapiro-Wilk test on the log-normalized data values. The geometric
mean is a more accurate measure of the mean for small sample sizes as
task times have a strong tendency to be positively skewed [17]. The ge-
ometric standard deviation (GSD) was calculated for each question and
condition. Only those task completion times were included in the calcula-
tion of the t-values, where the respective participant gave a correct answer
for both occurrences of a question. This approach should reduce the influ-
ence of random guessing. Again, two-tailed t-tests were used to account
for both, improvements and drawbacks, of using myPddl-diagram.

• System Usability Scale

The arithmetic mean and standard deviation for the score on the System
Usability Scale was calculated.

4.1.5 Results

• Debugging Tasks

The participants detected more errors using the syntax highlighting fea-
ture (M = 10.3, SD = 3.45) than without it (M = 7.6, SD = 2.07);
t(7) = 2.68, p = 0.03. That is, approximately 36 % more errors were found
with syntax highlighting. The arithmetic means are displayed in Figure
4, where each cross (×) represents the data value of one participant.

• Type Hierarchy Tasks

Figure 5 shows the geometric mean of the completion time of success-
ful tasks for each question with and without the type diagram genera-
tor. With the type diagram generator participants answered all ques-
tions (except Question 4) on average nearly twice as fast (GM = 33.0,
GSD = 2.23) as without it (GM = 57.8, GSD = 2.05); t(32) = −3.34,
p = 0.002. This difference slightly increases, if Question 4 is excluded from
the calculations: with type generator: GM = 31.1, GSD = 2.17, without:
GM = 58.1, GSD = 2.07; t(30) = −3.68, p < 0.001. Table 3 gives an
overview of geometric means, geometric standard deviations, t-values, and
p-values for each question.

17

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

No Yes
Tool

E
rr

or
s

Syntax Highlighted
Code (myPDDL−syntax)

No

Yes

Found Errors (Arithmetic Mean)

Figure 4: Comparison of detected errors with and without the syntax highlight-
ing feature. Each cross (×) shows the data value of one participant. The bars
display the arithmetic mean.

• System Usability Scale myPddl reached a score of 89.6 on the system
usability scale [2], with a standard deviation of 3.9.

4.1.6 Discussion

The user test shows that myPddl-syntax and -diagram provide useful tools
for novices in AI planning and pddl. Below, we will discuss each part of the
user test in turn.

• Debugging Tasks

While, in general, the syntax highlighting feature was considered very use-
ful, two participants remarked that the used colors confused them and that
they found them more distracting than helpful. One of them mentioned
that the contrast of the colors was so low that they were hard for her to
distinguish. She found the same number of errors with and without syntax
highlighting. The other of the two was the only participant who found less
errors with syntax highlighting than without it. With myPddl-syntax,
two participants found all errors in the domain, while none achieved this
without syntax highlighting. While every participant had to use the same
color scheme in the experiment, colors are customizable in Sublime Text.

18

Type Diagram Generator

with without

Question GM GSD GM GSD df t p

Q1 21.8 1.52 40.0 2.26 7 -1.86 0.11

Q2 23.8 1.49 50.8 2.16 7 -1.91 0.10

Q3 48.0 3.49 83.2 2.20 5 -0.86 0.43

Q4 84.3 2.22 54.1 1.93 1 4.48 0.14

Q5 41.2 2.24 78.0 1.48 7 -2.75 0.03

Table 3: Overview of geometric means (GMs), geometric standard deviations
(GSDs), degrees of freedom (df), t-values, and p-values. The calculation for Q4
is based on only two paired data values (df = 1). This table only considers paired
data values, this means only if a participant answered the question correctly in
both domains, the data value is considered (since paired t-tests are calculated).
In contrast, Figure 5 displays the geometric means for all correct answers.

• Type Hierarchy Tasks

In spite of the rather large difference between the GMs for Question 3,
a high p-value is obtained (p = 0.43). This might be due to the high
GSD for the with condition and the rather small degrees of freedom (df =
5). Testing more participants would probably yield clearer results here.
The fact that the availability of tools did not have a positive effect on
task completion times for Question 4 can probably be attributed to the
complexity of this question (see Appendix A.3 and A.4): in contrast to the
other four questions, here, participants were required to look at the actions
in the domain file in addition to the type diagram. Most participants were
confused by this, because they had assumed that once having the type
diagram available, it alone would suffice to answer all questions. This
initial confusion cost some time, thus negatively influencing the time on
the task.

Visualization tools such as myPddl-diagram can improve the understand-
ing of unknown pddl code and thus support collaboration. But users may
be unaware of the limitations of such tools. A possible solution is to extend
myPddl-diagram to display actions, but this can overload the diagram
and, especially for large domains, render it unreadable. Different views
for different aspects of the domain or dynamically displayed content could
integrate more data, but this also hides functionality, which is generally
undesired for usability [13].

• Sytem Usability Scale

Since the overall mean score of the system usability scale has an approx-
imate value of 68 with a standard deviation of 12.5 [16], the score of
myPddl is well above average with a small standard deviation. A score

19

100% 100% 100% 100% 87.5% 87.5% 62.5% 50% 100% 100%0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

Q1 Q2 Q3 Q4 Q5
Question

S
ec

on
ds myPDDL−diagram

No

Yes

Task Completion Time per Question
(Geometric Mean)

Figure 5: Task completion time for the type hierarchy tasks. The bars display
the geometric mean averaged over all participants; each cross (×) represents the
data value of one participant. The percent values at the bottom of the bars show
the percentage of users that completed the task successfully. The questions can
be found in the Appendix A.3 and A.4.

of 89.6 is usually attributed to superior products [1]. Furthermore, 89.6
corresponds approximately to a percentile rank of 99.8 %, meaning that
it has a better perceived ease-of-use than 99.8 % of the products in the
database used by Sauro [16].

In summary, the user test shows that customizability is important, as not
all users prefer the same colors or syntax highlighting at all and their personal
preferences seem to correlate with the effectiveness of the tools.

20

5 Conclusion

We designed myPddl to support knowledge engineers in creating, understand-
ing, modifying, and extending planning domains. myPddl’s code editing fea-
tures such as syntax highlighting and code snippets, as well as a type diagram
generator, an interface with the programming language Clojure, and a plan-
ner integration can help in the various stages of working with pddl domains.
myPddl’s extensible and customizable architecture helps to fulfill the different
preferences and requirements of knowledge engineers. In the conducted user
test, myPddl users were able to grasp the domain structure of a pddl file more
quickly than non-users and also found more errors in a deliberately erroneous
domain file. Moreover, the users found the tools easy and pleasant to use.

In future work, myPddl’s set of features could be extended in several di-
rections. The interface between pddl and Clojure offers a basis for creating
dynamic planning scenarios. Applications could be the modeling of learning
and forgetting by adding facts to or retracting facts from a pddl file or the
modeling of an ever changing real world via dynamic predicate lists. Another
way of putting the interface to use would be by making the planning process
more interactive, allowing for the online interception of planning software in
order to account for the needs and wishes of the end user. Since many features
of myPddl can be called via the command line, interfaces with other editors
could be developed. So far, there is a basic integration with the code editor
Atom13.

All in all, the overall increase of efficiency due to facilitated collaboration
and support in maintaining an overview should encourage a shift of focus toward
real world problems in knowledge engineering. The full modeling potential can
only be reached with appropriate tools, with myPddl hopefully leading to a
broader acceptance and use of pddl for planning problems.

References

[1] Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the
system usability scale. Intl. Journal of Human–Computer Interaction 24(6),
574–594 (2008)

[2] Brooke, J.: Sus – a quick and dirty usability scale. Usability evaluation in
industry 189 (1996)

[3] Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classical part
of the 4th International Planning Competition. 4th International Planning
Competition (IPC-04) (2004)

[4] Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.:
Graphviz - open source graph drawing tools. In: Graph Drawing. pp. 483–
484. Springer (2002)

13https://github.com/Pold87/myPDDL-Atom

21

https://github.com/Pold87/myPDDL-Atom

[5] Goldman, R.P., Keller, P.: ”Type problem in domain description!” or,
outsiders’ suggestions for PDDL improvement. WS-IPC 2012 p. 43 (2012)

[6] Guerin, J.T., Hanna, J.P., Ferland, L., Mattei, N., Goldsmith, J.: The
academic advising planning domain. WS-IPC 2012 p. 1 (2012)

[7] Helmert, M.: Understanding Planning Tasks: Domain Complexity and
Heuristic Decomposition, vol. 4929. Springer (2008)

[8] Hickey, R.: The Clojure programming language. In: Proceedings of the
2008 symposium on Dynamic languages. ACM (2008)

[9] Hwang, W., Salvendy, G.: Number of people required for usability evalua-
tion: the 10±2 rule. Communications of the ACM 53(5), 130–133 (2010)

[10] Ilghami, O., Murdock, J.W.: An extension to pddl: Actions with embed-
ded code calls. In: Proceedings of the ICAPS 2005 Workshop on Plan
Execution: A Reality Check. pp. 84–86 (2005)

[11] McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M.,
Weld, D., Wilkins, D.: PDDL - the planning domain definition language
(1998)

[12] Nielsen, J.: Estimating the number of subjects needed for a thinking
aloud test. International journal of human-computer studies 41(3), 385–
397 (1994)

[13] Norman, D.A.: The design of everyday things. Basic books (2002)

[14] Parkinson, S., Longstaff, A.P.: Increasing the numeric expressiveness of the
Planning Domain Definition Language. In: Proceedings of The 30th Work-
shop of the UK Planning and Scheduling Special Interest Group (Plan-
SIG2012). UK Planning and Scheduling Special Interest Group (2012)

[15] Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug
PDDL documents: Simply and efficiently with PDDL Studio. ICAPS12
System Demonstration (2012)

[16] Sauro, J.: A practical guide to the system usability scale: Background,
benchmarks & best practices. Measuring Usability LLC (2011)

[17] Sauro, J., Lewis, J.R.: Quantifying the user experience: Practical statistics
for user research. Elsevier (2012)

[18] Shah, M., Chrpa, L., Jimoh, F., Kitchin, D., McCluskey, T., Parkinson,
S., Vallati, M.: Knowledge engineering tools in planning: State-of-the-art
and future challenges. Knowledge Engineering for Planning and Scheduling
(2013)

22

[19] Shah, M.M., Chrpa, L., Kitchin, D., McCluskey, T.L., Vallati, M.: Ex-
ploring knowledge engineering strategies in designing and modelling a road
traffic accident management domain. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence. pp. 2373–2379.
AAAI Press (2013)

[20] Strobel, V., Kirsch, A.: Planning in the wild: Modeling tools for PDDL. In:
Lutz, C., Thielscher, M. (eds.) KI 2014: Advances in Artificial Intelligence,
LNCS, vol. 8736, pp. 273–284. Springer, Cham, Switzerland (2014)

[21] Vaquero, T.S., Tonidandel, F., de Barros, L.N., Silva, J.R.: On the use of
UML.P for modeling a real application as a planning problem. In: ICAPS.
pp. 434–437 (2006)

[22] Vaquero, T.S., Tonidandel, F., Silva, J.R.: The itSIMPLE tool for modeling
planning domains. Proceedings of the First International Competition on
Knowledge Engineering for AI Planning, Monterey, California, USA (2005)

[23] Vaquero, T., Tonaco, R., Costa, G., Tonidandel, F., Silva, J.R., Beck, J.C.:
itSIMPLE4.0: Enhancing the modeling experience of planning problems.
In: System Demonstration–Proceedings of the 22nd International Confer-
ence on Automated Planning & Scheduling (ICAPS-12) (2012)

23

A Tasks

A.1 Deliberately erroneous Logistics Domain

;;;; Logistics domain

(define (domain ?logistics)

(:requirements

:types)

(:typing truck airplane motorboat - vehicle

package vehicle suitcase furniture - thing

airport garage station - location

car1 car 2 car3 - vehicle

city location thing - object)

(:predicates (in-city ?l - location ?c - city)

(at ?obj - thing ?l - location)

(key ?v - vehicle) = true

(full ?v - vehicle)

(in ?p - package ??veh - vehicle))

(:action drive

:parameters (?t - truck ?from ?to - location ?c - city)

:precondition (and (at ?tr ?from)

(in-city ?from ?c)

(incity ?to ?c))

:effect (and (not (at ?t ?from))

(at ?t ?to)))

(:action fly

:parameters (?a - airplane ?from ?to - airport)

:precondition (at ?a ?from)

:effect (and (n0t (at ?a ?from))

(at ?a ?to)))

(:action fuel

:parameters (?v - vehicle ?c - city ?to airport)

:precondition (and (not (full ?v))

(in-city ?to ?c)

(at ?v ?to))

:effect (full ?v))

(:action load

parameters: (?v - vehicle ?p - package ?l - location)

precondition: (and (?v ?l)

(at ?p ?l))

:effect (and (ay ?p ?l)

(in ?p ?v)))

(:action unload

:parameters (?v - vehicle p - package ?l - location)

:precondition (and (at ?v ?l)

?p ?v)

:effects (and (not (in ?p ?v))

(at ?p - ?l))))

The original file can be downloaded at http://ipc.informatik.uni-freiburg.de/
PddlExtension:

A.2 Deliberately erroneous Coffee Domain

(define COFFEE

(requirements
:typing)

(:types room - location
robot human _ agent
furniture door - (at ?l - location)
kettle ?coffee cup water - movable
location agent movable - object)

24

http://ipc.informatik.uni-freiburg.de/PddlExtension
http://ipc.informatik.uni-freiburg.de/PddlExtension

(:predicates (at ?l - location ??o - object)
(have ?m - movable ?a - agent)
(hot ?m - movable) = true
(on ?f - furniture ?m - movable))

(:action boil
:parameters (?m - movable \$k - kettle ?a - agent)
:preconditions (have ?m ?a)
:effect (hot ?m))

(:action grip-some
:parameters (?m - movable ?r - robot ?f - _furniture ?l - location)
:precondition (and (at ?l ?r)

(on ?fu ?m)
(at ?l ?f))

:effect (and (have ?m ?r)))

(:action move
:parameters: (?m - movable ?a - agent ?from ?to - location)
:precondition (or (änd (at ?from ?a)

(at ?from ?m))
(and (at ?from ?m)

(location ?from ?a)))
:effect (and (not (at ?from ?m))

(at ?to ?m)))

(:action change-room
:parameters (?from-r ?to-r - room ?a - agent)
:precondition (at ?fromr ?a)
:effect (and (not (at ?from-r ?a))

(at ?tor ?a)))

(:action prep-coffee
:parameters (?a - agent ?c - cjp ?w - water ?cof - coffee)
:precondition (and (have ?c ?a)

(hot ?w))
:effect (have ?cof ?a))

(:action ?hand-over
:parameters (?m - movable ?a1 - agent ?a2 - agent)
:precondition (have ?m ?a1))
:effect (and (not (have ?m ?a1))

(have ?m ?a2))))

A.3 Planet Splisus

(define (domain splisus)

(:requirements :typing)

(:types splis - gid
spleus - splos
schprok schlok - splus
rud mekle - lech
hulpf hurpf - hupf
sipsi flipsi hupf - splis
schmok schkok - splus
gid splos splus - ruffisplisus
merle - hupf
ruffisplisus mak lech - object)

(:predicates (father-of ?r1 - ruffisplisus ?r2 - ruffisplisus)
(married ?s1 - splos ?s2 - splis)

25

(has-weapon ?h - sipsi)
(dead ?r1 - ruffisplisus)
(at ?l - lech ?r - ruffisplisus))

(:action kill
:parameters (?l - lech ?r1 - ruffisplisus ?s - splis)
:precondition (and (at ?l ?r1)

(at ?l ?s)
(married ?r1 ?s)
(has-weapon ?s))

:effect (and (dead ?r1)
(not (married ?r1 ?s)))))

Please answer the following five questions on the society and structure of
Planet Splisus:

1. Are all Flipsis also of the type Ruffisplisus?

2. Are all Merles also Splus?

3. Can a Spleus be married to a Schlok?

4. Only theoretically: Could a Hurpf murder a Spleus?

5. Let us assume there are three categories of object types on Splisus: places,
beings and food. Match the three object types Ruffisplisus, Mak and Lech
with these categories.

A.4 Store

(define (domain store)

(:requirements :typing)

(:types lala lila - zahls
blisis blusis - ultri
iltre lula - nulls
zahls schwinds - knozi
minis - lala
ultri sopple schmitzl - lila
ultres raglos wexis - lola
kosta - nulls
nulls spax - minis
lola - zahls
knozi schmus - object)

(:predicates (product ?k - knozi) ; Produkt
(workplace ?l1 - lola ?l2 - lala)
(product-at ?l1 - lola ?l2 - lila)
(cashier ?k - knozi)
(customer ?s - spax)
(owns ?l - lila ?s - spax))

(:action sell
:parameters (?p - lila ?z - zahls ?l - lola ?w - wexis ?s - spax)
:precondition (and (product ?p)

(cashier ?z)
(product-at ?l ?p)
(customer ?s))

26

:effect (and (product-at ?w ?p)
(not (product-at ?l ?p))
(owns ?p ?s))))

Please answer the following five questions concerning the environment store:

1. Are objects of the type Lula also of the type Minis?

2. Are Spax and Schmus Zahls?

3. Is it possible for an Iltre to work at a workplace of the type Knozi?

4. Only theoretically: Could a Lala sell a Schmitzl to a Kosta?

5. Let us assume our domain store models a grocery store. There are three
categories: humans, products, and places. Can you match these world
terms with the object types lila, lala, and lola from the domain?

27

	1 Introduction
	2 Related Work
	2.1 Critical Review

	3 MyPDDL
	3.1 Modules

	4 Validation and Evaluation
	4.1 User Evaluation
	4.1.1 Participants
	4.1.2 Approach
	4.1.3 Procedure
	4.1.4 Analysis
	4.1.5 Results
	4.1.6 Discussion

	5 Conclusion
	A Tasks
	A.1 Deliberately erroneous Logistics Domain
	A.2 Deliberately erroneous Coffee Domain
	A.3 Planet Splisus
	A.4 Store

