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Abstract. We consider a Min-Power Bounded-Hops Symmetric Con-
nectivity problem that consists of the construction of communication
spanning tree on a given graph, where the total energy consumption
spent for the data transmission is minimized and the maximum number
of edges between two nodes is bounded by some predefined constant.
We focus on the planar Euclidian case of this problem where the nodes
are placed at the random uniformly spread points on a square and the
power cost necessary for the communication between two network ele-
ments is proportional to the squared distance between them. Since this
is an NP-hard problem, we propose different heuristics based on the fol-
lowing metaheuristics: genetic local search, variable neighborhood search,
and ant colony optimization. We perform a posteriori comparative anal-
ysis of the proposed algorithms and present the obtained results in this
paper.

Keywords: Energy efficiency · Approximation algorithms · Symmetric
connectivity · Bounded hops · Genetic local search · Variable neighbor-
hood search · Ant colony optimization.

1 Introduction

Due to the prevalence of wireless sensor networks (WSNs) in human life, the
different optimization problems aimed to increase their efficiency remain actual.
Since usually WSN consists of elements with the non-renewable power supply
with restricted capacity, one of the most important issues related to the de-
sign of WSN is prolongation its lifetime by minimizing energy consumption of
its elements per time unit. A significant part of sensor energy is spent on the
communication with other network elements. Therefore, the modern sensors of-
ten have an ability to adjust their transmission ranges changing the transmitter
power. Herewith, usually, the energy consumption of a network’s element is as-
sumed to be proportional to ds, where s ≥ 2 and d is the transmission range
[1].

⋆ The research is supported by the Russian Science Foundation (project 18-71-00084).

http://arxiv.org/abs/1904.10453v1


2 R. Plotnikov et al.

The problem of determining the optimal power assignment in WSN is well-
studied. The most general Range Assignment Problem, where the goal is to find
a strongly connected subgraph in a given directed graph, has been considered in
[2,3]. Its subproblem, Min-Power Symmetric Connectivity Problem (MPSCP),
was first studied in [4]. The authors proved that Minimum Spanning Tree (MST)
is a 2-approximation solution to this problem. Also, they proposed a polynomial-
time approximation scheme with a performance ratio of 1+ ln 2+ε ≈ 1.69 and a
15/8-approximation polynomial algorithm. In [5] a greedy heuristic, later called
Incremental Power: Prim (IPP), was proposed. The IPP is similar to the Prim’s
algorithm for MST constructing. A Kruskal-like heuristic, later called Incremen-
tal Power: Kruskal, was studied in [6]. Both of these so-called incremental power
heuristics have been proposed for the Minimum Power Asymmetric Broadcast
Problem, but they are suitable for MPSCP too. It is proved in [7] that they
both have an approximation ratio 2, and it was shown in the same paper that
in practice they yield significantly more accurate solution than MST. Also, in
a series of papers different heuristic algorithms have been proposed for MPSCP
and the experimental studies have been done: local search procedures [7,8,9],
methods based on iterative local search [10], hybrid genetic algorithm that uses
a variable neighborhood descent as mutation [11], variable neighborhood search
[12], and variable neighborhood decomposition search [13].

Another important property of WSN’s efficiency is a message transmission
delay, i.e., the minimum time necessary for transmitting a message from one
sensor to another via the intermediate transit nodes. As a rule, the delay is
proportional to the maximum number of hops (edges) between two nodes of
a network. In the general case, when the network is represented as a directed
arc-weighted graph, and the goal is to find a strongly connected subgraph with
minimum total power consumptions and bounded path length, the problem is
called a Min-Power Bounded-Hops Strong Connectivity Problem. In [14] the
approximation algorithms with guaranteed estimates have been proposed for
the Euclidean case of this problem. The bi-criteria approximation algorithm for
the general case (not necessarily Euclidian) with guaranteed upper bounds has
been proposed in [15]. The authors of [16] propose an improved constant factor
approximation for the planar Euclidian case of the problem.

In this paper, we consider the symmetric case of Min-Power Bounded-Hops
Strong Connectivity Problem, when the network is represented as an undirected
edge-weighted graph. Such a problem is known as Min-Power Bounded-Hops
Symmetric Connectivity Problem (MPBHSCP) [15]. We also assume that the
sensors are positioned on Euclidian plane. The energy consumption for the data
transmission is assumed to be proportional to the area of a circle with center
in sensor position and radius equal to its transmission range d, and, therefore,
s = 2. This problem is still NP-hard in planar Euclidian case [17], and, therefore,
the approximation heuristic algorithms that allow obtaining the near-optimal
solution in a short time, are required for it.

A set of polynomial algorithms that construct the approximate solutions to
MPBHSCP were proposed in [18]. In this pasper, we suggest three metaheuristic
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approaches that aimed to improve the solutions obtained by the known construc-
tive heuristics. Namely, we use a variable neighborhood search, a genetic local
search, and an ant colony optimization that make use of different variants of local
search procedure. This research was inspired by the papers where the different
metaheuristics are successfully applied for the approximate solution of Bounded-
Diameter Minimum Spanning Tree (BDMST) (e.g., see [19]), and for MPSCP
(e.g., see [12]). We conducted an extensive numerical experiment to compare our
algorithms. We present the results of the experiment in this paper. Note that,
to the best of our knowledge, the metaheuristics of such kind previously were
never applied to MPBHSCP.

The rest of the paper is organized as follows. In Section 2 the problem is
formulated, in Section 3 descriptions of the proposed algorithms are given, Sec-
tion 4 contains results and analysis of the experimental study, and Section 5
concludes the paper.

2 Problem formulation

Mathematically, MPBHSCP can be formulated as follows. Given a connected
edge-weighted undirected graph G = (V,E) and an integer value D ≥ 1, find
such spanning tree T ∗ in G, which is the solution to the following problem:

W (T ) =
∑

i∈V

max
j∈Vi(T )

cij → min
T

, (1)

distT (u, v) ≤ D ∀u, v ∈ V, (2)

where Vi(T ) is the set of vertices adjacent to the vertex i in the tree T , cij ≥ 0
is the weight of the edge (i, j) ∈ E, and distT (u, v) is the number of edges in a
path between the vertices u ∈ V and v ∈ V in T .

Obviously, in general case, MPBHSCP may even not have any feasible solu-
tion. In this paper, we consider a planar Euclidian case, where an edge weight
equals the squared distance between the corresponding points and G is a com-
plete graph. Therefore, a solution always exists.

Although any feasible solution of (1)–(2) is an undirected spanning tree with
bounded diameter, we always can choose a center of this tree, i.e., a vertex (or two
vertices ifD is odd), such that a path from it to any other vertex in a tree contains
not more than ⌊D/2⌋ edges. Therefore, it is convenient to consider a solution
as a directed tree (or arborescence) rooted in one of its centers. Further, we
assume that the centers and the root are predefined for each considered feasible
spanning tree, and, therefore, we will handle with the following notations that
are suitable for directed trees: v0 — a root of a tree T = (V,ET ); PT (v) — a
parent vertex of v ∈ V \ {v0} in T ; LT (v) — a level (i.e., the number of edges
in a path from v to the center) of v ∈ V in T .
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3 Heuristic algorithms

In this section we will describe the heuristic algorithms for approximation so-
lution of MPBHSCP. Our methods are based on the following metaheuristics:
variable neighborhood search (VNS), genetic local search (GLS), and ant colony
optimization (ACO). All of our methods start with some initial feasible solution
– a spanning tree with bounded diameter (or with a set of feasible solutions, as
in GLS). We assume that at least one such solution was already constructed by
some heuristic, and the goal of our algorithms is to improve it in a best possible
way.

Besides the obvious differences that are specific for the particular metaheuris-
tics, our algorithms have the common parts. Namely, they use the same variants
of local search and random movement procedures. Therefore, we will describe
these procedures at first.

3.1 Local search

We suggest three types of neighborhood structure that are used in the local
search procedures. The first neighborhood movement is called LevelChange. It
consists of changing a parent node for a vertex in a such way that the level of a
vertex changes and the diameter is feasible (at most D). The second procedure,
SameLevelParentChange, consists of changing a parent for a vertex preserving
its level. And the last one is CenterChange, which consists of changing of a center
vertex of a tree. Note that none of these three variants of local movement can
be replaced by a sequence of others.

The first two local movements, LevelChange and SameLevelParentChange

are quite simple. In both cases, at first, one edge e = (v, PT (v)) is removed from
T , and then another vertex v1, that is not a descendant of v in T , is chosen
as a new parent of v. Herewith, some special conditions should be met: in the
case of LevelChange, LT (v1) should not be equal to LT (v)− 1 and the diameter
restriction should not be violated; in the case of SameLevelParentChange, the
equality LT (v1) = LT (v) − 1 should hold.

In the CenterChange movement, at first, one center c ∈ V is chosen (it may
be either a root or another center in a case of odd diameter), and then, some
other non-center vertex v ∈ V is chosen as a new center. In order to make v a
new center instead of c the following steps are performed: (a) the children of c
change their parent from c to v; (b) v is detached from its parent vp = PT (v);
(c) if c is a root then v becomes a root, otherwise it becomes a second center,
and the root v0 becomes a parent of v; (d) if c 6= vp, then c becomes a child of
vp, otherwise, it becomes a child of v.

Our algorithms use these three variants of neighborhood movement as parts
of one local search method based on variable neighborhood descent metaheuris-
tic (VND). The idea of VND is to perform local search within more than one
neighborhood structure. This approach was proposed in [20], and the pseudo-
code is given in Algorithm 1. In result, VND returns a local optimum for all
considered neighborhood structures.
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3.2 Random movement

Besides the local search procedures, some of our metaheuristics (to be precise,
GLS and VNS) involve an operator of randomized modification of a tree. For
such random movement we suggest a procedure RandomBranchReattaching. In
this procedure, some edge (v, PT (v)) is chosen at random and removed from T .
Then, v is connected with a non-descendant vertex u, which is chosen at random
as well, if this operation keeps the feasibility of a tree. This process is repeated
k times, where k is an external integer parameter provided by an upper-level
metaheuristic.

3.3 Variable neighborhood search

Variable neighborhood search (VNS) is a metaheuristic developed by Hansen and
Mladenovic [20], and it consists of two phases: randomized phase, or so-called
shaking, when the current solution is changed in random or in half-random
way, and deterministic phase, where VND is applied to the shaken solution. In
our implementation, RandomBranchReattaching is used for the shaking phase,
and the neighborhood movements LevelChange, SameLevelParentChange, and
CenterChange are used in the local search phase. The pseudo-code is presented
in Algorithm 2. The great advantage of this metaheuristic, comparing to others,
is that it requires tuning of the only parameter kmax. The algorithm starts with
some feasible solution. As the first approximation for MPBHSCP we use the
best of the trees obtained by the heuristic algorithms that are proposed in [18]:
MPCBTC, MPRTC, MPCBLSoC, MPCBRC,MPQBH, and MPIR.

Algorithm 1 Variable neighborhood descent

1: Select an initial solution T ;
2: k ← 0;
3: Set the set of the local searches (LSl)l=1,2,3 ← {LevelChange, SameLevelPar-

entChange, CenterChange};
4: improved← true;
5: while improved do

6: improved← false, l← 1;
7: while l ≤ 3 do

8: T ′ ← LSl(T );
9: if T ′ is better than T then

10: T ← T ′, l← 1, improved← true;
11: else

12: l← l + 1;
13: end if

14: end while

15: end while
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Algorithm 2 Variable neighborhood search

1: Select an initial solution T ;
2: k ← 0;
3: while the stopping criteria is not met do
4: while k ≤ kmax do

5: Perform shaking: T ′ ← RandomBranchReattaching(T, k);
6: Apply the local search procedures to the shaken solution: T ′′ ← V ND(T ′);
7: if T ′′ is better than T then

8: T ← T ′′; k ← 1;
9: else

10: k ← k + 1;
11: end if

12: end while

13: end while

3.4 Genetic local search

Another approach suitable for the problem (1)–(refe2) is genetic local search
algorithm. This metaheuristic deals with population — a set of feasible solutions.
Before the algorithm starts, its first population should be generated. For the
first population, we used all spanning trees constructed by 6 algorithms from
[18]. Note that, since MPRTC is randomized, it may construct a set of different
feasible solutions instead of only one solution, that yield other 5 deterministic
heuristics. This allows us to generate the first population with the size which
does not exceed some predefined value. Each iteration of the algorithm consists
of applying the following operators to the current population: (a) calculation of
fitness, that expresses the quality of the solution; (b) selection, that chooses a
subset of solutions from the population according to their fitness; (d) crossover,
that creates a new solution (an offspring) from the selected pair of solutions; (e)
mutation, that randomly modifies the offspring; (f) local search, that improves
the offspring; (g) join, that selects the population of the next generation from
the current population and the set of the offsprings. A brief description of the
main steps of this algorithm is presented in Algorithm 3

In our implementation of genetic local search, we take the value of 1/W (T )
as a fitness of T . This corresponds to the rule that fitness has to be a positive
value which is higher when the value of the objective function is closer to opti-
mum. Within the selection procedure, a set of prospective parents of the next
offspring is filled with solutions from the current population in the following way.
Sequentially, two trees are taken from the current population in proportion to
their fitness probability: the first tree of each pair is chosen randomly from the
entire population, and the second tree is chosen from the remaining part of the
population. Each pair should contain different trees, but the same tree may be
included in many pairs.

For the crossover operator, a solution is represented as an array of integer
values, that correspond to the vertex levels in a tree. In other words, we assume
that the vertices are numbered, and for each number i = 1, ..., n, the value of
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Algorithm 3 Genetic local search

1: Generation of the first population;
2: Fitness calculation of the population;
3: while stop condition is not met do
4: Selection;
5: Crossover;
6: Mutation;
7: Local search by VND;
8: Fitness calculation of the offspring;
9: Join;
10: T ← the best tree among the current population;
11: end while

i-th element in array is assigned to the level of i-th vertex in a tree. Given two
integer arrays (let’s call them the parent arrays), a new (child) array, that will
correspond to an offspring, is generated in the following way. First of all, an
offspring has to have a center. For that reason, one parent array is taken at
random (with probability of 0.5), and then, the child array derives the elements
assigned to 0 from this parent array. Each parent array has one or two such
elements, depending on parity of D, and the child array should have the same
number of elements assigned to 0. The values of all other elements in the child
array derive the values at the same places from the parents, and each time the
parent is chosen with probability of 0.5. Note that if the element that assigned to
0 is chosen to be derived by a child, then the corresponding element of a child is
assigned to 1. This is done because the corresponding vertex cannot be a center
of the offspring, since its center is already established.

The decoding of a tree from the integer array is performed in the following
way. Let A be the array of integers that should be decoded to a tree T . At
first, a such vertex v0, that A(v0) = 0, is assigned to the root of a tree, and,
if another vertex v1 with the same property exists, then it is assigned to the
second center of a tree and v0 is assigned to the parent of v1. After that, for
each other i-th element of an array its predecessor in T j is chosen in such way,
that A(j) < A(i) and the edge that connects i-th and j-th vertices, brings the
the minimum contribution to the value of the objective function.

The mutation procedure takes as an argument (an integer parameter) k —
the maximum difference (number of different arcs in the initial tree and in the
modified one). This parameter is taken randomly from the interval [1, n/3], with
probability proportional to its inverse value (i.e., smaller modifications are more
possible). To perform a random movement for the mutation, we used the proce-
dure RandomBranchReattaching. The mutation procedure is applied with prob-
ability PM (a parameter of the algorithm) to each offspring.

Additionally, our algorithm applies local search to improve the offsprings af-
ter the crossover operator. To do this, we used VND algorithm that performs
local search within three neighborhood structures defined above: LevelChange,
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SameLevelParentChange, and CenterChange. This solution improvement proce-
dure is applied with a predefined probability, as well as a randomized mutation.

At the join procedure a subset of solutions from the current population and
the current offspring, which have the largest fitness values, are chosen to fill the
population of the next generation.

Our version of GLS for MPBHSCP requires the following parameters:

– PopSize — the size of population;
– OffspSize — the size of offspring;
– PM — the probability of mutation;
– PLS — the probability of local search.

3.5 Ant colony optimization

As the third heuristic algorithm for the approximate solution of MPBHSCP, we
propose an algorithm based on the ant colony optimization metaheuristic (ACO).
A path of an ant corresponds to the solution to the problem. The path usually
consists of the elements, each of which is chosen randomly with probability
depending on pheromone value that stores information about the frequency of
usage of a particular part of a path in the best-found solution. We designed
our algorithm in a similar manner as it was done by Gruber et al. in [19]. To
represent a feasible solution of MPBHSCP as a path we used the same vertex-
level encoding that was used in the crossover operator of GLS, i.e., an array of
n integers not greater than ⌊D/2⌋ corresponding to the vertex levels. As the
pheromone values we used the matrix (τil) of size n × ⌊D/2⌋, that is initially
filled with equal non-negative real numbers 1/(n ·W (T0)), where T0 is the initial
solution. Our variant of the ACO algorithm consists of three phases: (a) paths
construction, (b) solutions improvement, and (c) pheromone matrix updating.
The main steps of the algorithm are briefly described in Algorithm 4.

Algorithm 4 Ant colony optimization

1: Generation of pheromone matrix;
2: while stop condition is not met do
3: Construction of ant paths according to the pheromone matrix;
4: Improvement of the solutions that are derived from the paths;
5: Update of the pheromone matrix;
6: end while

In the paths construction phase, at first, the center of a corresponding tree
should be defined. For that reason, we assign one or two (depending on parity
of D) elements of ant path to 0. The vertices (or indices of ant path) that will
assigned to the centers (with level 0) are chosen randomly with the probability
Pi,0 = τi,0/

∑n
j=1 τj,0. After that, for each vertex i = 1, ..., n, that has not

been assigned to the center, its level is assigned randomly with the probability

Pi,l = τi,l/
∑⌊D/2⌋

l′=1 τj,l′ , where l = 1, ..., ⌊D/2⌋.
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After this construction, the paths are transformed into the spanning trees by
the same decoding procedure that is used in the GLS. Each spanning tree is then
improved by the VND procedure, that makes use of three neighborhood search
types: LevelChange, SameLevelParentChange, and CenterChange. After that,
the best solution found so far Tbest is used for the updating of the pheromone
matrix in the following way. For each i = 1, ..., n, and l = 0, ..., ⌊D/2⌋, τi,l = τi,l+
ρ/W (Tbest) if l = LTbest

(i), and τi,l = τi,l(1 − ρ), otherwise. ACO requires two
parameters: ColSize — the number of ants in colony, and ρ — the pheromone
decay coefficient.

4 Simulation

We have implemented all the described algorithms in C++ programming lan-
guage and launched them on the Intel Core i5-4460 3.2GHz processor with
8Gb RAM. In order to make our experiment results reproducible, we used as
test instances the data sets that are given in Beasley’s OR-Library for Eu-
clidian Steiner Problem (http://people.brunel.ac.uk/∼mastjjb/jeb/orlib). These
test cases present the random uniformly distributed points in the unit square.
We tested 3 variants of dimension: n = 100, 250, and 500. We also took different
values of D for each dimension. Since all of our algorithms are partially proba-
bilistic, we launched each algorithm 10 times on each instance, and calculated
the average value of objective, the best value of objective, and the standard
deviation. As a stop criteria the following condition was used: the best found
solution is not changed during three iterations in a row.

We have performed the preliminary testing of each algorithm to determine
such combination of its parameters that would provide in most cases the best
result without consuming much time for the calculations. For VNS, kmax was
chosen from the set {20, 30, 40}, and 30 appeared to be the best variant. For
GLS, the pair (PopSize,OffspSize) = (75, 40) appeared to be the best among
the variants {(25, 15), (50, 20), (75, 40), (100, 50)}, and the pair (PM,PLS) =
(0.5, 0.5) appeared to be the best among the variants {(0.25, 025), (0.25, 05),
(0.25, 075), (0.5, 05), (0.75, 0.25), (0.75, 075)}. As for ACO, we found out that
ρ = 0.2 is the best choice among {0.005, 0.01, 0.05, 0.1, 0.2} and ColSize = 50 is
the best choice among {25, 50, 100}.We also tried to exclude one or more variants
of local search in the VND subroutine of our algorithms, but, on average, this
always deteriorated the results. Therefore, we decided to keep all the proposed
variants of local search in each of our algorithms.

The results of the experiment are presented in Table 1. The first three
columns contain test instance properties: the tree diameter bound, D, the size of
a problem, n, and the instance case number in the OR Library, nr. In the fourth
column, the objective values on the best of constructive heuristics results, TCH ,
are presented. Note that TCH was passed to each metaheuristic algorithm as
the initial solution. We added this column here because it is important to see,
how much the best solution found by constructive heuristics was improved by
our metaheuristic based algorithms. In the other columns, the results of ACO,

http://people.brunel.ac.uk/~mastjjb/jeb/orlib


10 R. Plotnikov et al.

GLS, and VNS are presented: the objective values on the best found solutions,
Wbest, the average values of objective, Wav, the standard deviation of the set
of objective values on the found solutions, Wsd, and the average running times.
The best values among all algorithms are marked bold.

D n nr W (TCH)
Wbest Wav Wsd Time (in sec.)

ACO GLS VNS ACO GLS VNS ACO GLS VNS ACO GLS VNS

7

50
1 1.89 1.56 1.47 1.61 1.63 1.69 1.61 0.07 0.18 0 1.87 0.69 0.36

2 1.77 1.31 1.42 1.34 1.39 1.55 1.42 0.06 0.12 0.04 2.22 0.69 0.75
3 1.71 1.24 1.30 1.36 1.33 1.44 1.40 0.05 0.12 0.02 1.57 0.67 1.10

100
1 2.07 1.60 1.74 1.66 1.96 1.80 1.70 0.14 0.05 0.04 5.93 3.26 1.93

2 2.00 1.48 1.55 1.70 1.73 1.82 1.70 0.12 0.13 0.01 8.16 3.03 1.88

3 2.35 2.35 1.99 1.90 2.35 2.03 1.92 0 0.04 0.04 2.60 3.15 3.04

250
1 3.13 3.13 2.76 2.60 3.13 2.92 2.62 0 0.09 0.02 28.82 33.07 21.16

2 3.30 3.30 2.80 2.88 3.30 2.98 2.89 0 0.17 0.01 28.73 32.36 12.50

3 3.11 3.11 2.53 2.43 3.11 2.76 2.49 0 0.15 0.05 28.57 32.64 30.41

10

50
1 1.68 1.14 1.23 1.22 1.29 1.25 1.24 0.07 0.03 0.03 1.78 0.76 1.05
2 1.18 1.01 1.13 1.06 1.16 1.18 1.07 0.05 0.02 0.00 0.99 0.63 0.73
3 1.00 1.00 1.00 0.88 1.00 1.00 0.88 0 0 0 0.74 0.61 0.41

100
1 1.73 1.18 1.34 1.15 1.36 1.38 1.23 0.07 0.07 0.05 9.73 3.53 8.66
2 1.55 1.13 1.25 1.07 1.26 1.52 1.09 0.08 0.09 0.01 11.35 3.33 5.41
3 1.88 1.08 1.29 1.21 1.33 1.49 1.27 0.14 0.23 0.04 12.53 4.12 5.45

250
1 2.11 2.11 1.94 1.75 2.11 2.08 1.84 0 0.06 0.04 46.08 38.13 47.03
2 2.30 1.99 1.84 1.70 2.22 2.14 1.71 0.11 0.17 0.03 54.10 39.93 47.24
3 2.24 1.97 1.79 1.74 2.14 1.97 1.80 0.10 0.14 0.04 72.40 38.87 39.59

500 1 2.57 2.57 2.13 2.09 2.57 2.47 2.11 0 0.18 0.03 277.90 255.59 144.00

15

50
1 1.07 1.01 0.98 0.92 1.06 1.06 0.93 0.02 0.03 0.01 0.89 0.69 1.25
2 0.99 0.99 0.99 0.88 0.99 0.99 0.89 0 0 0.01 0.81 0.67 1.13
3 0.89 0.84 0.89 0.79 0.88 0.89 0.81 0.01 0 0.02 0.92 0.66 1.51

100
1 1.17 1.04 1.07 0.97 1.08 1.16 0.97 0.02 0.03 0 9.81 3.65 3.51

2 1.14 1.02 0.97 0.93 1.06 0.99 0.94 0.04 0.05 0.01 8.44 4.35 3.47

3 1.39 0.91 1.08 0.99 1.06 1.33 1.01 0.09 0.12 0.01 15.93 3.71 2.88

250
1 2.05 1.33 1.34 1.26 1.46 1.46 1.33 0.07 0.07 0.07 140.88 52.83 93.75
2 2.08 1.28 1.31 1.41 1.39 1.64 1.41 0.07 0.29 0.00 165.90 45.20 65.31
3 1.71 1.28 1.23 1.07 1.38 1.62 1.09 0.06 0.16 0.02 128.30 41.15 22.74

500 1 2.13 1.64 1.77 1.66 1.87 1.89 1.68 0.08 0.09 0.03 884.69 355.67 271.71

20
100 1 0.98 0.94 0.98 0.83 0.98 0.98 0.84 0.01 0 0.01 3.98 3.11 4.06
250 1 1.17 1.17 1.17 0.98 1.17 1.17 1.01 0 0 0.02 53.33 39.26 20.77

500 1 2.06 1.35 1.26 1.11 1.53 1.86 1.14 0.07 0.32 0.02 843.71 314.09 268.58

25
100 1 0.88 0.88 0.84 0.80 0.88 0.88 0.82 0 0.01 0.02 4.70 3.77 2.93

250 1 0.99 0.99 0.97 0.91 0.99 0.98 0.91 0 0.00 0.00 58.07 45.87 20.07

500 1 1.77 1.17 1.13 1.01 1.32 1.63 1.03 0.05 0.23 0.01 957.09 336.30 220.94

Table 1: Comparison of the experiment’s results obtained by different heuristics.
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It is seen in the table that in more than in a half of all cases VNS works
faster than other algorithms. But note that often, especially in small size cases,
the difference in running time is not so significant. Besides, in the overwhelming
majority of the cases, VNS constructs the best solution among all algorithms.
Therefore, in general, the superiority of VNS is obvious. In some cases, especially
when D is not too large, ACO yields the better solution than VNS and GLS.
But often, even when the best solution found by ACO outperforms the best
solution found by VNS, the average objective value of ACO remains inferior in
quality than that of VNS: for example, see the cases (D = 7, n = 100, nr = 1, 2)
and (D = 10, n = 100, nr = 3). Although GLS never appeared to be the best
among all algorithms, it is worth to say that it often significantly improves TCH

and builds solutions that are very close to those constructed by ACO and VNS,
in terms of the objective function. Moreover, in some cases GLS outperforms
one of the other algorithms: for example, see the values of Wbest in the cases
(D = 10, n = 250, nr = 2, 3), (D = 15, n = 250, nr = 2), and (D = 20, n = 500,
nr = 3), and see the values of Wav in the cases (D = 7, n = 100, nr = 3),
(D = 7, n = 250, nr = 2, 3), and (D = 10, n = 250, nr = 2, 3).

In some cases, both algorithms ACO and GLS failed to improve the initial
solution TCH . This fact can be explained in the following way. These heuristics
don’t apply local search procedure directly to the initial solution, but they im-
prove the derivative results of the initial solutions: mutated offspring or decoded
ant path. Most probably, when solution space is rather large, there exists a risk
that these two algorithms will explore only the solutions that are worse than
initial solution, which may not lead to its improvement. It would be helpful to
look into these cases deeper and to analyse the behaviour of the algorithms on
them. Anyway, we believe that both algorithms ACO and GLS have a potential
to be improved. It is also worth to say that in some cases the initial solution
was significantly improved. For example, see the case (D = 20, n = 500, nr
= 1), where the initial solution was improved almost twice. In particular, this
gives us the following negative result regarding the constructive heuristics from
[18]: none of them provides an approximation with a guaranteed factor less than
2.06/1.11 ≈ 1.856.

As an illustration, we also present in Fig. 1 the best solutions that were
obtained by different algorithms on the same instance when D = 20, n = 500.
We chose this case, because of the big gap between the constructive heuristics
and the metaheuristics results, that was discussed in the previous paragraph.
For the convenience, the edges that remote from a center by an equal distance
(i.e., hops count) are colored in the same color. This helps to easily verify that
each tree is feasible, since the hops bound is never violated. Since the diameter
bound is even in this case, there is the only center in all trees. In this case MPIR
constructed the best solution among all constructive heuristics from [18]. The
difference between the tree constructed by MPIR, and the new metaheuristic
algorithms, is seen. In the solution obtained by the constructive heuristic MPIR,
a part of a tree that lies far away from the center has a star-like structure, which
is not desirable, because in this case a lot of rather long edges are connected
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with ”star centers” (i.e., the vertices with high degree). Note that the trees
constructed by VNS, GLS, and ACO, have no such star-like parts: the longer
edges at the backbone allow to get rid of the need for the vertices with high
degree.
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(a) MPIR. W (T ) = 2.06
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(d) ACO. W (T ) = 1.35

Fig. 1: Best algorithms results on the same instance. D = 20, n = 500
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5 Conclusion

In this paper, we considered the NP-hard Min-Power Bounded-Hops Symmetric
Connectivity Problem. For its approximation solution, we proposed three differ-
ent heuristic algorithms that are based on such known metaheuristics as variable
neighborhood search, ant colony optimization, and genetic local search. To the
best of our knowledge, this is the first application of such kind of heuristics to
this problem. We implemented all the proposed algorithms and conducted the
numerical experiment on different test instances that were generated on the data
sets taken from the Beasley’s OR-Library. The simulation showed that, in gen-
eral, our methods allow to significantly improve the solution built by the best
known polynomial constructive heuristics. In most cases, VNS based heuristic
appeared to be more efficient than other methods both in terms of objective
function and running time.
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