Skip to main content

Optimization of Generalized Halton Sequences by Differential Evolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11968))

Abstract

Many practical applications such as multidimensional integration and quasi–Monte Carlo simulations rely on a uniform sampling of high–dimensional spaces. Halton sequences are d–dimensional quasirandom sequences that fill the d–dimensional hyperspace uniformly and can be generated with low computational costs. Generalized (scrambled) Halton sequences improve the properties of plain Halton sequences in higher dimensions by digit scrambling. Discrete nature–inspired optimization methods have been used to search for scrambling permutations of d–dimensional generalized Halton sequences that minimized the discrepancy of the generated point sets in the past. In this work, a continuous nature–inspired optimization method, the differential evolution, is used to optimize generalized Halton sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994). https://doi.org/10.1287/ijoc.6.2.154

    Article  MATH  Google Scholar 

  2. Chi, H., Mascagni, M., Warnock, T.: On the optimal Halton sequence. Math. Comput. Simul. 70(1), 9–21 (2005). https://doi.org/10.1016/j.matcom.2005.03.004

    Article  MathSciNet  MATH  Google Scholar 

  3. De Rainville, F.M., Gagné, C., Teytaud, O., Laurendeau, D.: Optimizing low-discrepancy sequences with an evolutionary algorithm. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009, pp. 1491–1498. ACM, New York (2009). https://doi.org/10.1145/1569901.1570101

  4. De Rainville, F.M., Gagné, C., Teytaud, O., Laurendeau, D.: Evolutionary optimization of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 22(2), 9:1–9:25 (2012). https://doi.org/10.1145/2133390.2133393

    Article  MathSciNet  MATH  Google Scholar 

  5. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi–Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  6. Doerr, C., De Rainville, F.M.: Constructing low star discrepancy point sets with genetic algorithms. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 789–796. ACM, New York (2013). https://doi.org/10.1145/2463372.2463469

  7. Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. LNM, vol. 1651. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0093404

    Book  MATH  Google Scholar 

  8. Engelbrecht, A.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  9. Faure, H., Lemieux, C.: Generalized Halton sequences in 2008: a comparative study. ACM Trans. Model. Comput. Simul. 19(4), 15:1–15:31 (2009). https://doi.org/10.1145/1596519.1596520

    Article  MATH  Google Scholar 

  10. Krömer, P., Platoš, J., Nowaková, J., Snášel, V.: Optimal column subset selection for image classification by genetic algorithms. Ann. Oper. Res. 265(2), 205–222 (2018). https://doi.org/10.1007/s10479-016-2331-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Krömer, P., Platos, J., Snásel, V.: Traditional and self-adaptive differential evolution for the p-median problem. In: 2nd IEEE International Conference on Cybernetics, CYBCONF 2015, Gdynia, Poland, 24–26 June 2015, pp. 299–304 (2015). https://doi.org/10.1109/CYBConf.2015.7175950

  12. Li, X., Yin, M.: An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure. Adv. Eng. Softw. 55, 10–31 (2013). https://doi.org/10.1016/j.advengsoft.2012.09.003

    Article  Google Scholar 

  13. Ponsich, A., Tapia, M.G.C., Coello, C.A.C.: Solving permutation problems with differential evolution: an application to the jobshop scheduling problem. In: 2009 Ninth International Conference on Intelligent Systems Design and Applications, pp. 25–30, November 2009. https://doi.org/10.1109/ISDA.2009.49

  14. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. NCS. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  15. Qian, B., Wang, L., Hu, R., Wang, W.L., Huang, D.X., Wang, X.: A hybrid differential evolution method for permutation flow-shop scheduling. Int. J. Adv. Manuf. Technol. 38(7), 757–777 (2008). https://doi.org/10.1007/s00170-007-1115-8

    Article  Google Scholar 

  16. Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper. Res. 174(1), 38–53 (2006)

    Article  MathSciNet  Google Scholar 

  17. Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G.: A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. Eur. J. Oper. Res. 177(3), 1930–1947 (2007). https://doi.org/10.1016/j.ejor.2005.12.024

    Article  MATH  Google Scholar 

  18. Vandewoestyne, B., Cools, R.: Good permutations for deterministic scrambled Halton sequences in terms of l2-discrepancy. J. Comput. Appl. Math. 189(1), 341–361 (2006). https://doi.org/10.1016/j.cam.2005.05.022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported from ERDF in project “A Research Platform focused on Industry 4.0 and Robotics in Ostrava”, reg. no. CZ.02.1.01/0.0/0.0/17_049/ 0008425, by the Technology Agency of the Czech Republic in the frame of the project no. TN01000024 “National Competence Center – Cybernetics and Artificial Intelligence”, and by the projects SP2019/135 and SP2019/141 of the Student Grant System, VSB – Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Krömer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krömer, P., Platoš, J., Snášel, V. (2020). Optimization of Generalized Halton Sequences by Differential Evolution. In: Matsatsinis, N., Marinakis, Y., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2019. Lecture Notes in Computer Science(), vol 11968. Springer, Cham. https://doi.org/10.1007/978-3-030-38629-0_30

Download citation

Publish with us

Policies and ethics