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Abstract

The optimization of massively multi-modal functions is a challenging
task, particularly for problems where the search space can lead the op-
timization process to local optima. While evolutionary algorithms have
been extensively investigated for these optimization problems, Bayesian
Optimization algorithms have not been explored to the same extent. In
this paper, we study the behavior of Bayesian Optimization as part of a
hybrid approach for solving several massively multi-modal functions. We
use well-known benchmarks and metrics to evaluate how different variants
of Bayesian Optimization deal with multi-modality.

Keywords— Bayesian Optimization, Multi-modal Optimization, Gaus-
sian Processes

1 Introduction

Massively multi-modal functions are characterized by having many optimal so-
lutions, where some of them are local and some others are global. There may
be numerous or no local optima, and only one global optimum or many global
optima. Global optimization of this kind of functions is a difficult task since
the optimization algorithm may get trapped in local optima, and due to their
complexity, a high number of evaluations is expected. In addition, apart from
finding the global optimum, a good covering of all the best solutions is required
in many real-world problems [24].

This kind of functions have been extensively studied in Evolutionary Al-
gorithms (EAs) [15]. Traditional methods to obtain a good optima covering
in EAs include niching strategies [4, 15, 19]. In standard Genetic Algorithms
(GAs), where the crossover operator produces an exploitation oriented behavior,
niching methods try to reduce this effect by allowing further exploration.



On the other hand, model-based optimization algorithms take advantage
of identifying the landscape of the problem to improve the search. They use
all the information gathered from sampling the objective function by means
of a Surrogate Model (SM). This type of algorithms have been successfully
applied to low-budget optimization tasks [8, 26]. One of the most successful
model-based optimization methods is Bayesian Optimization (BO) [1, 11]. BO
is a sequential optimization algorithm, where the sampling strategy is based
on a probability distribution over all the possible objective functions. This
probability distribution acts as a SM, and it is updated every time a solution
is evaluated using the actual objective function.

Some of the work done in BO is closely related to the niching strategies
proposed for EAs. There are some variants of BO algorithms that use sampling
strategies that propose a batch of solutions to perform several evaluations at the
same time [3]. Among them, the Bayesian Optimization via Local Penalization
algorithm proposed in [5] avoids the concentration of samples, similar to sharing
[4] and clearing [12] niching strategies investigated in EA literature. On the
other hand, the clustering BO approaches [6, 23], where the data is divided into
clusters to reduce the complexity of the models, could benefit the discovery of
new optima, resembling the clustering [25] techniques proposed for EA. Beyond
the mentioned EC and BO approaches, methods that divide the search space
have also been proposed in other fields [7, 9].

In this paper, we face massively multi-modal problems bridging the work
done in EA and BO literatures. We present preliminary results in this direction,
proposing three algorithms that take BO beyond low-budget optimization: 1)
Sequential BO with modeling of local optima. 2) Adaptive BO with clustering.
3) BO with batch sampling strategies. Furthermore, we evaluate their behavior
using the benchmark presented in [10], and compare our results with those
achieved by state-of-the-art algorithms in Evolutionary Computation (EC).

Our research aims to address a number of general questions that are sig-
nificant for massively multi-modal problems. Among these questions are: Is it
possible to get a good covering of multiple optima using a low-budget of func-
tion evaluations? Are model-based approaches, specifically BO, an efficient way
to obtain a good coverage? Can we take advantage of the work done in EC to
design more efficient BO techniques to improve the coverage?

The remainder of the paper is structured as follows: In Section 2, a brief in-
troduction to BO and batch methods is presented. A reduced number of works
significantly related to our approach are revised in Section 3. In Section 4, the
different BO variants proposed in this paper are introduced. Section 5 presents
the experimental benchmark and the numerical results of the experiments. Fi-
nally, Section 6 presents the conclusions of the paper.

2 Brief introduction to Bayesian Optimization

BO [11] is a state-of-the-art global optimization technique suitable for low-
budget optimization problems. In BO, the samples of the objective function



are sequentially taken based on a sampling strategy. This next sample will be
selected by optimizing an acquisition function (u(-)) that provides a measure
of the utility of each solution. A probability distribution over all the possible
objective functions is used to determine this acquisition function, acting as a
SM. As the analytic form of the objective function is generally unknown, BO
treats the objective function like a random function, and places a prior belief
about the space of possible objective functions. Every time the objective func-
tion is evaluated, this prior belief is updated with the likelihood of having those
observations, generating a posterior distribution over functions.
Algorithm 1 illustrates the whole process of the BO algorithm [1].

Algorithm 1 BO algorithm

1: procedure BAYESIAN-OPTIMIZATION

2 y1 = f(x1) > Sample and evaluate a random point
3 Dy ={(x1,11)} > Initialize the dataset
4 SM < Dq.q > Initialize the SM
5: t=2

6 repeat

7 X = arg maxycpe u(x|SM) > Select the next point to evaluate
8 ye = f(xt) > Evaluate the objective function
9: D1t = Dyg—1 U{(xt,41)} > Update the dataset
10: SM <+ Di.4 > Update the SM
11: t=t+1

12: until the stopping criterion is met

13: end procedure

The optimization process begins by sampling a point randomly, and evalu-
ating it using the objective function. Typically, the SM is initialized at this
point. Then, until the stopping criterion is met, the next point to evaluate is
selected and evaluated, augmenting the dataset and updating the SM. At each
step, except the first one, the point that maximizes the acquisition function is
selected to be sampled.

2.1 (Gaussian Processes

SMs are a key element in Algorithm 1, as the acquisition function will rely on
them to select the next point. One of the most popular choices in BO is to use
a GP as SM. A GP is a stochastic process, defined by a collection of random
variables, any finite number of which has a multivariate Gaussian distribution
[17]. What makes GPs interesting for BO is that the posterior distribution of a
GP given some observations of the objective function is also a GP.

GPs can be completely defined by a mean function (m(x)) and a covariance
function, which depends on a kernel (k(x,x’)). Given that, the GP can be
expressed as follows:

f(@) ~ GP(m(x), k(x,x')) (1)



Usually, a non-informative mean function is used, such as m(x) = 0. How-
ever, in more sophisticated approaches, this function will depend on the data.

The kernel establishes the covariance between the objective function values
of two different points. Although many kernels have been proposed in the
literature, we use the Matern32 kernel, due to the performance shown in previous
studies [18]. This kernel is expressed as follows:

Enrza(x,x') = 62 (1 +V3 ri)x,) exp (7\/5‘ /wa,) +0,
ng rg— 1 2 (2)
where 72(x,x') = Z <d>

0
d=1 d

where 04, 6y and 6,, are the length-scale, amplitude and noise parameters re-
spectively. While the length-scale parameter expresses the relevance of each
dimension d, the amplitude parameter scales all dimensions. The noise param-
eter allows the GP to adapt the random function when the observations of the
objective function are noisy.

2.2 Acquisition function

Once we have a way to approximate the value of the objective function through
the SM, the acquisition function is placed to select the next point. It assigns
a measure of utility for each point in the search space given the SM. This
measure of utility balances the exploration versus exploitation trade-off.

In this paper we use GP-UCB [22] as acquisition function. This upper-
confidence based algorithm is a combined strategy that balances the reduction
of the uncertainty over the objective function with maximizing the expected
reward:

GP —UCB(x) = u(x) + /B 0(x) (3)

where (3; is a constant specified depending on the context.

In the previous equation p(x) and o(x) represent the expected value for the
objective function at point x and its variance. At step t + 1, these values are
given by the following equations:

p(x) = m(x) + k(X1 %)k (X1, X1:0) 7 f (X1:)

02(x) = k(%,%) — k(X 1., X)k(X1.p, X120) ™ (%, X12) @

where k(Xi.,x) and k(x, X;.;) are vectors with the value of the kernel function
between x and all the previously evaluated solutions. k(X;.¢, X1.¢) is the matrix
of the kernel values between all the pairs of the previously evaluated solutions.

3 Related work

Our research is closely related to previous work in a number of areas. In EAs,
research on multi-modal problems have been addressed mainly using niching



methods [19, 21]. However, most of these methods do not explicitly construct
a model to guide the search. Among model based methods, some of the BO
strategies can resemble the work done in EAs. Although they were not specif-
ically designed to solve multi-modal problems, these BO methods can benefit
from using a model.

In batch BO sampling strategies, instead of proposing one solution at each
iteration, B solutions are simultaneously evaluated. Among these approaches,
the Batch Bayesian Optimization via Local Penalization approach [5] tries to
avoid the surrounding area of the already selected points applying a penalization
to the utility of these selected solutions. This property can prevent the algorithm
from getting stuck on local optima.

The clustering BO approaches [6, 23] try to the reduce the complexity of
the model by dividing the data in several clusters and using several models to
create the acquisition function. Our intuition is that BO could take advantage
of dividing the data into niches to encourage exploration.

Sharing [4] is one of the first attempts in niching methods. It consists in
modifying the fitness value of each individual. When several individuals are
occupying a niche, their fitness value is shared. Two individuals belong to the
same niche when they are closer than a niche radius. The computational cost
and the difficulty to set a good niche radius are the main downsides of this
method. Besides, in clearing techniques [12], the neighboring solutions of the
k best ones are ”cleared”, i.e., their fitness value is set to zero. Although it is
closely related to sharing, it reduces the computational cost by only measuring
the distances between the best solutions and the rest. On the contrary, it
requires one extra parameter to adjust.

Other niching techniques use a clustering algorithm to divide the population
into niches [25]. The fitness of each individual depends on the number of solu-
tions in the niche and the distance to their centroids. This approach also reduces
the distance computations required in sharing and encourages the individuals
to leave the niche and explore new regions.

In research conducted on multi-modal functions in EAs, some of the state
of art results are reported for Niching Evolutionary Algorithm 2 (NEA2) [14]
and Niching migratory multi-swarm optimizer (NMMSO) [2]. NEA2 is a com-
bination of clustering and local optimization techniques. Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) is used to find the local optima while
Nearest-better Clustering allows a good covering of the optima. On the other
hand, NMMSO uses concurrent swarms. Each swarm exploits its local mode
and the algorithm splits or mergers swarms depending on characteristics of the
optimization problem. While NEA2 incorporates a covariance matrix model as
part of CMA-ES, these two algorithms do not learn a SM in order to predict
the fitness value of a solution as BO does.



4 Dealing with multi-modal problems with BO
optimization

In the multi-modal optimization problems we address in this work, the number
of evaluations that might be needed to cover the different optima is much higher
than in low-budget optimization problems. Being BO an optimization technique
well suited for low-budget optimization problems, devising efficient ways to learn
a GP model with a large dataset is not straightforward. The reason is that the
covariance matrix grows according to the number of evaluations. The inverse or
the Cholesky decomposition of this matrix is required to compute the posterior
distribution, and this computational cost may be prohibitive for massively multi-
modal problems if the usual approach were used to learn the model.

In BO literature, some variants that attempt to reduce the computational
cost of computing a model when the number of points is high have been pro-
posed. These variants use various mechanisms, such as, “forgetting” older or
less informative points, to handle a large number of points. Works that pro-
pose sparse GP approaches include the Subset of Data (SoD) approximations
[16] and the Subset of Regressors (SoR) [20]. These methods have their own
drawbacks, e.g., SoR is a very sophisticated and complex approach, that make
them not directly applicable to the type of multi-modal problems we address.
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Figure 1: BO approaches. The objective function is represented with a contour
plot. Each figure describes the behavior of the proposed algorithms in a certain
step. The yellow and red surface and contour plot refer to the acquisition
function. The current step is represented with a triangle and a circle, where the
circle represents the solution selected by the model, and the triangle represents
the result of the local search starting from the selected solution. Previous steps
are faded. Note that in batch_ls several solutions are selected and they are not
faded. Finally, in the last figure, the centroids of the clusters are represented
with big purple starts.

Our proposal consists of combining BO with local search techniques. This
way we can take full profit of the budget of available evaluations and guarantee
that those solutions modeled by the covariance matrix are of better quality.
In spite of including the local search, still a large dataset is needed to model
the landscape of the objective function. Thus, we propose the following three
algorithms that are able to deal with these datasets: The first algorithm is
inspired in the SoD approach. The second algorithm avoids the unmanageable



growth of the covariance matrix by splitting the current set of solutions into
different clusters. Finally, the third method we propose is similar to the first
but it is conceived for situations where the parallel evaluation of several points
is desired. Their behavior is illustrated in Figure 1.

4.1 Sequential BO with modeling of local optima

In this approach, the “forgetting” SoD approach is combined with a local search
algorithm (see Algorithm 2). Two major changes have been applied compared to
Algorithm 1. First of all, a local search algorithm is used to exploit each solution
proposed by the BO. Then, the SM is updated with the point suggested by the
BO and the best solution achieved by the local search, provided that the local
search is able to improve the solution proposed by the BO. The second major
change is that the size of the dataset has been limited. When the dataset
outsizes the maximum number of points (N), the oldest point is discarded, i.e.
the most recently proposed points are those used for modeling. This approach
might be the simplest solution when dealing with sparse GP models, but also
is the computationally cheapest.

Algorithm 2 Sequential BO with modeling of local optima

1. procedure BO-LS(N)

2 y1 = f(x1)

3 D1 ={(x1,51)}

4 SM + D4

5: t =2

6 repeat

7 Xpo = argmaxycrae u(x|SM)

8 Yvbo = f(Xbo)

9: (X155 Y1s) = 1s(f,Xpo) > Run the local search
10: Dl:tJrl = Dl:tfl ) {(xbm ybo>} U {(Xls; yls)}

11: SM < Di_N_1.t+1 > “Forget” old data
12: t=1t+2

13: until the stopping criterion is met

14: end procedure

4.2 Adaptive BO with clustering

Our second approach is based on the previous one, but it aims to take more
advantage of the knowledge acquired during the optimization process. Inspired
in clustering niching techniques and the work done in [6] and [23], this approach
divides the dataset into several subsets using clustering techniques. This way,
to obtain the conditional distribution of the GP given some solution, only the
closest solutions will be taken into account, reducing the size of the covariance
matrix. It can be seen as a single SM that is composed by several GPs, each
one with an exclusive subset of the dataset.



This algorithm differs from Algorithm 2 in the way the SM is updated and
evaluated. Initially, only one subset of the dataset is used, and the posterior of
the GP is calculated in the original manner. Every time a data point is sampled,
it is added to the closest cluster. As can be seen in Algorithm 3, this updating
process consists on updating the centroid and the GPs. When the maximum
size of a cluster is reached, the dataset is split into two subsets using a clustering
technique, and their centroids are calculated. Two new GPs are generated and
updated, one for each subset, and the old cluster is removed. Note that this
sparse GP technique can be incrementally applied in the BO process, as only
one GP is updated at each step.

Algorithm 3 Update ClusterSM

1: procedure UPDATE-CLUSTERS(X¢, 41, {c}, {D},{SM?})
2 Cclosest Dclosesta SMclosest = ClOSBSt(Xl, {C})

3 Diiosest = Deiosest U {(Xt7 yt)}

4 if size(Dgposest) < N then

5: Cclosest = CentrOid(Dclosest)

6 SMclosest — Dclosest

7 else

8 {D}E | = split_dataset(Deiosest, K)

9: for k =1to K do

10: ¢ = centroid(Dy)

11: SMy, < Dy

12: end for

3 o} = {} +{eH ) — {Cuent)

14: {D} = {D} + {Dk}le - {Dclosest}

15: {SM} = {SM} + {SMk}le - {SMclosest}
16: end if

17: end procedure

To evaluate the posterior distribution of this system given a certain solution,
the distance to each centroid must be calculated. The SM associated to the
closest data-subset is used to predict the outcome of the fitness.

4.3 BO with batch sampling strategies

In order to expand the scope of the analysis of BO techniques for multi-modal
problems, we also propose a modified version of Batch BO via Local Penalization
[5]. This technique iteratively selects a batch of solutions by optimizing an
acquisition function that penalizes the previous selections in the batch. Similar
to the work that has been done in EAs to avoid the exploitation oriented nature
of the selection operator, this penalization step might be suitable for multi-
modal optimization problems, when parallel evaluations can be implemented.
The algorithm works as follows: First, a solution is selected according to a
traditional acquisition function (we use UCB in this paper as suggested by the



results of the original work). Then, according to Algorithm 4, a batch of solu-
tions is obtained iteratively, selecting a solution and penalizing the acquisition
function according to this selection.

Algorithm 4 Batch Selection via Local Penalization
1: procedure SELECT-BATCH-LP(t, K, SM)

2 Ut,0(x) = u(x|SM)

3 M = min;{y;}

4 L= MaZycpe||pa (X)|] > Approximate L.
5: for k=0 to K do
6:
7

8
9:

Xy, = arg MaXyerd U i (X)
~ ~ k A ~
Uk (x) = t,0(x) [Tj—; (%, %45, L, M)
end for
end procedure

To adapt the acquisition function, a penalization ball is applied for each
solution already selected for the batch, as can be seen in Equation 5.

(06,5, L, M) = erfe(~2) where = = (Ll —xI|+ M~ a(x;)) ()

1
V207 (x;)
where erfc is the complementary Gauss error function and L is the Lipschitz
constant of the objective function (assuming that it is Lipschitz continuous).
As suggested in [5], it can be approximated through the GP.

Finally, as in the first approach, it uses the SoD approach. In addition, we
add the local search step to guarantee exploitation, where all the solutions in
the batch are used as a starting point for the local search.

5 Experiments

The goal of this experimentation is to validate the BO approaches introduced
in the previous section in the context of multi-modal optimization problems.
We expect that BO will be able to model multi-modal landscapes and that
will help to achieve a good covering of the optima. Moreover, the low-budget
orientation of those algorithms may also help to achieve these goal with a limited
number of function evaluations. The proposed clustering technique is supposed
to have a better ability to model the landscape than the sequential one, and
the batch approach may provide more diversity in the solutions due to the local
penalization procedure. Although our main goal is investigate the benefits and
limitations of the BO approaches, we will compare them to some of the best
performing EAs since this is an area where highly multi-modal problems have
been extensively investigated.



5.1 A framework for solving low-budget multi-modal op-
timization problems

To test our proposals, we will use the benchmark proposed in CEC Niching
Methods for Multi-modal Optimization competition [10], where 20 multi-modal
optimization problems were introduced, along with 3 performance metrics. Ta-
ble 1 describes the benchmark.

[ Id [ Dim. [ # GO | Name | Characteristics

3 1 2 Five-Uneven-Peak Trap | Simple, deceptive

Fy 1 5 Equal Maxima Simple

F3 1 1 Uneven Maxima Simple

Fy 2 4 Himmelblau Simple, non-scalable, non-
symmetric

F5 2 2 Six-Hump Camel Back | Simple, non-scalable, non-
symmetric

Fs 2,3 18,81 Shubert Scalable, # optima increase with d,
unevenly dist. grouped optima

Fy 2,3 36,216 Vincent Scalable, # optima increase with d,
unevenly dist. optima

Fy 2 12 Modified Rastrigin Scalable, # optima independent
from d, symmetric

Fy 2 6 Composition Function 1 | Scalable, separable, non-
symmetric.

iy 2 8 Composition Function 2 | Scalable, separable, non-
symmetric.

Fi1 ] 2,3,5,10 6 Composition Function 3 | Scalable, non-separable, non-
symmetr.

Fis | 2,3,5,10 8 Composition Function 4 | Scalable, non-separable, non-
symmetr.

Table 1: Set of multi-modal functions as originally introduced in [10].

To measure the performance of the optimization algorithms three perfor-
mance metrics were introduced: Peak Ratio, Success Ratio, and Convergence
speed.

e Peak Ratio (Prqti0) measures how many optima has been found over mul-
Ny
. . 1 Mg . . .
tiple runs in average: Prqti0 = E,Z*flng where 4 is the run index and ny,
g T ’

is the number of global optima found at the end of process in each run.
ng refers to the number of known global optima, and n, to the number of
runs.

Success Ratio (Syqti0) denotes the percentage of runs where all known
global optima were found, out of all runs: S,qt,0 = ’;L where ng, is the
number of successful runs.
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e Convergence speed (Cspeeq) measures the number of function evaluations

required to locate all known global optima, over multiple runs: Cspeeq =

ny
ey . . .
% where e; is the number of evaluations used in each run to find all

globral optima. If all global optima is not found, the maximum function
evaluations allowed is used.

To consider that a global optimum is found, the fitness value of the solution
should be close to the best possible value, given an accuracy level. Five accuracy
levels were considered to measure the performance metrics, as indicated in the
benchmark: e € {1071,1072,1073,107%,107°}. Apart from that, the distance
between the solution and the optimum should be lower than a threshold that
depends on the optimization problem.

5.2 Experimental setup

We have conducted the experiments with the BO approaches introduced in
Section 4 for all the functions in the benchmark and measured the performance
metrics. Considering the stochastic nature of the algorithms, we conducted
several runs of each algorithm configuration for each optimization problem. We
were only able to perform 10 runs with our BO algorithms, while the EAs shown
in the benchmark are averaged across 50 runs. All the results presented in this
section have been measured with € = 1073 as accuracy level.

For all the BO approaches we have used the following configuration. First
of all, regarding GPs, the mean function was set to m(x) = 6, where 6, is
the mean of all fitness values obtained so far. On the other hand, for the
kernel function, the Matern32 was employed, and for its parameter selection,
the likelihood function was optimized every step with a grid search. Moreover,
to limit the size of the covariance matrix, N was set to 500. UCB was used as
the acquisition function adjusting the 5 constant as suggested in [22]. Finally,
to maximize this acquisition function, a stochastic version of DIRECT [7] was
applied. Being DIRECT a deterministic algorithm, repeated solutions may be
selected to sample. In consequence, we decided to add a random shift to the
starting point, in order to produce stochastic solutions.

On the other hand, for the batch approach B was set to 10, and in the
clustering BO algorithm, k-means was used to create the clusters with K = 2.

We used a bounded version of the Powell’s conjugate direction method [13] to
guide the local search. This algorithm does not need derivatives, which makes
it suitable for our optimization problem. When an out-of-bounds solution is
required by this algorithm, the worst possible value is returned.

In addition to the three variants of BO investigated, a random multi-start
optimization algorithm has been added as a reference. It also uses Powell’s
method as the local search algorithm, starting from a random solution at each
iteration.

11



5.3 Comparison between the different BO variants

Figure 2 shows the evolution of the peak ratio over function evaluations. In
the figure, for illustration proposes, some functions with different number of
dimensions are shown. In the lower axis, the number of evaluations are shown
in percentage, while the P4, is illustrated in the vertical axis.
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Figure 2: Evolution of the peak ratio over function evaluations (%) for the
proposed algorithms and the random multi-start algorithm in five optimization
problems.

As can be seen in Figure 2a, there are some functions in the benchmark
were all the optima are found in the first 10% of the evaluations for all BO
approaches. In Figure 2b, for example, it takes a little bit longer to achieve the
best possible result, but the algorithms are able to solve this problem with a
low-budget. On the contrary, in Figure2c, all the approaches find always the
same optima but are not able to find more difficult ones in the second part of
the optimization.

Figure 2d and Figure 2e correspond to Fis function, with 3 and 10 dimen-
sions respectively. Here, it can be seen that the performance of all methods
decreases in the higher dimensional problems. In this problem, bo_ls performs
better than the other BO approaches. Regarding the Cypecq, cluster_bo takes
more evaluations to find all global optima in Fg 2D.

5.4 Comparison to state-of-the-art EAs for multi-modal
problems

Here we compare BO approaches to NEA2 [14] and NMMSO [2] algorithms.
Both algorithms won the CEC Niching Methods for Multi-modal Optimization
competition [10] in 2013 and 2015 respectively.

Table 2 shows the peak-ratio of both algorithms, taken from the CEC 2015
competition, along with the peak-ratios computed from the results of all the
algorithms we evaluate in our experimentation. The first five functions were
omitted as all approaches were able to obtain the best possible score.

The sequential and the batch BO methods show competitive results in low
dimensional functions compared to NEA2 and NMMSO. Our methods improve

12



’ ‘ NEA2 ‘ NMMSO ‘ random_ls ‘ bo_ls ‘ batch_Is ‘ cluster_bo ‘

Fs 2D 0.958 0.992 1.000 1.000 | 1.000 1.000
F; 2D 0.918 1.000 0.889 0.864 0.892 0.917
Fs 3D 0.240 0.922 0.985 0.973 0.989 -

F7 3D 0.584 0.978 0.571 0.782 0.722 -

Fs 2D | 1.000 1.000 1.000 1.000 | 1.000 1.000
Fy 2D 0.967 0.990 1.000 1.000 | 1.000 1.000
Fip2D | 0.843 0.995 1.000 1.000 | 1.000 1.000
Fy; 2D | 0.960 0.983 0.684 0.767 0.684 0.684
£y, 3D | 0.810 0.723 0.667 0.667 0.667 0.667
F5 3D | 0.720 0.642 0.662 0.713 0.662 0.569
£y, 5D | 0.673 0.660 0.667 0.667 0.667 0.667
F5 5D | 0.695 0.470 0.412 0.375 0.425 0.338
Fy; 10D | 0.667 0.650 0.367 0.333 0.400 0.433
Fy5 10D | 0.667 0.457 0.050 0.138 0.037 0.138
Fy5 20D | 0.360 0.172 0.000 0.000 0.000 0.000

Table 2: Peak Ratio for the EAs, the random multi-start algorithm and the
proposed algorithms for the functions presented in the benchmark. Best result
for each function is written in bold. As all the algorithms get the best possible
results in the first five functions their results are not shown. € = 1073 was used
as accuracy level. cluster_bo was not able to finish the experimentation on time
for the Fg 3D and F7 3D problems.
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the results of NEA2 and NMMSO for Fg 2D, Fg 3D, Fy 2D and Fig 2D func-
tions. However, for these functions, the random multi-start algorithm achieves
similarly good performance. Although the results of the sequential approach
are similar to the random multi-start algorithm overall, the batch BO method
is able to beat the random algorithm in 5 functions while the opposite occurs
only once. The comparison among the BO approaches is favorable to the batch
approach, beating the other proposed approaches in Fis 5D function, and ob-
taining the best result in Fg 3D overall. The cluster BO approach is able to
get good results in F7 2D and Fjp 11D, but most of the comparisons are favor-
able to the other approaches. In functions with more dimensions, NEA2 clearly
outperforms the rest of the algorithms.

5.5 Discussion

Among our BO approaches, bo_ls and batch_ls seem to be the most competitive
proposals. They show good results for the lowest dimension (2D) problems,
beating in some functions the state-of-the-art algorithms. However, for higher
dimensions, particularly in Fj; and Fjo, their performance decreases. Having
only one hyperparameter for all dimensions instead of many, may cause this
dimensionality problem. It would be interesting to study in depth the charac-
teristics of such parameters.

It is somehow surprising the good behavior of the baseline random multi-
start approach, being able to identify all the optima in four problems, and
outperforming the best algorithms. Being such low dimension, one could think
that the function is easy to solve, but this is not the case (looking at NEA2 and
NMMSO).

6 Conclusions

In this paper we have investigated the suitability of BO methods for massively
multi-modal optimization problems traditionally addressed with EAs. We have
proposed three new approaches to deal with these problems. These approaches
incorporate ideas and insights of the previous work done in the EC filed. Al-
though BO is usually used in low-budget optimization problems, we were able
to achieve competitive results in optimization problems with low dimensions by
modeling the search space.
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