Skip to main content

UltraComm: High-Speed and Inaudible Acoustic Communication

  • Conference paper
  • First Online:
Quality, Reliability, Security and Robustness in Heterogeneous Systems (QShine 2019)

Abstract

Acoustic communication has become a research focus without requiring extra hardware on the receiver side and facilitates numerous near-field applications such as mobile payment, data sharing. To communicate, existing researches either use audible frequency band or inaudible one. The former gains a high throughput but endures being audible, which can be annoying to users. The latter, although inaudible, falls short in throughput due to the limited available (near) ultrasonic bandwidth (18–22 kHz). In this paper, we achieve both high speed and inaudibility for acoustic communication by modulating the coded acoustic signal (0–20 kHz) on ultrasonic carrier. By utilizing the nonlinearity effect on microphone, the modulated audible acoustic signal can be demodulated and then decoded. We design and implement UltraComm, an inaudible acoustic communication system with OFDM scheme based on the characteristics of the nonlinear speaker-to-microphone channel. We evaluate UltraComm on different mobile devices and achieve throughput as high as 16.24 kbps, meanwhile, keep inaudibility.

W. Xu—Supported by National Key R&D Program of China (2018YFB0904900, 2018YFB0904904).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dog Park Software Ltd.: iSpectrum - Macintosh Audio Spectrum Analyze. Accessed May 2017

    Google Scholar 

  2. MarketsandMarkets. https://www.marketsandmarkets.com/Market-Reports/digital-signage-market-513.html. Accessed May 2019

  3. Novak, E., Tang, Z., Li, Q.: Ultrasound proximity networking on smart mobile devices for IoT applications. IEEE Internet Things J. 6(1), 399–409 (2018)

    Article  Google Scholar 

  4. Tseng, W.-K.: A directional audible sound system using ultrasonic transducers. Int. J. Adv. Res. Artif. Intell. 4(9) (2015)

    Google Scholar 

  5. Yan, C., Zhang, G., Ji, X., et al.: The feasibility of injecting inaudible voice commands to voice assistants. IEEE Trans. Dependable Secure Comput. (2019)

    Google Scholar 

  6. Nonlinear Acoustics. Academic Press, San Diego (1998)

    Google Scholar 

  7. Zhang, G., Yan, C., Ji, X., et al.: DolphinAttack: inaudible voice commands. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 103–117. ACM (2017)

    Google Scholar 

  8. N5172B EXG X-Series RF Vector Signal Generator, 9 kHz to 6 GHz. http://www.keysight.com/en/pdx-x201910-pn-N5172B. Accessed May 2017

  9. Ultrasonic Dynamic Speaker Vifa. http://www.avisoft.com/usg/vifa.htm. Accessed 5 May 2017

  10. Lazik, P., Rowe, A.: Indoor pseudo-ranging of mobile devices using ultrasonic chirps. In: Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, pp. 99–112. ACM (2012)

    Google Scholar 

  11. Cobham: Intermodulation Distortion. http://aeroflex.com/. Accessed 3 Oct 2018

  12. Liang, C.P., Jong, J., Stark, W.E., et al.: Nonlinear amplifier effects in communications systems. IEEE Trans. Microw. Theory Tech. 47(8), 1461–1466 (1999)

    Article  Google Scholar 

  13. Ohno, S., Manasseh, E., Nakamoto, M.: Preamble and pilot symbol design for channel estimation in OFDM systems with null subcarriers. EURASIP J. Wirel. Commun. Netw. 2011(1), 2 (2011)

    Article  Google Scholar 

  14. Nandakumar, R., Chintalapudi, K.K., Padmanabhan, V., et al.: Dhwani: secure peer-to-peer acoustic NFC. In: ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 63–74. ACM (2013)

    Google Scholar 

  15. Jinci Technologies: Open structure product review. http://www.jinci.cn/en/goods/112.html. Accessed 5 May 2017

  16. Zhang, B., Zhan, Q., Chen, S., et al.: PriWhisper: enabling keyless secure acoustic communication for smartphones. IEEE Internet Things J. 1(1), 33–45 (2014)

    Article  Google Scholar 

  17. Wang, Q., Ren, K., Zhou, M., et al.: Messages behind the sound: real-time hidden acoustic signal capture with smartphones. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 29–41. ACM (2016)

    Google Scholar 

  18. Gerasimov, V., Bender, W.: Things that talk: using sound for device-to-device and device-to-human communication. IBM Syst. J. 39(3.4), 530–546 (2000)

    Article  Google Scholar 

  19. Hanspach, M., Goetz, M.: On covert acoustical mesh networks in air. arXiv preprint arXiv:1406.1213 (2014)

  20. Wambacq, P., Sansen, W.M.C.: Distortion Analysis of Analog Integrated Circuits. Springer, Heidelberg (2013)

    Google Scholar 

  21. Chen, G.K.C., Whalen, J.J.: Macromodel predictions for EMI in bipolar operational amplifiers. IEEE Trans. Electromagn. Compat. 4, 262–265 (1980)

    Article  Google Scholar 

  22. Fiori, F., Crovetti, P.S.: Nonlinear effects of radio-frequency interference in operational amplifiers. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(3), 367–372 (2002)

    Article  Google Scholar 

  23. Fiori, F.: A new nonlinear model of EMI-induced distortion phenomena in feedback CMOS operational amplifiers. IEEE Trans. Electromagn. Compat. 44(4), 495–502 (2002)

    Article  Google Scholar 

  24. Graffi, S., Masetti, G., Golzio, D.: New macromodels and measurements for the analysis of EMI effects in 741 op-amp circuits. IEEE Trans. Electromagn. Compat. 33(1), 25–34 (1991)

    Article  Google Scholar 

  25. Matsuoka, H., Nakashima, Y., Yoshimura, T.: Acoustic communication system using mobile terminal microphones. NTT DoCoMo Tech. J 8(2), 2–12 (2006)

    Google Scholar 

  26. Kune, D.F., Backes, J., Clark, S.S., et al.: Ghost talk: mitigating EMI signal injection attacks against analog sensors. In: 2013 IEEE Symposium on Security and Privacy, pp. 145–159. IEEE (2013)

    Google Scholar 

  27. Roy, N., Hassanieh, H., Roy Choudhury, R.: Backdoor: making microphones hear inaudible sounds. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, pp. 2–14. ACM (2017)

    Google Scholar 

  28. Hosman, T., Yeary, M., Antonio, J.K., et al.: Multi-tone FSK for ultrasonic communication. In: 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings, pp. 1424–1429. IEEE (2010)

    Google Scholar 

  29. Yun, H.S., Cho, K., Kim, N.S.: Acoustic data transmission based on modulated complex lapped transform. IEEE Signal Processing Lett. 17(1), 67–70 (2009)

    Google Scholar 

  30. Lopes, C.V., Aguiar, P.M.Q.: Aerial acoustic communications. In: Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575), pp. 219–222. IEEE (2001)

    Google Scholar 

  31. Ka, S., Kim, T.H., Ha, J.Y., et al.: Near-ultrasound communication for TV’s 2nd screen services. In: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, pp. 42–54. ACM (2016)

    Google Scholar 

  32. Peng, C., Shen, G., Zhang, Y., et al.: BeepBeep: a high accuracy acoustic ranging system using cots mobile devices. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, pp. 1–14. ACM (2007)

    Google Scholar 

  33. Lee, H., Kim, T.H., Choi, J.W., et al.: Chirp signal-based aerial acoustic communication for smart devices. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 2407–2415. IEEE (2015)

    Google Scholar 

  34. Santagati, G.E., Melodia, T.: A software-defined ultrasonic networking framework for wearable devices. IEEE/ACM Trans. Netw. (TON) 25(2), 960–973 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, G., Ji, X., Zhou, X., Qi, D., Xu, W. (2020). UltraComm: High-Speed and Inaudible Acoustic Communication. In: Chu, X., Jiang, H., Li, B., Wang, D., Wang, W. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Systems. QShine 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 300. Springer, Cham. https://doi.org/10.1007/978-3-030-38819-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38819-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38818-8

  • Online ISBN: 978-3-030-38819-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics