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The order type of scattered context-free orderings

of rank one is computable
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Abstract. A linear ordering is called context-free if it is the lexico-
graphic ordering of some context-free language and is called scattered
if it has no dense subordering. Each scattered ordering has an associ-
ated ordinal, called its rank. It is known that the isomorphism problem
of scattered context-free orderings is undecidable, if one of them has a
rank at least two. In this paper we show that it is decidable whether a
context-free ordering has rank at most one, and if so, its order type is
effectively computable.

1 Introduction

If an alphabet Σ is equipped by a linear order <, this order can be extended to
the lexicographic ordering <ℓ on Σ∗ as u <ℓ v if and only if either u is a proper
prefix of v or u = xay and v = xbz for some x, y, z ∈ Σ∗ and letters a < b. So
any language L ⊆ Σ∗ can be viewed as a linear ordering (L,<ℓ). Since {a, b}∗

contains the dense ordering (aa+ bb)∗ab and every countable linear ordering can
be embedded into any countably infinite dense ordering, every countable linear
ordering is isomorphic to one of the form (L,<ℓ) for some language L ⊆ {a, b}∗.
A linear ordering (or an order type) is called regular or context-free if it is
isomorphic to the linear ordering (or, is the order type) of some language of the
appropriate type. It is known [1] that an ordinal is regular if and only if it is less
than ωω and is context-free if and only if it is less than ωωω

. Also, the Hausdorff
rank [10] of any scattered regular (context-free, resp.) ordering is less than ω

(ωω, resp) [8,5].
It is known [6] that the order type of a well-ordered language generated by

a prefix grammar (i.e. in which each nonterminal generates a prefix-free lan-
guage) is computable, thus the isomorphism problem of context-free ordinals is
decidable if the ordinals in question are given as the lexicograpic ordering of pre-
fix grammars. Also, the isomorphism problem of regular orderings is decidable
as well [12,2]. At the other hand, it is undecidable for a context-free gram-
mar whether it generates a dense language, hence the isomorphism problem of
context-free orderings in general is undecidable [4].

Algorithms that work for the well-ordered case can in many cases be “tweaked”
somehow to make them work for the scattered case as well: e.g. it is decidable
whether (L,<ℓ) is well-ordered or scattered [3] and the two algorithms are quite
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similar. In an earlier paper [7] we showed that it is undecidable for a scattered
context-free ordering of rank 2 whether its order type is ω+(ω+ζ)×ω, even if it
is given by a prefix grammar – so the complexity of the isomorphism problem is
quite different when one makes the step from well-ordered languages to scattered
ones.

In the current paper we complement this result by showing that if the rank of
a scattered context-free ordering is at most one (we also show that this property
is decidable as well), then its order type is effectively computable (as a finite
sum of the order types 1, ω and −ω).

2 Notation

A linear ordering is a pair (Q,<), where Q is some set and the < is a transitive,
antisymmetric and connex (that is, for each x, y ∈ Q exactly one of x < y, y < x

or x = y holds) binary relation on Q. The pair (Q,<) is also written simply
Q if the ordering is clear from the context. A (necessarily injective) function
h : Q1 → Q2, where (Q1, <1) and (Q2, <2) are some linear orderings, is called
an (order) embedding if for each x, y ∈ Q1, x <1 y implies h(x) <2 h(y). If
Q1 can be embedded into Q2, then this is denoted by Q1 � Q2. If h is also
surjective, h is an isomorphism, in which case the two orderings are isomorphic.
An isomorphism class is called an order type. The order type of the linear ordering
Q is denoted by o(Q).

For example, the class of all linear orderings contain all the finite linear
orderings and the orderings of the integers (Z), the positive integers (N) and the
negative integers (N−) whose order type is denoted ζ, ω and −ω respectively.
Order types of the finite sets are denoted by their cardinality, and [n] denotes
{1, . . . , n} for each n ≥ 0, ordered in the standard way.

The ordered sum
∑

x∈Q Qx, where Q is some linear ordering and for each
x ∈ Q, Qx is a linear ordering, is defined as the ordering with domain {(x, q) :
x ∈ Q, q ∈ Qx} and ordering relation (x, q) < (y, p) if and only if either x < y,
or x = y and q < p in the respective Qx. If each Qx has the same order type o1
and Q has order type o2, then the above sum has order type o1 × o2. If Q = [2],
then the sum is usally written as Q1 +Q2.

If (Q,<) is a linear ordering and Q′ ⊆ Q, we also write (Q′, <) for the
subordering of (Q,<), that is, to ease notation we also use < for the restriction
of < to Q′.

A linear ordering (Q,<) is called dense if it has at least two elements and
for each x, y ∈ Q where x < y there exists a z ∈ Q such that x < z < y. A
linear ordering is scattered if no dense ordering can be embedded into it. It is well-
known that every scattered sum of scattered linear orderings is scattered, and any
finite union of scattered linear orderings is scattered. A linear ordering is called
a well-ordering if it has no subordering of type −ω. Clearly, any well-ordering
is scattered. Since isomorphism preserves well-orderedness or scatteredness, we
can call an order type well-ordered or scattered as well, or say that an order type
embeds into another. We also write o1 � o2 to denote o1 embeds into o2. The
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well-ordered order types are called ordinals. For any set Ω of ordinals, (Ω,<) is
well-ordered by the relation o1 ≺ o2 ⇔ “o1 can be embedded injectively into o2
but not vice versa”. Amongst ordinals, it is common to use the notation o1 < o2
instead of o1 ≺ o2. The principle of well-founded induction can be formulated
as follows. Assume P is a property of ordinals such that for any ordinal o, if P
holds for all ordinals smaller than o, then P holds for o. Then P holds for all
the ordinals.

For standard notions and useful facts about linear orderings see e.g. [10]
or [11].

Hausdorff classified the countable scattered linear orderings with respect to
their rank. We will use the definition of the Hausdorff rank from [5], which
slightly differs from the original one (in which H0 contains only the empty or-
dering and the singletons, and the classes Hα are not required to be closed under
finite sum, see e.g. [10]). For each countable ordinal α, we define the class Hα

of countable linear orderings as follows. H0 consists of all finite linear orderings,
and when α > 0 is a countable ordinal, then Hα is the least class of linear order-
ings closed under finite ordered sum and isomorphism which contains all linear
orderings of the form

∑

i∈Z
Qi, where each Qi is in Hβi

for some βi < α.
By Hausdorff’s theorem, a countable linear order Q is scattered if and only

if it belongs to Hα for some countable ordinal α. The rank r(Q) of a countable
scattered linear ordering is the least ordinal α with Q ∈ Hα.

As an example, ω, ζ, −ω and ω+ ζ or any finite sum of the form
∑

i∈[n]

oi with

oi ∈ {ω,−ω, 1} for each i ∈ [n] each have rank 1 while (ω + ζ)× ω has rank 2.
Let Σ be an alphabet (a finite nonempty set) and let Σ∗ (Σ+, resp) stand

for the set of all (all nonempty, resp) finite words over Σ, ε for the empty word,
|u| for the length of the word u, u ·v or simply uv for the concatenation of u and
v. A language is an arbitrary subset L of Σ∗. We assume that each alphabet is
equipped by some (total) linear order. Two (strict) partial orderings, the strict
ordering <s and the prefix ordering <p are defined over Σ∗ as follows:

– u <s v if and only if u = u1au2 and v = u1bv2 for some words u1, u2, v2 ∈ Σ∗

and letters a < b,
– u <p v if and only if v = uw for some nonempty word w ∈ Σ∗.

The union of these partial orderings is the lexicographical ordering <ℓ=<s ∪ <p.
We call the language L well-ordered or scattered, if (L,<ℓ) has the appropriate
property and we define the rank r(L) of a scattered language L as r(L,<ℓ). The
order type o(L) of a language L is the order type of (L,<ℓ). For example, if

a < b, then o
(

{akb : k ≥ 0}
)

= −ω and o
(

{(bb)ka : k ≥ 0}
)

= ω.

When ̺ is a relation over words (like <ℓ or <s), we write K̺L if u̺v for
each word u ∈ K and v ∈ L.

An ω-word over Σ is an ω-sequence a1a2 . . . of letters ai ∈ Σ. The set of
all ω-words over Σ is denoted Σω. The orderings <ℓ and <p are extended to
ω-words. An ω-word w is called regular if w = uvω = uvvvv . . . for some finite
words u ∈ Σ∗ and v ∈ Σ+. When w is a (finite or ω-) word over Σ and L ⊆ Σ∗
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is a language, then L<w stands for the language {u ∈ L : u < w}. Notions like
L≥w, L<sw are also used as well, with the analogous semantics.

A context-free grammar is a tuple G = (N,Σ, P, S), where N is the alphabet
of the nonterminal symbols, Σ is the alphabet of terminal symbols (or letters)
which is disjoint from N , S ∈ N is the start symbol and P is a finite set of
productions of the form A → α, where A ∈ N and α is a sentential form, that
is, α = X1X2 . . . Xk for some k ≥ 0 and X1, . . . , Xk ∈ N ∪ Σ. The derivation
relations ⇒, ⇒ℓ, ⇒∗ and ⇒∗

ℓ are defined as usual (where the subscript ℓ stands
for “leftmost”). The language generated by a grammar G is defined as L(G) =
{u ∈ Σ∗ | S ⇒∗ u}. Languages generated by some context-free grammar are
called context-free languages. For any set ∆ of sentential forms, the language
generated by ∆ is L(∆) = {u ∈ Σ∗ | α ⇒∗ u for some α ∈ ∆}. As a shorthand,
we define o(∆) as o(L(∆)). When X,Y ∈ N ∪ Σ are symbols of a grammar
G, we write Y � X if X ⇒∗ uY v for some words u and v; X ≈ Y if X � Y

and Y � X both hold; and Y ≺ X if Y � X but not X � Y . A production
of the form X → X1 . . . Xn with Xi ≺ X for each i ∈ [n] is called an escaping
production.

A regular language over Σ is one which can be built up from the singleton
languages {a}, a ∈ Σ and the empty language ∅ with finitely many applications
of taking (finite) union, concatenation KL = {uv : u ∈ K, v ∈ L} and iteration
K∗ = {u1 . . . un : n ≥ 0, ui ∈ K}. For standard notions on regular and context-
free languages the reader is referred to any standard textbook, such as [9].

Linear orderings which are isomorphic to the lexicographic ordering of some
context-free (regular, resp.) language are called context-free (regular, resp.) or-
derings.

3 Limits of languages

In this section we introduce the notion of a limit of a language and establish a
connection: the main contribution of this concept is that one can decide whether
a context-free language has a finite number of limits and if so, one can effectively
compute the limits themselves (Lemma 6), and that a language has a finite
number of limits if and only if its order type is scattered of rank at most one
(Theorem 1).

Firstly, we recall (and prove for the sake of completeness) that Σ∞ forms a
complete lattice with the partial ordering ≤ℓ (which can be turned into a metric
space as well).

Lemma 1. (Σ∞,≤ℓ) is a complete lattice.

Proof. Let L be an infinite language. If L has a maximal element, then it is
the supremum, otherwise we generate the word a1a2a3 . . . ∈ Σω in the following
way: let u0 = ε and ui = a1 . . . ai. We choose the largest possible letter ai+1 with
(uiai+1)

−1L being nonempty. The word generated by this way is the supremum
of L. 2
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3.1 Limits in general

Though limits of a language could be defined as limits of Cauchy sequences in
the aforementioned metric space, the following (equivalent) definition is more
convenient for our purposes.

Definition 1. The word w ∈ Σω is a limit of an infinite language L, if for each
w0 <p w there exists a word u ∈ L such that w0 <p u.

If L ⊆ Σ∗ is a language, then we denote the limits of L with Lim(L).

Lemma 2. If w is a limit of an infinite language L, then for each w0 <p w

there exist infinitely many words u ∈ L with w0 <p u.

Proof. We construct two sequences w0 <p w1 <p . . . <p w and u0, u1, . . . ∈ L

such that wi <p ui for each i with mutual induction. Now w0 is given. By
definition for each i there exists an ui ∈ L such that wi <p ui and wi ∈ Pref (w)
is constructed such that |ui−1|+ 1 < |wi|.

It is clear the words ui are pairwise different, since each wi has different
length. So we get that w0 is a prefix of each ui, so w0 is a prefix of infinitely
many words in L. 2

Lemma 3. For each infinite language L, the set Lim(L) is nonempty.

Proof. We construct a limit word w = a1a2 . . . ∈ Σω. Let u0 = ε and ui =
a1 . . . ai and we choose ai+1 ∈ Σ such that uiai+1 is a prefix of infinitely many
words in L. Since L is infinite there exists such a letter. Thus we can construct
an infinite word which is a limit of L. 2

Now we justify using the name “limit”: any supremum or infimum of a chain
(which is a Cauchy sequence) of words of a language is a limit of the language.

Lemma 4. If w0, w1, . . . is a <ℓ (or >ℓ respectively) chain in L, then its supre-
mum (infimum, resp.) is a limit of L.

Proof. Let w be the supremum of the <ℓ chain in L. We only have to show that
for each w′ <p w there exists a member u of the chain with w′ <p u. First,
as the chain is infinite, there are infinitely many words wi with |wi| > |w′| and
the supremum of these words wi is w as well. For these words we cannot have
w′ <p wi. As w > w′ is the supremum of the words wi, we have wi <ℓ w for
each of them, moreover, there exists some word wi with w′ <ℓ wi <ℓ w. Since
we know that w′ <p w, it has to be the case that w′ <p wi <ℓ w and the claim
is proved.

For the other case, let w be the infimum of the >ℓ chain in L and let w′ <p w

be a prefix of w. We again have to show that w′ <p wi for some i. Again, we
can take the subchain consisting of those words wi with |wi| > |w′|, this does
not change their infimum. Now we have w′ <p w <s wi for each of these words
wi. We claim that w′ <p wi for at least one index i. Assume to the contrary
that w′ <s wi for each i and let us write w′ = u0az

t where z is the largest letter
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of Σ, and a < z. (Since there exist words with w′ <s wi, w
′ cannot have the

form zt). Let b be the successor letter of a and consider the word w′′ = u0b.
Obviously, w′′ is the least word with w′ <s w′′, thus w′′ ≤ℓ wi for each i. Since
w is the infimum of these words wi, we should have w′′ ≤ℓ w but this contradicts
to w′ <p w and w′ <s w

′′ as these two imply w <s w
′′. 2

Now we recall from [7] that for any context-free language, we can compute a
supremum or infimum of the language.

Lemma 5 ([7], Lemma 1). For each sentential form α with L(α) being infi-
nite, we can generate a sequence w0, w1, . . . ∈ L(α) and a regular word w ∈ Σω

satisfying one of the following cases:

i) w1 <s w2 <s . . . and w =
∨

i≥0

wi

ii) w1 >s w2 >s . . . and w =
∧

i≥0

wi

iii) w1 <p w2 <p . . . and w =
∨

i≥0

wi

Hence, Lemma 4 in conjunction with Lemma 5 ensure that whenever L is an
infinite context-free language, then one of its limits can be effectively computed,
and this particular limit will be a regular word.

Next, we show how to compute limits of unions and products:

Lemma 6. For any languages K and L Lim(K ∪ L) = Lim(K) ∪Lim(L).

Proof. Assume w is a limit of L. Then for each w0 <p w, there exists some u ∈ L

with w0 <p u. Since then u ∈ K ∪ L as well, w is a limit of K ∪ L as well.
For the other direction, assume w is a limit of K∪L. Then for each w0 <p w,

there exists some u ∈ K ∪ L with w0 <p u. Thus, either there exists infinitely
many prefixes w0 of w for which there exists some u ∈ K with w0 <p u or there
exists infinitely many prefixes w0 of w for which there exists some u ∈ L with
w0 <p u. In the former case, w is a limit of K, in the latter, w is a limit of L.
2

Lemma 7. Lim(KL) = Lim(K) ∪KLim(L) if K,L 6= ∅.

Proof. Let u ∈ K be a word and w be a limit of L. To prove that uw is a limit
of KL we only have to show that for each prefix w′ of uw there exist a word
w∗ ∈ KL with w′ <p w∗. Let w′ ∈ Pref (uw), and since it is enough to see the
prefixes which are longer than u, the word w′ can be written as uw0. Since w is
a limit of L there exists a word v ∈ L such that w0 <p v. Thus there is a word
uv ∈ KL such that w′ <p uv.

Now let w be a limit of K. To prove that w is a limit of KL, let u be a word
in L and w0 be a prefix of w. Since w is a limit of K there exists a word v ∈ K

with w0 <p v by definition. So vu ∈ KL and w0 is a prefix of vu as well.
For the other direction, we have to prove that there are no more limits of

KL. Let w be a limit of KL and wi be the prefix of w with length i. Since w is
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a limit of KL there exist a word uivi ∈ KL such that wi <p uivi where ui ∈ K

and vi ∈ L. Consider for each i > 0 the lengths of these words ui. There are two
cases: either there is a finite upper bound on |ui| or there is not.

If |ui| is not upperbounded, then w is a limit of K, since for each prefix wi

there exists some long enough uj with wi <p uj.
In the case where the lengths of these ui words is bounded, let ℓ = max |ui|

be the maximal length. Since there are only finitely many words of length at
most ℓ, there has to be some u = uj such that u = ui for infinitely many indices
i. Hence in particular, w = uw′ for some w′ ∈ Σω. We show that w′ ∈ Lim(L),
yielding w ∈ KLim(L). Indeed, if w∗ <p w′ is a prefix of w′, then uw∗ <p w

and thus there exists some vi with uw∗ <p uvi, that is, w∗ <p vi and so w∗ is a
limit of L. 2

Corollary 1. For any language L and letter a ∈ Σ, Lim(L) = Lim(La) and
a · Lim(L) = Lim(aL).

Corollary 2. For any language L ⊆ Σ∗ and words u, v ∈ Σ∗, Lim(uLv) =
u · Lim(L).

3.2 Unique limits

In this part we establish the decidability of the problem whether a context-free
language has a unique limit. (In this case, the limit itself is computable as well,
thanks to Lemma 5.)

In the rest of the paper when grammars are involved, we assume the grammar
G = (N,Σ, P, S) contains no left recursive nonterminals, and for each X ∈ N ,
X is usable and L(X) is an infinite language of nonempty words. Moreover,
each nonterminal but possibly S is assumed to be recursive. Any context-free
grammar can effectively be transformed into such a form, see e.g. [6].

It is also known [3] that if the context-free grammar G generates a scattered
language, then for each recursive nonterminal X there exists a unique (and
computable) primitive word uX such that whenever X ⇒+ uXα for some u ∈ Σ∗

and sentential form α, then u ∈ u+
X . Moreover, for each pair X ≈ Y of recursive

nonterminals there exists a (computable) word uX,Y ∈ Σ∗ such that whenever
X ⇒+ uY v, then u ∈ uX,Y u

∗
Y .

Lemma 8. The word w ∈ Σω is the unique limit of an infinite language L if
and only if for each w0 <p w there exists only finitely many words u ∈ L such
that u <s w0 or w0 <s u.

Proof. We will see just the case where w0 <s u, the other one can be done
analogously.

Suppose for the sake of contradiction there exist infinitely many words u ∈ L

with w0 <s u. Let w0 be the shortest such word, it can be written as w0 = w′
0a.

Since there are just finitely many words u ∈ L with w′
0 <s u, it has to be the case

that w′
0 <p u and w′

0a <s u for infinitely many u ∈ L. Then there exists a letter
b ∈ Σ such that b > a and infinitely many words u ∈ L such that w′

0b <p u. But
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any limit of these words is in w′
0bΣ

ω (and by Lemma 3 at least one limit exists),
which cannot be equal to w, so the language L has two different limits which is
a contradiction. 2

Lemma 9. If L has a unique limit w, then o(L<w) � ω and o(L>w) � −ω.
Moreover, in this case both o(L<w) and o(L>w) are effectively computable (and
hence so is o(L) = o(L<w) + o(L>w)).

Proof. In the o(L<w) case, if L<w is finite (and thus its size is computable), we
are done. Otherwise L<w is infinite, which means it has a limit, and this limit
has to be the w (since it is unique for L). By Lemma 4 the supremum

∨

L<w

of this language is w as well, moreover, each infinite K ⊆ L<w has
∨

K = w, so
the order type of L<w has to be ω.

In the o(L>w) case, if L>w is finite, it can be embedded into −ω so we are
done. Otherwise L>w is infinite, so it has to have a limit which is w. Since this
limit should be an infimum of a descending chain, each infinite K ⊆ L>w has
∧

K = w, so the order type of L>w has to be −ω. 2

Before proceeding to the case of concatenation, we recall the notion of prefix
chains from [7]. For a word w ∈ Σω, let Pref(w) stand for the set {u ∈ Σ∗ :
u <p w} of proper prefixes of w. A language L ⊆ Σ∗ is called a prefix chain if
L ⊆ Pref (w) for some ω-word ω. Lemma 2 from [7] states that it is decidable
for any context-free language L whether L is a prefix chain and if so, a suitable
w ∈ Σω can be effectively computed.

Lemma 10. Assume we know that for the nonterminals X1 and X2 whether
the languages L1 = L(X1) and L2 = L(X2) have a unique limit. Then it is
computable whether L = L(X1X2) has a unique limit.

Proof. By assumption, the nonterminals X1 and X2 each generate an infinite
language so they have at least one limit by Lemma 3. By Lemma 7, if either L1

or L2 has at least two limits, then so have L and we can stop.
Assume both L1 and L2 have a unique limit. As they are both context-free

languages, their limits are computable regular words by Lemma 5. Let u1v
ω
1 and

u2v
ω
2 respectively be the limits of L1 and L2. If L1 is not a prefix chain, that

is, x <s y for some x, y ∈ L1, then both xu2v
ω
2 and yu2v

ω
2 are limits of L by

Lemma 7 and these two words are different by x <s y. So in this case we can
stop.

From this point we can assume that L1 is a prefix chain, that is, L1 ⊆
Pref (u1v

ω
1 ). By Lemma 7, u1v

ω
1 is also a limit of L, and for each u ∈ L1, the

word uu2v
ω
2 is also a limit of L. Thus, we have to decide whether u1v

ω
1 = uu2v

ω
2

holds for each u ∈ L1.
Now consider the direct product automaton M = Mu1,v1 × Mu2,v2 , where

in the automaton corresponding to L2 we use primed states q′ in place of each
state q.

Obviously, u1v
ω
1 6= uu2v

ω
2 if and only if from the state (q0 · u, q′0) some state

of the form (⊥, q′) or (q,⊥′) is reachable for some q 6= ⊥. Thus, it suffices to
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determine the set of states q in M1 for which q0 · u = q for some u ∈ L1, that
is, for which M1(q)∩L1 is nonempty, which is decidable since L1 is context-free
and M1(q) is regular. Then, for each such state q we test whether a state of the
form (⊥, p′) or (p,⊥′) is reachable from (q, q′0) and if so, then uu2v

ω
2 6= u1v

ω
1 for

some u ∈ L1 and thus L has at least two different limits.
Now assume uu2v

ω
2 = u1v

ω
1 for each u ∈ L1. We claim that in this case

L has the unique limit u1v
ω
1 . To see this, we first prove that for each prefix

w0 <p u1v
ω
1 , there are only a finite number of words v ∈ L with either w0 <s v

or v <s w0. Suppose for the sake of contradiction that for some prefix w0 of
u1v

ω
1 there are infinitely many such words and let w0 be the shortest such prefix.

By assumption, there are infinitely many words xy ∈ L, x ∈ L1, y ∈ L2, with
either xy <s w0 or w0 <s xy. Since L1 ⊆ Pref (u1v

ω
1 ) and w0 <p u1v

ω
1 , this can

happen only if x <p w0. Since there are only finitely many prefixes of w0, for
some u <p w0 in L1 there has to be an infinite number of words y ∈ L2 with
either uy <s w0 or w0 <s uy. Let us write w0 = uv. The condition uy <s w0 or
w0 <s uy is then equivalent y <s v or v <s y for infinitely many y ∈ L2. But
since we know that uu2v

ω
2 = u1v

ω
1 , v is a prefix of u2v

ω
2 , which is the unique

limit of L2 and thus only finitely many words y ∈ L2 exist with y <s v or v <s y

by Lemma 8, yielding a contradiction.
Hence in this case, u1v

ω
1 is the unique limit of L. 2

Corollary 3. Assume n ≥ 0 and X1, . . . , Xn ∈ N ∪ Σ are symbols so that
for each Xi we know whether L(Xi) has a unique limit. Then it is computable
whether L(X1 . . . Xn) has a unique limit.

Proof. Let us introduce the fresh nonterminals Y1, . . . , Yn−1 and productions
Y1 → X1Y2, Y2 → X2Y3,. . . , Yn−1 → Xn−1Xn. Applying Lemma 10 or Corol-
lary 1 (depending on whether Xi is a nonterminal or a letter) for the nonterminals
Yn−1, Yn−2, . . . , Y1 in this order we can successively decide whether each L(Yi)
has a unique limit, proving the statement since L(X1 . . .Xn) = L(Y1). 2

Corollary 4. Let X be a nonterminal X → α1 | . . . | αk be the collection of
all the escaping productions with left-hand side X. Assume we already know for
each Y ≺ X whether L(Y ) has a unique limit. Then it is computable whether
L({α1, . . . , αk}) has a unique limit.

Proof. By Corollary 3, it is computable for each αi whether each L(αi) is finite
or has a unique limit. If not, then neither has their union (by Lemma 6). If each
of the languages L(αi) is either finite or has a unique limit, then their union has
a unique limit if and only if all the limits are the same. But this is decidable
since these languages are context-free, hence their unique limit is a computable
regular word by Lemma 5, and the equivalence of these words is decidable. 2

Lemma 11. Assume X is a recursive nonterminal, L(X) is not a prefix chain
and for some nonterminal X ′ ≈ X there exists a production X ′ → αX ′′β with
β containing at least one nonterminal.

Then L(X) has at least two limits.

9



Proof. Let u <s v be members of L(X). Since β contains a nonterminal, L(β)
is infinite and has a limit w by Lemma 3. By the conditions on the recursive
nonterminal X , we get X ⇒∗ u1Xu2βu3 for some words u1, u2, u3 ∈ Σ∗. By
Lemma 2, both u1uu2w and u1vu2w are limits of L(X) and they are distinct by
u <s v. 2

Lemma 12. Assume L(G) is scattered. Then it is decidable for each nontermi-
nal X whether L(X) has a unique limit.

Proof. We prove the statement by induction on ≺. So let X be a nonterminal
and assume we already know for each Y ≺ X whether L(Y ) has a unique limit.

If X is nonrecursive, and X → α1 | . . . | αk are all the alternatives of X ,
then the question is decidable by Corollary 4.

So let X be a recursive nonterminal. If L(Y ) has at least two limits for some
Y ≺ X , then by Corollary 2 so does L(X) and we are done. So we can assume
from now on that each L(Y ) with Y ≺ X has exactly one limit. This limit is a
computable regular word.

If L(X) is a prefix chain, then its supremum is its unique limit and we can
stop. So we can assume that L(X) is not a prefix chain. Now if there exist some
production of the form X ′ → αX ′′β with X ′ ≈ X ′′ ≈ X and β containing at
least one nonterminal, then by Lemma 11, L(X) has at least two limits and we
can stop.

Otherwise, we can assume that each component production in the component
of X has the form X ′ → αX ′′u for some u ∈ Σ∗, X ′ ≈ X ′′ ≈ X . Since L(X) is
scattered, for each such α it has to be the case that L(α) ⊆ uX′,X′′u∗

X′′ .
Now let X ′ ≈ X be a nonterminal and α1, . . . , αk all the escaping alternatives

of X ′. If L({α1, . . . , αk}) has at least two limits, then so does L(X ′) and L(X)
and we are done. Otherwise, if L({α1, . . . , αk}) is infinite, then its unique limit
is a computable word. On the other hand, for each recursive nonterminal X ′ the
word uω

X′ is a limit of L(X ′), and by L({α1, . . . , αk}) ⊆ L(X ′), the two limits
has to coincide (which is decidable). If they are not the same, then again, L(X)
has at least two limits and we can stop.

Hence we can assume that for each X ′ ≈ X , the language L(X ′) has the
limit uω

X′ which is the same as the unique limit of L({α1, . . . , αk}) if this latter
language is infinite.

We claim that in this case, L(X) has the unique limit uω
X . To see this, we

apply Lemma 8 and show that for each prefix w0 of uω
X , there are only finitely

many words u ∈ L(X) with either w0 <s u or u <s w0.
Assume to the contrary that w0 <p uω

X and there are infinitely many words
u ∈ L(X) with either w0 <s u or u <s w0. Each word u ∈ L(X) can be
derived from X using a leftmost derivation sequence resulting in a sentential
form ut

XuX,X′αv for some t ≥ 0 so that X ′ → α is an escaping production
from the component of X and u ∈ ut

XuX,X′L(α)v. Since u and w0 <p uω
X

are not related by <p, we have an upper bound for t, which, as G does not
contain left-recursive nonterminals, places an upper bound for |v|. Hence, there
are only finitely many possibilities for picking t ≥ 0, X ′, α and v, thus for some

10



combination of them, there are infinitely many such words u belonging to the
same language ut

XuX,X′L(α)v. So we can write each such u as u = ut
XuX,X′u′v

with u′ ∈ L(α), and we can write w0 as w0 = ut
XuX,X′w′

0, that is, w′
0 <p uω

X′ .
This yields that u′v <s w′

0 or w′
0 <s u′v for infinitely many words u′ ∈ L(α).

Thus, there are infinitely words u′ ∈ L(α) of length at least |w′
0| with either

u′v <s w′
0 or w′

0 <s u′v, hence with either u′ <s w′
0 or w′

0 <s u′, which is a
contradiction, since by Lemma 8 this would yield that L(α) has at least two
limits, which we already handled in a former case. 2

3.3 Finitely many limits

In this part we extend the results of the previous subsection for the context-free
languages having a finite number of limits and get the main result of the paper:
it is decidable whether a context-free language has a scattered order type of rank
at most one, and if so, then its order type is effectively computable.

Lemma 13. It is decidable for any context-free language L and regular word
w = uvω whether w is a limit of L.

Proof. Let L ⊆ Σ∗ be a context-free language and consider the generalized
sequential mapping f : Σ∗ → a∗ defined as

f(x) =

{

a · f(y) if x = vy for some y ∈ Σ∗

ε otherwise.

Now for any word x, f(x) = an for the unique n such that x = vny for some y

not having v as prefix. Thus, vω is a limit of a language L′ if and only if f(L′) is
infinite; hence, by Corollary 2, w = uvω is a limit of L if and only if f(u−1L) is
infinite. Since the class of context-free languages is effectively closed under left
quotients and generalized sequential mappings, and their finiteness problem is
decidable, the claim is proved. 2

Lemma 14. If X is a recursive nonterminal, then uω
X ∈ Lim(X) and if some

w 6= uω
X is also a member of Lim(X), then Lim(X) is infinite.

Proof. Since X ⇒∗ un
XXα holds for each recursive nonterminals, there exists a

word v ∈ L(X) for each u ∈ Pref (uω
X) such that u <p v.

If w 6= uω
X is also a limit of L(X), then it can be written as w = ubw′, where

u <p uω
X , ub 6<p uω

X and w′ ∈ Σω. So if we consider a derivation of the form
X ⇒∗ un

XXα, we get that each (un
x)

kubw′, k > 0 is a limit, thus Lim(X) is
infinite as these words are pairwise different. 2

Lemma 15. Assume K is a context-free language and v is a nonempty word.
Then it is decidable whether Kvω is finite and if so, its members (which are
regular words) can be effectively enumerated.

11



Proof. Consider the generalized sequential mapping f : Σ∗ → Σ∗ defined as

f(x) =

{

f(y) if x = vRy for some y ∈ Σ∗

x otherwise.

Now for any word x, f(x) = y for some y not having vR as prefix such that
x = (vR)ky for some k ≥ 0, that is, f strips away the leading vRs of its input.

So, we have that
(

f(KR)
)R

consists of those words we get from members of K,

stripping away their trailing vs. Now u ∈
(

f(KR)
)R

if and only if u does not end
with v and uvω ∈ Kvω. Moreover, Kvω is finite if and only if there exist some
u1, u2, . . . , un ∈ Σ∗ such that for each i ∈ [n] the word ui does not end with v and

Kvω = {uiv
ω | i ∈ [n]}. So we get that Kvω is finite if and only if so is

(

f(KR)
)R

which is decidable since the class of context-free languages is effectively closed
under reversal and generalized sequential mappings, and their finiteness problem

is also decidable. In this case, members of
(

f(KR)
)R

= {u1, . . . , un} can also be
effectively enumerated and Kvω = {ujv

ω : j ∈ [n]}. 2

Lemma 16. Assume K and L are context-free languages such that Lim(K) =
{uiv

ω
i | 1 ≤ i ≤ k} and Lim(L) = {u′

jw
ω
j | 1 ≤ j ≤ ℓ} are finite sets of regular

words. Then it is decidable whether Lim(KL) is finite and if so, then it is a
computable (finite) set of regular words.

Proof. By Lemma 7 Lim(KL) = Lim(K) ∪ KLim(L). Since Lim(K) is a
finite set (and is of course computable since it is given as input), we only have
to deal with K ·Lim(L). Since

K · Lim(L) = K ·
{

u′
jw

ω
j : j ∈ [ℓ]

}

=
⋃

j∈[ℓ]

(Ku′
j)w

ω
j

and this union is finite if and only if so is each language (Ku′
j)w

ω
j , which is

decidable by Lemma 15 (since the languages Ku′
j are each context-free), we get

decidability and even computability if each of them is finite. 2

Corollary 5. Assume n ≥ 0 and X1, . . . , Xn ∈ N ∪ Σ are symbols so that for
each Xi, Lim(Xi) is a known finite set. Then it is decidable whether L(X1 . . . Xn)
has a finite number of limits and if so, Lim(X1 . . . Xn) is effectively computable.

Proof. Let us introduce the fresh nonterminals Y1, . . . , Yn−1 and productions
Y1 → X1Y2, Y2 → X2Y3,. . . , Yn−1 → Xn−1Xn. Applying Lemma 16 or Corol-
lary 1 (depending on whether Xi is a nonterminal or a letter) for the nonterminals
Yn−1, Yn−2, . . . , Y1 in this order we can decide whether each L(Yi) has a finite
number of limits, and if so, we compute Lim(Yi) as well, proving the statement
since L(X1 . . . Xn) = L(Y1). 2

Corollary 6. It is decidable for any nonterminal X whether L(X) has a finite
number of limits.
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Proof. There are two cases: either X is recursive or not. If X is recursive, then
by Lemma 14 L(X) has a finite number of limits if and only it has a unique limit
which is decidable due to Lemma 12. Hence we can decide for each nonterminal
X 6= S whether Lim(L(X)) is finite.

Now suppose X is not recursive (thus X = S as G is in normal form) and let
α1, . . . ,αt be all the alternatives of S. By Corollary 5 for each αi (1 ≤ i ≤ t) it is
decidable whether L(αi) has a finite number of limits. If one of them has infinite
limits than so has X . So we can assume that each L(αi) has a finite number
of limits and we can even compute each Lim(αi). By Lemma 6, Lim(X) =
⋃

i∈[t] Lim(αi). 2

Theorem 1. Suppose L is a context-free language having a finite number of
limits. Then o(L) is effectively computable and is scattered of rank at most one.

Proof. We prove the statement by induction on the number of limits.
If L has no limits, then it is finite by Lemma 3, and so o(L) = |L| is com-

putable.
If L has a unique limit, then o(L) can be embedded into ω + −ω and is

computable by Lemma 9. Moreover, it is decidable whether L has a unique limit
by Lemma 12.

Now assume L has at least two limits. Since L is infinite, we can compute
a regular limit of the form w = uvω for L by Lemma 5. By Lemma 13, it is
decidable whether w is a limit of either L<w or L>w or both of them. (By
Lemma 6, w is a limit of at least one of them.) If w is not a limit of L<w (L>w,
resp.), then this language has a smaller number of limits than L and we can
proceed by induction. Suppose now w is a limit of L<w – it has to be w =

∨

L<w

then. If L has a limit which is larger than w (that is, L>w is infinite and either
w is not a limit of L>w or L>w has at least two limits – this is decidable as well),
then L<w has a smaller number of limits than L (since no limit of L<w can be
strictly larger than its supremum) and we can proceed again by induction and
get that L<w is computable. It is also decidable whether L<w has only one limit
and if so, its order type is also computable and we are done.

The last case is when w =
∨

L<w is the largest limit of L and L<w has at
least two limits. Thus, there exists some limit w′ of L<w and an integer n ≥ 0
such that w′ <s uvn, or equivalently, L<uvn is infinite for some n ≥ 0. We can
compute (say, the least) such n by starting from n = 0 and iterating, eventually
we will find an integer n with this property. Then, L<uvn has a smaller number of
limits than L<w so we can use induction and compute o(L<uvn); also, L<w≥uvn

also has a smaller number of limits than L<w (since w′ is missing) and we can
apply induction to this half as well and compute its order type. Then, o(L<w)
is the sum of the two already computed order types.

Repeating the same argument (by appropriate modifications: taking infimum
instead of supremum, splitting the case when w is the least limit of L) we get
that o(L>w) is also computable, and o(L), being the sum o(L<w) + o(L>w), is
hence computable as well.

We also got that the order type of such a language has to be a finite sum of
the order types ω, −ω and 1, that is, has to have rank at most 1. 2
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Corollary 7. Suppose L is a scattered context-free language of rank at most
one. Then o(L) is effectively computable.

Proof. If o(L) ∈ {ω,−ω}, then L has one limit, while if o(L) is finite, then it has
no limits. Since scattered order types of rank at most one are finite sums of the
order types ω, −ω and 1, thus scattered languages of rank at most one are finite
unions of languages of order type ω, −ω or 1, by Lemma 6 we get that such
languages have a finite number of limits, and thus their order type is effectively
computable by Theorem 1. 2

Corollary 8. For any context-free language L, it is decidable whether L is a
scattered language of rank at most one, and if so, o(L) can be effectively computed
(as a finite sum of the order types 1, ω and −ω).

4 Conclusion

We showed that it is decidable whether a context-free ordering is scattered of
rank at most one, and if so, then its order type is effectively computable as a
finite sum of the order types 1, ω and −ω. This complements our earlier result [7]
that for scattered context-free orderings of rank (at least) two, it is undecidable
whether their order type is ω+(ω+ζ)×ω, thus the order type is not computable,
even if the grammar in question is a so-called prefix grammar.

An interesting question for further study is whether the rank of a scattered
context-free ordering is computable. Another, maybe easier one is to determine
which rank-two scattered orderings are context-free (as there are uncountably
many such orderings, the vast majority of them cannot be context-free).

A relatied notion is that of tree automatic orderings: these are the order
types of regular tree languages equipped with the lexicographic ordering (on
trees). Through derivation trees, there is a tight connection between context-
free string languages and regular tree languages but as the two orderings differ
(lexicographic ordering of trees vs their frontiers), it is unclear whether there is
a nontrivial inclusion between these two classes of orderings (or at least for the
scattered case).
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