
HAL Id: lirmm-02332049
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02332049v2

Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linearizing Genomes: Exact Methods and Local Search
Tom Davot, Annie Chateau, Rodolphe Giroudeau, Mathias Weller

To cite this version:
Tom Davot, Annie Chateau, Rodolphe Giroudeau, Mathias Weller. Linearizing Genomes: Exact
Methods and Local Search. SOFSEM 2020 - 46th International Conference on Current Trends in
Theory and Practice of Informatics, Jan 2020, Limassol, Cyprus. pp.505-518, �10.1007/978-3-030-
38919-2_41�. �lirmm-02332049v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02332049v2
https://hal.archives-ouvertes.fr

Linearizing Genomes:
Exact Methods and Local Search

Tom Davot1, Annie Chateau1, Rodolphe Giroudeau1, Mathias Weller2

1 LIRMM - CNRS UMR 5506 - Montpellier, France
2 CNRS, LIGM (UMR 8049), Champs-s/-Marne, France

{davot,chateau,rgirou}@lirmm.fr, mathias.weller@u-pem.fr

Abstract. In this article, we address the problem of genome lineariza-
tion from the perspective of Polynomial Local Search, a complexity class
related to finding local optima. We prove that the linearization problem,
with a neighborhood structure, the neighbor slide, is PLS-complete. On
the positive side, we develop two exact methods, one using tree decom-
positions with an efficient dynamic programming, the other using an in-
teger linear programming. Finally, we compare them on real instances.

1 Introduction

Motivation. When inferring genome sequences from high-throughput sequenc-
ing (HTS) data, we obtain (after assembly) fragments of the target sequence
called contigs3 without any information on how these contigs are located in the
genome. To address this shortcoming, contigs can be linked using external in-
formation (usually a read-pairing included in the HTS data), yielding a graph
(called scaffold graph) whose vertices are contig extremities and edges are either
contigs or links between them. The scaffolding operation then aims at select-
ing the best paths in this graph in order to produce longer genomic sequences
called scaffolds. Previous work focuses on the production of sequences by solv-
ing the so-called Scaffolding problem in this graph [4, 14, 16]. Scaffolding is
a widely studied problem in bioinformatics and can be modeled by numerous,
mostly heuristic, methods [8].

Unfortunately, real-world genomes escape the relative simplicity of previous
models (that still lead to NP-complete problems). A particular problem is mod-
eling contigs occurring multiple times in the target genome. Such “repeats” and
their “multiplicity” (or “copy numbers”) vary depending on the species and in-
dividual [2]. Due to the conservatism of some assembly methods, a repeat may
cover an entire contig which is separated from the other genomic side frag-
ments [11]. Recent methods address this problem, avoiding chimeric reconstruc-
tion by using long reads as additional data [3, 13]. Unfortunately, most projects

Preprint version.
The final authenticated version is available online at https://doi.org/10.1007/
978-3-030-38919-2_41.

3 Contigs are words on a genomic alphabet, usually {A,C,G, T}.

https://doi.org/10.1007/978-3-030-38919-2_41
https://doi.org/10.1007/978-3-030-38919-2_41

a b c d

e f

g h

ATCTT

m = 1

CCT

m = 2

TAA

m = 1

CATG

m = 1

26

7

9

3

1

1

2

Fig. 1. A scaffold graph and a solution graph obtained with an optimal solution of
SCAM. Matching edges are bold and plain edges are part of the solution graph. Edge cd
has multiplicity two. Other contigs have multiplicity one. Edges of the solution graph
also have multiplicity one. Links between contigs are labeled by their weight. Because
of the presence of the ambiguous path cd, two optimal solutions are possible for SCAM
with σc = 0 and σp = 2: {(a, b, c, d, e, f), (c, d, g, h)} and {(a, b, c, d, g, h), (c, d, e, f)}.
on genomic databases are still constituted of short-reads only and are not in-
tended to be resequenced with long-reads technologies in the near future. One
motivation of our work it to take care of these kind of projects, and improve as-
semblies using only the original short-read (though paired-end) data. In this con-
text, a solution to the Scaffolding problem may not be a collection of distinct
paths, but rather a graph, called solution graph (which is a particular scaffold
graph with multiplicities). Transforming such a graph into genomic sequences
turns out to be a challenging task. The aim of the present work is to study the
problem consisting of removing ambiguities in the solution graph in order to pro-
vide longer and error-free genomic sequences with minimal loss of information.

In the following, most of the proofs has been omitted due to space constraints.
A full version including the proofs is available in https://hal-lirmm.ccsd.
cnrs.fr/lirmm-02332049.

2 Notation and Problem Description

With G denoting a graph, we let V (G) and E(G) be the sets of vertices and
edges of G, respectively. A scaffold graph (G,M∗, ω,m′) is an edge-weighted,
simple, undirected graph G equipped with 1. a perfect matching M∗ that cor-
responds to the contigs, 2. non-contig edges uv whose weights ω(uv) indicate
the likelihood that the contig-extremity u is adjacent to the contig-extremity v
in the target genome and 3. a multiplicity m′ on contig edges which indicates
the desired number of their occurrences (see Figure 1). An alternating walk
(u0, . . . , u2`−1) is a sequence of vertices such that for each i < `, u2iu2i+1 ∈M∗
and u2i+1u2i+2 ∈ E(G) \M∗. If u0 = u2`−1, the walk is closed. The Scaffold-
ing with Multiplicities problem is stated as follows:

Scaffolding with Multiplicities (SCAM)
Input: a scaffold graph (G,M∗, ω,m′) and σp, σc, k ∈ N
Question: Is there a multiset S of at most σc closed and at most σp

non-closed alternating walks in G such that each e ∈ M∗ occurs
m′(e) times across all walks of S and

∑
e∈E(S)\M∗ ω(e) ≥ k?

2

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02332049
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02332049

In this work, we will not focus on the SCAM problem itself (instead, the reader
is referred to Weller et al. [14, 16, 17]). Instead, we assume that we are given a
solution S, whose walks then induce a subgraph of the input scaffold graph which
we call solution graph (G∗,M∗, ω,m). More precisely, given a scaffold graph
(G,M∗, ω,m) and a solution S of SCAM, the solution graph (G∗,M∗, ω,m)
is obtained by removing the edges that do not belong to S. The multiplicity
function m defined on all the edges of the solution graph is the number of times
that an edge occurs in S. Note that for each matching edge e, we have m(e) =
m′(e). It turns out that, in presence of repeated contigs, a solution graph implies
a unique set of sequences if and only if it does not contain so called ambiguous
paths [15] (see Figure 1 for an example).

Definition 1 (Ambiguous path). Let p be path with extremities u and v in
a solution graph. If, for all vertices x of p, p also contains the matching edge
containing x, we call p alternating. If all edges of p have the same multiplicity µ
(that is, m(e) = µ for all e ∈ p), then p is called µ-uniform (or simply uniform
is µ is unknown). If p is alternating, uniform, and both of u and v are incident
with a non-matching edge of multiplicity strictly less than µ, then p is called
ambiguous.

To break ambiguous paths, we remove non-contig edges from the solution graph,
thereby losing information, and our goal is to minimize this loss. Definition 1
implies that minimal solutions remove all incident non-contig edges from a se-
lected set X of vertices. The “cost” of such a set X can be defined by the follow-
ing scorings:

Cut score. Pay one per vertex in X: score(X) := |X|.
Path score. Pay one for each multiplicity that is removed:

score(X) :=
∑
{m(uv) | uv ∈ E \M∗ ∧ uv ∩X 6= ∅}.

Weight score. Pay the total cost of edges that are removed:
score(X) :=

∑
{m(uv) · ω(uv) | uv ∈ E \M∗ ∧ uv ∩X 6= ∅}.

Since the Path score and the Weight score are very similar, we study in this pa-
per only the Cut score and the Weight score. The following reduction rules sim-
plify a given instance (solution graph) without changing the solution set X.

Rule 1 ([15]) Let p be a µ-uniform alternating path with extremities u and v.
Remove p and add a new contig edge uv with multiplicity µ.

Rule 2 ([15]) Let uv ∈M∗ be a contig edge not appearing in ambiguous paths
and let u and v have degree at least two. Then, remove uv, add new vertices u′
and v′ and add the contig edges uv′ and vu′ with multiplicity m(uv).

Let (G∗,M∗, ω,m) be a solution graph and let u ∈ V (G∗). We let NG∗(u) =
{v |uv ∈ E(G∗) \M∗} denote the set of neighbors of u linked to u with a non-
matching edge. We say that a vertex u is clean if NG∗(u) = ∅ and a matching
edge uv ∈ M∗ is clean if at least one of its extremities is clean. In the follow-
ing, we assume that all solution graphs are reduced with respect to Rule 1, and
we observe that, in this case, all ambiguous paths have length one. Thus, we

3

use the term “ambiguous edges” (resp. “non-ambiguous edges”) when we speak
of ambiguous (resp. non-ambiguous) paths. With Rule 2, we can further assume
that all non-ambiguous edges are clean, implying that each matching edge e is
ambiguous if and only if e is not clean. Hence, disambiguating a solution means
to render all matching edges clean. We can now formulate our problem Semi-
Brutal Cut as follows.

Semi-Brutal Cut (SBC)
Input: A solution graph (G∗,M∗, ω,m) and some k ∈ N
Question: Is there a set X of extremities of ambiguous edges in G∗

such that removing all non-matching edges incident to vertices of X
renders all matching edges clean, and score(X) ≤ k?

For a vertex u of G∗, we let ω(u) denote the sum of the weights of all non-
matching edges incident to u. For a solution X of Semi-Brutal Cut, we let
ω(X) :=

∑
u∈X ω(u). We say that u is cut if u ∈ X. Since we are not limited in

number of cuts for the weight score, we suppose that in a solution X for Semi-
Brutal Cut under the weight score, each ambiguous edge of (G∗,M∗, ω,m)
contains exactly one vertex in X.

3 Related Work

Problems similar to the linearization of scaffolds are studied in the context of
guided, multiple-source assembly problems [12]. However, the model does not
integrate multiplicities as a constraint on the structure of the desired paths. In
previous work, we show that the variants of Semi-Brutal Cut according to
all presented scoring functions are NP-complete [15]. In [10], we explore spe-
cial classes of graphs, namely bipartite, planar with bounded degree, analyzing
complexity and approximability, showing that even in very restricted cases, the
problem is hard to solve. We also proposed a 2-approximation algorithm under
the weight score and a 4-approximation under the cut score. In the present work,
we consider general instances, showing that even finding a locally optimal solu-
tion is hard, but propose effective exact methods to linearize genomes.

4 Hardness using PLS-reduction

This section is devoted to determine the local-search complexity using the PLS
(Polynomial Local Search) class, which models the difficulty of finding a locally
optimal solution to an optimization problem [5]. Schäffer and Yannakakis [9]
proved several classic combinatorial optimization problems PLS-complete. In the
following, we propose a new neighborhood structure called the neighbor slide
adapted to Semi-Brutal Cut. We recall first some definitions related to PLS.
A neighborhood structure N is a function that associates to each solution S a
set of solutions N(S). A local search problem is a combinatorial optimization
problem P for which, given a neighborhood structure N , we want to find a
solution S (called local optimum), such that no solution in N(S) has a better

4

score. In the following, we let P/N denote a local search problem where P is a
combinatorial optimization problem and N a neighborhood structure.

Definition 2 (PLS). A local search problem P/N is in PLS if there are polynomial-
time algorithms AL, BL, and CL such that
(a) for each instance x, AL gives an initial solution Sinit,
(b) for each solution S, BL determines the score of S, and
(c) for each solution S, CL determines if S is a local optimum and, if not, gives

a solution with the best score in N(S).

To show that finding a local optimum for a problem P1/N1 is at least as difficult
as finding a local optimum for a problem P2/N2, we use PLS-reductions.

Definition 3 (PLS-reduction). A local search problem P1/N1 is PLS-reducible
to a local search problem P2/N2 if there are polynomial-time computable func-
tions f and g such that:
(a) If x1 is an instance of P1, then f(x1) is an instance of P2.
(b) If S2 is a solution for f(x1), then g(x1, S2) is a solution for x1.
(c) If S2 is a local optimum for f(x1), then g(x1, S2) is a local optimum for x1.

Then, a local search problem P/N is PLS-complete if P/N is in PLS and every
problem in PLS can be PLS-reduced to P/N . We now introduce the Max
W2SAT problem and the Flip neighborhood structure.

Max W2SAT
Input: A boolean formula ϕ in conjunctive normal form where each

clause Ci has a weight ω(Ci) and contains exactly two variables.
Task: Find an assignment maximizing the total weight of satisfied clauses.

Definition 4 (Flip). Let S be a solution for ϕ. A solution S′ is in N(S) if
there exists a unique variable xi such that the assignment of xi is different in S
and S′. We say that S′ is obtained by flipping the value of xi in S.

Note that Max W2SAT/Flip is PLS-complete [7]. Let ϕ be an instance of Max
W2SAT and let S be a solution for ϕ. We let ω(ϕ) denote the sum of the weights
of all clauses of ϕ and we let ω(S) denote the total weight of all clauses that are
not satisfied by S. From an instance of Max W2SAT, we build an instance of
SBC using the following construction.

Construction 1 (See Figure 2(left)) Let ϕ be an instance of Max W2SAT
with n′ variables xi and m′ clauses Cj and let occ(xi) denote the number of
occurrences of xi in ϕ. We construct the following solution graph (G∗,M∗, ω,m).
1. Construct a matching edge s1s2 with m(s1s2) = 2m′.
2. For each xi, construct a matching edge uiui such that m(uiui) = occ(xi) + 1

(variable edge).
3. For each clause Cj, construct a matching edge v1j v2j such that m(v1j v

2
j) = 2

(clause edge).
4. For each clause Cj, let xk be the tth variable of the clause. If xk occurs posi-

tively in the clause, then add the edge vtjuk with m(vtjuk) = 1 and ω(vtjuk) =
ω(Cj). Otherwise, add the edge vtjuk with m(vtjuk) = 1 and ω(vtjuk) = ω(Cj).

5

s1s2

v11 v21 v12 v22 v13 v23

u1 u1 u2 u2

s1s2

v11 v21 v12 v22 v13 v23

u1 u1 u2 u2

Fig. 2. Left: The graph produced by Construction 1 on input ϕ = (x1 ∨ x2) ∧ (¬x1 ∨
x2) ∧ (¬x1 ∨ ¬x2) (each clause has weight one). Matching edges are bold and all non-
matching edges have weight one. A solution S with ω(S) = 6 is highlighted in gray.
In S, v11v21 is satisfied, v12v22 is unsatisfied and v13v23 is neither satisfied nor unsatisfied.
Right: A solution of weight 5 produced by a neighbor slide of u1u1.

5. Finally, for each matching edge uiui, if ω(ui) < ω(ui), add an edge s1u1 with
m(s1u1) = 1 and ω(s1u1) = ω(ui) − ω(ui). If ω(ui) > ω(ui), add an edge
s1u1 with m(s1u1) = 1 and ω(s1u1) = ω(ui)− ω(ui).

Note that for each variable edge uiui, we have ω(ui) = ω(ui). All matching edges
except s1s2 are ambiguous. If a cut in a clause edge v1j v2j is adjacent to a cut in a
variable edge, then we say that the clause edge v1j v2j is satisfied. If no extremity
of a clause edge v1j v2j is adjacent to a cut vertex in a variable edge, we say that
the clause edge v1j v2j is unsatisfied. Note that a clause edge could be neither
satisfied nor unsatisfied. In a graph produced by Construction 1, we simulate
the flipping operation with the neighbor slide operation defined as follows:

Definition 5 (Neighbor Slide, see Figure 2). Let S ⊆ V (G∗) be a solution
for (G∗,M∗, ω,m) and let uv be an unclean matching edge of G∗ with u ∈ S.
The neighbor slide operation applied to uv produces a new solution S′ as follows:
1. S′ ← (S ∪ {v}) \ {u},
2. for each neighbor nu 6= s1 of u: S′ ← (S′ ∪ {M∗(nu)}) \ {nu}, and
3. for each neighbor nv 6= s1 of v: S′ ← (S′ ∪ {nv}) \ {M∗(nv)}.
Thus, a solution S′ belongs to N(S) if S′ can be produced by applying a neighbor
slide operation on S.

Definition 6. Let ϕ be an instance of Max W2SAT, let (G∗,M∗, ω,m) be the
graph produced by Construction 1, and let X be a solution for it. A solution S for
ϕ corresponds to X if, for all matching edges uiui, we have ui ∈ X ⇒ S(xi) = 1
and ui ∈ X ⇒ S(xi) = 0.

Note that, after a neighbor slide of a variable edge, all adjacent clause edges are
either satisfied or unsatisfied, and that if a clause edge v1j v2j is satisfied (resp.
unsatisfied), then the corresponding clause Cj is satisfied (resp. unsatisfied).

Lemma 1. Let X be a solution for (G∗,M∗, ω,m), produced by Construction 1
and let S be the corresponding solution for ϕ.
1. If X is a local minimum, then all clause edges are satisfied or unsatisfied.
2. If all clause edges are satisfied or unsatisfied by X, then ω(X) = ω(ϕ)+ω(S).

Proof.

6

1. Suppose there is a clause edge v1j v2j that is neither satisfied nor unsatisfied.
Thus, it exists a cut vertex adjacent to v1j v2j that is not adjacent to the cut
vertex of v1j v2j . By neighbor-slidding the clause edge v1j v2j we can produce
a solution with a smaller weight, contradicting the fact that X is a local
minimum.

2. Let uiui be a variable edge and ψi be the list of the clauses where the variable
xi occurs. We have ω(ui) = ω(ui) =

∑
Cj∈ψi

ω(Cj).
Thus, the sum of the weights removed by the cuts in the variable edges is
equal to

∑
i≤n′

∑
Cj∈ψi

ω(Cj) = ω(ϕ). Let v1j v2j be a clause edge. If v1j v2j
is satisfied, then its cut does not increase the weight of X since the non-
matching edge incident to this cut is already removed by the cut in the
variable edge. If v1j v2j is unsatisfied, then it cut increases the weight of X
by the weight of Cj . Since the sum of weights removed by the cuts in the
unsatisfied clauses edges correspond to the weight of S, we have ω(X) =
ω(ϕ) + ω(S).

Theorem 1. SBC/Neighbor slide is PLS-complete for the weight score.

Proof. It is easy to see that SBC/Neighbor slide is in PLS. We propose a PLS-
reduction of Max W2SAT/Flip to SBC/Neighbor slide. Let ϕ be an instance
of Max W2SAT. The function defined by Construction 1 produces an instance
(G∗,M∗, ω,m) of Semi-Brutal Cut and the function defined in Definition 6
computes a solution for ϕ from a solution for (G∗,M∗, ω,m). It remains to show
that, if a solutionX is a local minimum of Semi-Brutal Cut in (G∗,M∗, ω,m),
then its corresponding solution S is also a local minimum. By Lemma 1(1) and
Lemma 1(2), we have ω(X) = ω(ϕ) + ω(S). Suppose that S is not a local min-
imum. Then, there is a variable xi in S such that flipping its value produces
a solution S′1 with a smaller weight. Let S′2 be the solution produced by the
neighbor-slide operation on the variable edge uiu1 in X. Note that the corre-
sponding solution of S′2 is S′1. By Lemma 1(1), all clause edges in X are either
satisfied or unsatisfied and since the clause edges modified by a neighbor-slide
are either satisfied or unsatisfied, all clause edges in S′2 are either satisfied or un-
satisfied. Thus, by Lemma 1(2), ω(S′2) = ω(ϕ) + ω(S′1) < ω(X), contradicting
the fact that X is a local minimum.

5 Exact Methods

5.1 Integer Linear Programming

In this section, we propose an integer linear program modeling Semi-Brutal
Cut for all scores.

Variables. For each non-matching edge ek, we define a binary variable xk which
equals 1 if and only if one of its extremities is in the solution, that is, ek is
removed from the graph. For each extremity ui of an ambiguous edge p, we
define two binary variables ci and ni. ci = 1 iff ui is in the solution and ni = 1
if and only if all neighbors v 6=M∗(ui) of ui are in the solution.

7

Constraints.
(1) For any ambiguous matching edge uiuj , we force one of the extremities to

have degree one by adding the constraint ni + nj + ci + cj ≥ 1.
(2) If any extremity ui is adjacent to a non-ambiguous matching edge, then not

all neighbors of ui can be cut. In this case, we add the constraint n` = 0.
(3) For all extremities ui, we force all neighbors of ui (except M∗(ui)) to be cut

if ni = 1 by adding the constraint
∑

u`∈N(ui)

c` ≥ ni · |N(ui)|.

(4) For each extremity ui of a non-matching edge ek, we force that ek is removed
from the graph if ui = 1 by adding the constraint xk ≥ ci.

Objective function. For the cut score, we want to minimize the number of vertices
in the solution, that is, the number of variable ci with value one. Thus, the
objective function for the cut score is min

∑
i ci. For the weight score, we want

to minimize the total weight of the edges removed from the graph. Thus, the
objective function for the weight score is min

∑
ek∈E(G)\M∗ xk · ω(ek).

5.2 Dynamic Programming on Tree Decompositions

We show that Semi-Brutal Cut can be solved in linear time on classes of
graphs that exhibit a constant bound on the treewidth, such as series-parallel or
outerplanar graphs. To this end, we present a dynamic programming algorithm,
working on nice tree decompositions, that finds an optimal solution in O(2tw ·
|E(G)|) under the weight score and in O(5tw · |E(G)|) under the cut score, where
tw is the treewidth of the input graph.

Definition 7 ([6]). Given a graph G, a tree decomposition for G is a pair
(T,X) where T is a tree and X = {Bi | i ∈ V (T)} is a multiset of subsets of
V (G) (called “bags”) such that
(a) for each uv ∈ E(G), there is some i with uv ⊆ Bi and
(b) for each v ∈ V (G), the bags Bi containing v form a connected subset of T .
The width of (T,X) is maxi |Bi| − 1. Further, (T,X) is called nice if
(c) T is rooted at bag Br, with Br = ∅ and each bag has at most two children.
(d) Each bag Bi of T has one of the four types:

– Leaf bag: i has no children and Bi = ∅.
– Join bag: i has two children j and k and Bi = Bj = Bk.
– Introduce u bag: i has only one child j and Bj = Bi \ {u}.
– Forget u bag: i has only one child j and Bj = Bi ∪ {u}.

An example of nice tree decomposition is depicted in Figure 5. For any bag Bi
of T , we let Gi denote the subgraph of G induced by the vertices of G that are
introduced “below” Bi (that is, in a bag of the subtree of T that is rooted at i).

Note that for each vertex u of G, (T,X) contains exactly one forget u bag.
Further, the root r of a nice tree decomposition is a forget bag and we let r′
denote the vertex forgotten by r.

Tree Decompositions Introducing Matching Edges. Let (G∗,M∗, ω,m) be a so-
lution graph and let Bi ∈ X . In our algorithm, we need M∗(u) ∈ Bi for each

8

a b c d

e f

Fig. 3. A subgraph G∗
i with Bi = {a, b, c, d} (matching edges

in bold). Let Y1 = {(a, ”∅”), (b, ”∅”), (c, ”×”), (d, ”×”)}, let
Y2 = {(a, ”∅”), (b, ”N”), (c, ”∅”), (d, ”∅”)}, and let Y3 =
{(a, ”N”), (b, ”×”), (c, ”∅”), (d, ”∅”)}. No set vertex set X
is eligible for (Y1, Bi) and (Y2, Bi) but {b, e} is eligible for
(Y3, Bi). The trace of Y3 is T (Y3) = {b}.

u ∈ Bi. For this reason, we contract all matching edges in (G∗,M∗, ω,m), yield-
ing a graph G′ with V (G′) =M∗. We compute a nice tree decomposition (T,X)
of G′, then the vertices of G′ are expanded, that is, we replace the vertices of G′
in the tree decomposition by their corresponding matching edges (see Figure 4).
Each introduce u bag now introduces the matching edge uM∗(u). We call such a
tree decomposition for G∗ M∗-preserving. In the following, G′ refers to the graph
with contracted matching edges and G∗ refers to the original solution graph.

Signatures. To every (X,V ′) where X is a solution of a subgraph H and V ′ is a
subset of vertices of H, we associate a signature describing how the vertices of
V ′ are cut in X. The signature of a vertex u can be ”×”, ”N”, or ”∅”, depending
on whether, respectively, u is cut, all neighbors of u are cut, or u is not cut.
Definition 8 (see Figure 3). Let H be a subgraph of G∗ such that, for each
u ∈ V (H), we have M∗(u) ∈ H. Let X ⊆ V (H) be a solution for (G∗,M∗, ω,m)
in H and let V ′ ⊆ V (H). A mapping Y : V ′ → {”N”, ”×”, ”∅”} with
(i) Y (u) = ”×”⇔ u ∈ X and,
(ii) Y (u) = ”N”⇒ NH(u) ⊆ X
is called signature of X in V ′ and T (Y) = {u | Y (u) = ”×”} is called trace of Y .

Note that a solution X can be associated to many signatures. Likewise, two
different solutions X and X ′ of H such that X ∩ V ′ = X ′ ∩ V ′ are associated
to the same signatures. In order to minimize the number of signatures, we add
some restrictions on the mappings. The main idea is that sub-solutions with the
same signature are equivalently suited to construct a complete solution. Thus,
for a vertex set V ′, we define a set of signatures Y(V ′) as follows.
Definition 9. Let V ′ be a vertex set. We define Y(V ′) as the set of all Y : V ′ →
{”∅”, ”N”, ”×”} such that, for all u ∈ V ′, the three following conditions hold:
1. uM∗(u) is clean ⇔ Y (u) = Y (M∗(u)) = ”∅”

(no cut occurs in an already clean matching edge).
2. if the considered scoring function is the weight score, then:

– Y (u) 6= ”N” and,
– Y (u) = ”∅”⇔ Y (M∗(u)) = ”×”

(each ambiguous edge contains exactly one cut).
3. if the considered scoring function is the cut score, then:

– Y (u) = ”∅”⇒ Y (M∗(u)) 6= ”∅”
(an ambiguous edge must be clean) and,

– Y (u) = ”N”⇒ Y (M∗(u)) = ”∅”
(no need to store a neighbor cut if M∗(u) is cut or has a neighbor cut).

Note that if V ′ contains a single ambiguous edge, then |Y(V ′)| = 2 under the
weight score and |Y(V ′)| = 5 under the cut score.

9

Definition 10. Let Yi : Vi → {”∅”, ”N”, ”×”} for i ∈ {1, 2} be two signatures
such that V1∩V2 = ∅. The union of Y1 and Y2 is the mapping Y1∪Y2 : V1∪V2 →
{”∅”, ”N”, ”×”} with

(Y1 ∪ Y2)(v) =

{
Y1(v) if v ∈ V1
Y2(v) otherwise.

For each bag Bi of a given, M∗-preserving tree decomposition of G∗, we will
compute solutions for G∗i . To this end, we introduce the following definition.
Definition 11 (see Figure 3). Let (X , T) be a nice tree decomposition of G∗,
let X ⊆ V (G∗i), let Bi ∈ X , let Y ∈ Y(Bi), and let u ∈ Bi. Further, let
(i) Y be the signature of X in Bi and,
(ii) X be a solution for (G∗i ,M

∗, ω,m).
Then, we call X eligible with respect to (Y,Bi).

If there is no set eligible for a pair (Y,Bi), we say that the signature Y is
incompatible with G∗i .
Lemma 2. Let Bi ∈ X and let Y ∈ Y(Bi). Y is incompatible with G∗i if and only
if there are u, v ∈ Bi with uv ∈ E(G∗i) \M∗ and Y (u) = ”N” and Y (v) 6= ”×”.
Proof. “⇒”:

uv ∈ E(G∗i) \M∗, Y (u) = ”N” and Y (v) 6= ”×”. In this case, Definition 8(i)
cannot be verified, then there is not set X with Y as signature.

“⇐”: We show that any other signature Y can have a set X eligible with
respect to the tuple (Y,Bi). Let S = {u |Y (u) = ”×”} ∪ V (G∗i) \Bi. Let u ∈ Bi
and uv ∈ E(G∗i) \ M∗. Suppose that Y (u) = ”N”. If v /∈ Bi, then v ∈ X,
otherwise Y (v) = ”×” and then v ∈ X. Thus, the conditions of Definition 8
are verified and Y is the signature of X in Bi. For each matching edge uv,
dG∗(u) = 1, dG∗(v) = 1 or {u, v} ∩ X 6= ∅, then uv is clean and then X is a
solution of Semi-Brutal Cut in G∗i . Thus, X is eligible with respect to (Y,Bi).

Semantics: Let Y : V (G∗i) → {”×”, ”N”, ”∅”}. A table entry [Y]i is some
minimum-score solution X that is eligible with respect to (Y,Bi) (and [Y]i = ⊥
if no such X exists).
We set score(⊥) =∞ and ⊥ ∪X = ⊥, for any set X.

The Algorithm. Let (G∗,M∗, ω,m) be a solution graph. We compute a M∗-
preserving tree decomposition (X , T) of G∗ as described previously. We then
traverse (X , T) from the leaf bags to the root Xr. We compute the table entry
for each signature Y ∈ Y(Bi) of each bag Bi. Then, we obtain the minimum
solution for (G∗,M∗, ω,m) from [Y]r. Let Bj and B` the children of Bi (if they
exist). We compute [Y]i depending on the type of the bag Bi:

leaf bag: Since Bi = ∅, the only table entry is [∅]i and we set [∅]i = ∅.
introduce uv ∈M∗ bag: We apply the following routine:

1. First consider that uv is isolated. We copy the table entries of the child
Bj and complete them such that all signatures in Y(Bi) are instantiated:

[Y]i = argmin
Y ∈Y(Bj)

argmin
Y ′∈Y({u,v})

{score([Y]j ∪ T (Y ′))}.

10

2. Then, we introduce successively the non-matching edges incident to uv.
If a signature is incompatible with G∗i , then we set its table entry to ⊥.
Let E′ be the set of incident edges to the matching edge uv. For each
xx′ ∈ E′ and all Y ∈ Y(Bi), we set [Y]i = ⊥ if
- if Y (x) = ”N” and Y (x′) 6= ”×” (Lemma 2),
- if Y (x′) = ”N” and Y (x) 6= ”×” (Lemma 2).

join bag: For all Y ∈ Y(Bi), we set [Y]i = [Y]j ∪ [Y]`.
forget uv ∈M∗ bag: For all Y ∈ Y(Bi), we set

[Y]i = argmin({score([Y ′]j) | Y ′ ∈ Y(Bj) ∧ ∃Y ′′∈Y({u,v})Y ′ = Y ∪ Y ′′}).
Lemma 3. The described algorithm is correct, that is, the computed value of
[Y]i corresponds to the semantics.

Proof. The proof is by induction on the height of Bi in the tree decomposition.
In the induction base, Bi is a leaf of (X , T) and Bi = ∅. Thus, the only table
entry is [∅]i and since ∅ is the only solution, [∅]i = ∅ corresponds to the defined
semantics. For the induction step, we distinguish the possible bag types of Bi
with children Bj and B` (j = ` if Bi is not a join bag).

Introduce matching edge uv bag: We prove that each step of the algorithm
is correct. We introduce the non-matching edges only in the second step. In
the first step, we consider that uv is isolated in G∗i .
1. When an isolated matching edge uv is introduced, if X is a solution of
G∗j , then each vertex set X ′ such that X ⊆ X ′ is also a soluton G∗i .
For each Y ∈ Y(Bj), since [Y]j is the solution with a minimum score
and with the signature Y in Bj , for each Y ′ ∈ Y({u, v}) we have that
[Y]j ∪ T (Y ′) is a minimum-score solution with signature Y ∪ Y ′ in Bi.
Thus, [Y ∪ Y ′]i = [Y]j ∪ T (Y ′) corresponds to the semantics.

2. We now introduce successively each non-matching edge. Let E′ be the set
of incident edges to the matching edge uv. For each xx′ ∈ E′ and each
Y ∈ Y(Bi),
- if Y (x) = ”N” ∧ Y (x′) 6= ”×” or Y (x′) = ”N” ∧ Y (x) 6= ”×”, then, by
Lemma 2, there is no solution eligible with respect to the tuple (Y,Bi)
and, thus [Y]i = ⊥ is valid.

If [Y]i 6= ⊥, then by Lemma 2, there is a solutionX eligible with respect to
the tuple (Y,Bi). We show that [Y]i contains a minimum-score solution.
Suppose that there is a solution X ′ with the signature Y in Bi such that
score(X ′) < score([Y]i). Let Y ′ ∈ Y(Bj) and Y ′′ ∈ Y({u, v}) such that
Y = Y ′∪Y ′′. Since X ′∩T (Y) = [Y]i∩T (Y), we have score(X ′ \ (T (Y)∩
{u, v})) < score[Y ′]j , contradicting the induction hypothesis.

Join bag: Let Y ∈ Y(Bi) and u ∈ Bi. Notice that G∗j ∩ G∗` = Bi. Thus, a
cut in the solution [Y]j \ Bi can not remove an edge incident to a vertex
of G∗` \ Bi. Without loss of generality, if there is no solution eligible for
the pair (Y,Bj) (that is, [Y]j = ⊥), then there is no solution eligible for
(Y,Bi). If [Y]j cleans all matching edges in G∗j and [Y]` cleans all matching
edges in G∗` , then [Y]j ∪ [Y]` cleans all matching edges in G∗j ∪ G∗` . Thus,
[Y]j ∪ [Y]` is eligible for (Y,Bi). Suppose that there is a solution X ′ eligible
with respect for (Y,Bi) such that score(X ′) < score([Y]j∪ [Y]`) in G∗i . Then,

11

score(X ′) ∩ V (G∗j) < score([Y]j) in G∗j or score(X ′) ∩ V (G∗`) < score([Y]`)
in G∗` . Both cases contradict the induction hypothesis. Thus, [Y]i ∪ [Y]j has
a minimum score and [Y]i = [Y]j ∪ [Y]`.

Forget matching edge uv bag: Since G∗i = G∗j , each solution in G∗j is also a
solution in G∗i . Since, for each Y ∈ Y(Bi), all solutions of S = {[Y ′]j | ∀Y ′′ ∈
Y({u, v}), Y ′ = Y ∪ Y ′′} have the signature Y in Bi, we store a minimum-
score solution ofX in the table entry [Y]i. Thus, [Y]i = argmin({score([Y ′]j) |
Y ′ ∈ Y(Xj) ∧ ∃Y ′′ ∈ Y({u, v}), Y ′ = Y ∪ Y ′′}) is valid. ut

In each bag Bi, we have to iterate over all signatures in Y(Bi). The number of
possible values for an ambiguous edge is equal to two under the weight score and
to five under the cut score. Thus, the number of signatures in a bag containing
tw matching edges is equal to 2tw under the weight score and to 5tw under the
cut score. Since the number of bags depends on the number of non-matching
edges, we obtain a complexity of O(2tw · |E(G′)|) under the weight score and a
complexity of O(5tw ·|E(G′)|) under the cut score. To obtain an optimal solution,
we just have to take the value of [∅]r computed by the algorithm.

Corollary 1. Given a M∗-preserving nice tree decomposition with width tw,
Semi-Brutal Cut can be solved in O(2tw · |E(G∗)|) time under the weight score
and in O(5tw · |E(G∗)|) time under the cut score.

Optimization As no non-ambiguous matching edge will contain a cut, we can
remove these matching edges from the graph before computing the tree decom-
position, yielding a reduction of the treewidth. However, we must ensure that
each vertex stores its adjacency to a removed matching edge.

6 Experiments

The contribution of the paper being mainly theoretical, we propose implemen-
tation and tests on real instances. In order to compare the performance of both
algorithms, we tested them on datasets already used in [14].We can observe that
selected instances have a small treewidth. A real instance of SBC is generated
from a collection of alternating paths and alternating cycles, thus we may think
that such instance has a small treewidth. Our implementation of the tree decom-
position based algorithm relies on the HTD library [1] for tree decomposition
construction. We use ILOG CPLEX to provide a solution to our integer linear
programming formulation. We compare results for both scores, statistics on pro-
duced solutions are presented in Table 1. Additional statistics on instances are
given in Table 2. We can see that the tree decomposition algorithm is faster under
the weight score, which can be explained by the difference of the theoretical com-
plexity. For the cut score, the dynamic programming is slightly faster than the
ILP with one exception for the anopheles genome. Since the real instances seem
to have a small treewidth and the tree decomposition algorithm uses more the in-
ternal structure of the problem, we may think that it remains faster than the ILP.

12

Table 1. Results statistics. “ILP” and “Tree Dec.” columns indicate the execution
times, in seconds.

Tree Cut Score Weight Score
data -width Score ILP Tree Dec. Score ILP Tree Dec.
anopheles 3 1093 4.63 5.10 1387 4.76 4.22
anthrax 2 12 0.42 0.32 17 0.41 0.31
gloeobacter 2 39 0.44 0.36 67 0.46 0.36
lactobacillus 2 13 0.19 0.15 18 0.19 0.14
pandora 1 5 0.25 0.19 6 0.25 0.18
pseudomonas 2 36 0.54 0.42 51 0.53 0.42
rice 2 3 0.01 0.00 3 0.01 0.00
sacchr3 2 3 0.03 0.02 5 0.03 0.02
sacchr12 4 12 0.10 0.07 18 0.09 0.07

7 Conclusion

In this paper, we present a novel point of view on a problem dedicated to the
production of genomic sequences. The previous exploration of the frontier be-
tween tractable and hard cases did not provide a satisfactory polynomial-time
algorithm and, thus, we explore here two possible solutions: The first is to posi-
tion the problem relative to the PLS class, aiming to decide whether local search
is easier than global search. The second is to consider natural exact methods. In
this context, we studied and implemented a simple and efficient ILP and a tree-
decomposition based method, yielding an FPT algorithm with respect to the
treewidth of the input graph. Interesting open questions include the existence of
polynomial-time approximation algorithms, and whether alternative tools, such
as color coding or kernel techniques, allow designing more efficient FPT algo-
rithms. As a more practical perspective, we intend to perform further tests on
these algorithms and previous ones, to explore the ability of each method to per-
form well on various kinds of genomes.

References

[1] M. Abseher, N. Musliu, and S. Woltran. htd - A free, open-source framework for
(customized) tree decompositions and beyond. In Proc. of the 14th International
Conference on Integration of AI and OR Techniques in Constraint Programming
(CPAIOR 2017), volume 10335 of LNCS, pages 376–386. Springer, 2017.

[2] M. A. Biscotti, E. Olmo, and J. S. Heslop-Harrison. Repetitive DNA in eukaryotic
genomes. Chromosome Res., 23(3):415–420, Sep 2015.

[3] P. Bongartz. Resolving repeat families with long reads. BMC Bioinformatics, 20
(232), 05 2019. ISSN 1471-2105. doi: 10.1186/s12859-019-2807-4.

[4] A. Chateau and R. Giroudeau. A complexity and approximation framework for
the maximization scaffolding problem. Theoretical Computer Science, 595:92–106,
2015.

[5] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
J. Comput. Syst. Sci., 37(1):79–100, 1988.

[6] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer, 1994.

13

[7] M. Krentel. On finding and verifying locally optimal solutions. SIAM Journal on
Computing, 19(4):742–749, 1990.

[8] I. Mandric, J. Lindsay, I. I. Măndoiu, and A. Zelikovsky. Scaffolding algorithms.
In I. Măndoiu and A. Zelikovsky, editors, Computational Methods for Next Gen-
eration Sequencing Data Analysis, chapter 5, pages 107–132. Wiley, 2016.

[9] A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard to
solve. SIAM J. Comput., 20(1):56–87, 1991.

[10] D. Tabary, T. Davot, A. Chateau, R. Giroudeau, and M. Weller. New results
about the linearization of scaffolds sharing repeated contigs. In COCOA 2018,
Lecture Notes in Computer Science, pages 94–107. Springer, 2018.

[11] H. Tang. Genome assembly, rearrangement, and repeats. Chemical Reviews, 107
(8):3391–3406, 2007.

[12] A. I. Tomescu, T. Gagie, A. Popa, R. Rizzi, A. Kuosmanen, and V. Mäkinen.
Explaining a weighted DAG with few paths for solving genome-guided multi-
assembly. IEEE/ACM Trans. Comp. Biology Bioinform., 12(6):1345–1354, 2015.

[13] A. Ummat and A. Bashir. Resolving complex tandem repeats with long
reads. Bioinformatics, 30(24):3491–3498, 07 2014. ISSN 1367-4803. doi: 10.
1093/bioinformatics/btu437. URL https://doi.org/10.1093/bioinformatics/
btu437.

[14] M. Weller, A. Chateau, and R. Giroudeau. Exact approaches for scaffolding. BMC
Bioinformatics, 16(Suppl 14):S2, 2015.

[15] M. Weller, A. Chateau, and R. Giroudeau. On the linearization of scaffolds shar-
ing repeated contigs. In Combinatorial Optimization and Applications - 11th In-
ternational Conference, COCOA 2017, Shanghai, China, December 16-18, 2017,
Proceedings, Part II, pages 509–517, 2017.

[16] M. Weller, A. Chateau, C. Dallard, and R. Giroudeau. Scaffolding problems
revisited: Complexity, approximation and fixed parameter tractable algorithms,
and some special cases. Algorithmica, 80(6):1771–1803, 2018.

[17] M. Weller, A. Chateau, R. Giroudeau, and M. Poss. Scaffolding with repeated
contigs using flow formulations. 2018.

14

https://doi.org/10.1093/bioinformatics/btu437
https://doi.org/10.1093/bioinformatics/btu437

A Appendix

A.1 Supplementary materials

Table 2. Sequences selected for experiments

data #AE1 #NAE2 total weight avg. deg.3 max / min deg. treewidth
anopheles 1523 7695 14937 2.43598 6 / 2 3
anthrax 13 260 329 2.65385 4 / 2 2
gloeobacter 44 432 694 2.84091 6 / 2 2
lactobacillus 15 135 225 2.63333 5 / 2 2
pandora 5 183 210 2.5 4 / 2 1
pseudomonas 47 413 650 2.59574 5 / 2 2
rice 6 9 29 2.08333 3 / 2 2
sacchr3 5 25 54 2.7 4 / 2 2
sacchr12 23 74 190 2.43478 4 / 2 4

1. ambiguous edges 2. non-ambiguous edges 3. average degree of extremities of amb.
paths

a1 a2 b1 b2

c1 c2 d2 d1

⇒

(a1, a2) (b1, b2)

(c1, c2) (d1, d2)

Fig. 4. Application of the contraction. Left: a solution graph G∗, the matching edges
are in bold. Right: graph resulting of the contraction of the matching edges in G∗.

15

Leaf Bag Introduce Bag Forget Bag Join Bag Root Bag

∅

(a1, a2)

(a1, a2)

(c1, c2)

(a1, a2)

(c1, c2) (d1, d2)

(a1, a2)

(d1, d2)

∅

(a1, a2)

(a1, a2)

(b1, b2)

(a1, a2) (b1, b2)

(d1, d2)

(a1, a2)

(d1, d2)

(a1, a2)

(d1, d2)

(a1, a2)

∅

∅

a1 a2

a1 a2

c1 c2

a1 a2

c1 c2 d2 d1

a1 a2

d2 d1

∅

a1 a2

a1 a2
b1 b2

a1 a2

d2 d1

b1 b2

a1 a2

d2 d1

a1 a2

d2 d1

a1 a2

∅

Fig. 5. Nice tree decomposition of the graph given in Figure 4. Left: Nice tree decom-
position of the graph after applying the contraction operation. Right: Same nice tree
decomposition after replacing the vertices by their corresponding matching edges.

16

