
ar
X

iv
:1

91
0.

11
92

4v
1

 [
cs

.P
L

]
 2

5
O

ct
 2

01
9

A Calculus for Language Transformations

Benjamin Mourad and Matteo Cimini

University of Massachusetts Lowell, Lowell MA 01854, USA

Abstract. In this paper we propose a calculus for expressing algorithms
for programming languages transformations. We present the type system
and operational semantics of the calculus, and we prove that it is type
sound. We have implemented our calculus, and we demonstrate its ap-
plicability with common examples in programming languages. As our
calculus manipulates inference systems, our work can, in principle, be
applied to logical systems.

1 Introduction

Operational semantics is a standard de facto to defining the semantics of pro-
gramming languages [11]. However, producing a programming language defini-
tion is still a hard task. It is not surprising that theoretical and software tools
for supporting the modeling of languages based on operational semantics have
received attention in research [6,12,7]. In this paper, we address an important
aspect of language reuse which has not received attention so far: Producing
language definitions from existing ones by the application of transformation al-
gorithms. Such algorithms may automatically add features to the language, or
switch to different semantics styles. In this paper, we aim at providing theoretical
foundations and a software tool for this aspect.

Consider the typing rule of function application below on the left and its
version with algorithmic subtyping on the right.

(t-app)

Γ ⊢ e1 : T1 → T2 Γ ⊢ e2 : T1

Γ ⊢ e1 e2 : T2

f(t-app)
=⇒

(t-app’)

Γ ⊢ e1 : T11 → T2 Γ ⊢ e2 : T12

T12 <: T11

Γ ⊢ e1 e2 : T2

Intuitively, we can describe (t-app’) as a function of (t-app). Such a function
includes, at least, giving new variable names when a variable is mentioned more
than once, and must relate the new variables with subtyping according to the
variance of types (covariant vs contravariant). Our question is: Can we express,
easily, language transformations in a safe calculus?

Language transformations are beneficial for a number of reasons. On the
theoretical side, they isolate and make explicit the insights that underly some
programming languages features or semantics style. On the practical side, lan-
guage transformations do not apply just to one language but to several languages.
They can alleviate the burden to language designers, who can use them to au-
tomatically generate new language definitions using well-established algorithms
rather than manually defining them, an error prone endeavor.

http://arxiv.org/abs/1910.11924v1

2 Mourad and Cimini

In this paper, we make the following contributions.

– We present L–Tr (pronounced “Elter”), a formal calculus for language trans-
formations (Section 2). We define the syntax (Section 2.1), operational se-
mantics (Section 2.2), and type system (Section 2.3) of L–Tr.

– We prove that L–Tr is type sound (Section 2.3).
– We show the applicability of L–Tr to the specification of two transforma-

tions: adding subtyping and switching from small-step to big-step semantics
(Section 3). Our examples show that L–Tr is expressive and offers a rather
declarative style to programmers.

– We have implemented L–Tr [9], and we report that we have applied our
transformations to several language definitions.

Related work are discussed in Section 4, and Section 5 concludes the paper.

2 A Calculus for Language Transformations

We focus on language definitions in the style of operational semantics. To briefly
summarize, languages are specified with a BNF grammar and a set of inference
rules. BNF grammars have grammar productions such as Types T ::= B | T →
T . We call Types a category name, T is a grammar meta-variable, and B and
T → T , as well as, for example, (λx.e v), are terms. (λx.e v) −→ e[v/x] and

Γ ⊢ (e1 e2) : T2 are formulae. An inference rule
f1, . . . , fn

f
has a set of

formulae above the horizontal line, which are called premises, and a formula
below the horizontal line, which is called the conclusion.

2.1 Syntax of L–Tr

Below we show the L–Tr syntax for language definitions, which reflects the oper-
ational semantics style of defining languages. Sets are accommodated with lists.

cname ∈ CatName, X ∈ Meta-Var, opname ∈ OpName, predname ∈ PredName

Language L ::= (G,R)
Grammar G ::= {s1, . . . , sn}
Grammar Pr. s ::= cname X ::= lt

Rule r ::=
lf

f
Formula f ::= predname lt
Term t ::= X | opname lt | (X)t | t[t/X]
List of Rules R ::= nil | cons r R
List of Formula lf ::= nil | cons f lf

List of Terms lt ::= nil | cons t lt

We assume a set of category namesCatName, a set of meta-variablesMeta-
Var, a set of constructor operator names OpName, and a set of predicate names
PredName. We assume that these sets are pairwise disjoint. OpName contains

A Calculus for Language Transformations 3

elements such as → and λ (elements do not have to necessarily be (string)
names). PredName contains elements such as ⊢ and −→. To facilitate the
modeling of our calculus, we assume that terms and formulae are defined in
abstract syntax tree fashion. Here this means that they always have a top level
constructor applied to a list of terms. L–Tr also provides syntax to specify unary
binding (z)t and capture-avoiding substitution t[t/z]. Therefore, L–Tr is tailored
for static scoping rather than dynamic scoping. Lists can be built as usual with
the nil and cons operator. We sometimes use the shorthand [o1, . . . on] for the
corresponding series of cons applications ended with nil.

To make an example, the typing rule for function application and the β-
reduction rules are written as follows. (app is the top-level operator name for
function application).

[⊢ [Γ, e1, (→ [T1, T2])], ⊢ [Γ, e2, T1]]

⊢ [Γ, (app [e1, e2]), T2]

[]

−→ [(app [(λ [(x)e]), v]), e[v/x]]

Below we show the rest of the syntax of L–Tr.
x ∈ Var, str ∈ String, {self , premises , conclusion} ⊆ Var

Expression e ::= x | cname | str | t̂ | f̂ | r̂
| nil | cons e e | head e | tail e | e@e
| map(e, e) | e(e) | mapKeys e
| just e | nothing | get e
| cname X ::= e | cname X ::= . . . e
| getRules | setRules e
| e[p] : e | e(keep)[p] : e | uniquefy(e, e, str) ⇒ (x, x) : e
| if b then e else e | e ; e | e;r e | skip
| newVar | e’ | fold predname e
| error

Boolean Expr. b ::= e == e | isEmpty e | e in e | isNothing e | b and b | b or b | not b

L–Tr Rule r̂ ::= e
e

L–Tr Formula f̂ ::= predname e | x e
L–Tr Term t̂ ::= X | opname e | x e | (X)e | e[e/X]
Pattern p ::= x : T | predname p | opname p | x p | nil | cons p p
Value v ::= t | f | r | cname | str

| nil | cons v v | map(v, v) | just v | nothing | skip

Programmers write expressions to specify transformations. At run-time, an
expression will be executed with a language definition. Evaluating an expression
may modify the current language definition.

Design Principles: We strive to offer well-crafted operations that map well
with the language manipulations that are frequent in adding features to lan-
guages or switching semantics styles. There are three features that we can point
out which exemplify our approach the most: 1) The ability to program parts of
rules, premises and grammars, 2) selectors e[p] : e, and 3) the uniquefy op-
eration. Below, we shall the describe the syntax for transformations, and place
some emphasis in motivating these three operations.

Basic Data Types: L–Tr has strings and has lists with typical operators for

4 Mourad and Cimini

extracting their head and tail, as well as for concatenating them (@). L–Tr also
has maps (key-value). In map(e1, e2), e1 and e2 are lists. The first element of e1
is the key for the first element of e2, and so on for the rest of elements. Such
a representation fits better our language transformations examples, as we shall
see in Section 3. Operation e1(e2) queries a map, where e1 is a map and e2 is a
key, and mapKeys e returns the list of keys of the map e. Maps are convenient
in L–Tr to specify information that is not expressible in the language defini-
tion. For example, we can use maps to store information about whether some
type argument is covariant or contravariant, or to store information about the
input-output mode of the arguments of relations. Section 3 shows that we use
maps in this way extensively. L–Tr also has options (just, nothing, and get).
We include options because they are frequently used in combination with the
selector operator described below. Programmers can refer to grammar categories
(cname) in positions where a list is expected. When cname is used the corre-
sponding list of grammar items is retrieved.

Grammar Instructions : cname X ::= e is essentially a grammar production.
With this instruction, the current grammar is augmented with this production.
cname X ::= . . . e (notice the dots) adds the terms in e to an existing pro-
duction. getRules and setRules e retrieve and set the current list of rules,
respectively.

Selectors : e1[p] : e2 is the selector operator. This operation selects one
by one the elements of the list e1 that satisfy the pattern p and executes the
body e2 for each of them. This operation returns a list that collects the re-
sult of each iteration. Selectors are useful for selecting elements of a language
with great precision, and applying manipulations to them. To make an exam-
ple, suppose that the variable prems contains the premises of a rule and that
we wanted to invert the direction of all subtyping premises in it. The operation
prems[T1 <: T2] : just T2 <: T1 does just that. Notice that the body of a
selector is an option. This is because it is common for some iteration to return
no values (nothing). The examples in Section 3 show this aspect. Since options
are commonly used in the context of selector iterations, we have designed our
selector operation to automatically handle them. That is, nothings are automat-
ically removed, and the selector above returns the list of new subtyping premises
rather than a list of options. The selector e(keep)[p] : e works like an ordinary
selector except that it also returns the elements that failed the pattern-matching.

Uniquefy: When transforming languages it is often necessary to assign dis-
tinct variables. The example of algorithmic subtyping in the introduction is
archetypal. L–Tr accommodates this operation as primitive with uniquefy.
uniquefy(e1, e2, str) ⇒ (x, y) : e3 takes in input a list of formulae e1, a map e2,
and a string str (we shall discuss x, y, and e3 shortly). This operation modifies
the formulae e2 to use different variable names when a variable is mentioned
more than once. However, not every variable is subject to the replacement. Only
the variables that appear in some specific positions are targeted. The map e2
and the string str contain the information to identify these positions. e2 maps
operator names and predicate names to a list that contains a label (as a string)

A Calculus for Language Transformations 5

for each of their arguments. For example, the mapm = {⊢ 7→ [“in”, “in”, “out”]}
says that Γ and e are inputs in a formula Γ ⊢ e : T , and that T is the output.
Similarly, the map {→ 7→ [“contravariant”, “covariant””]} says that T1 is con-
travariant and T2 is covariant in T1 → T2. The string str specifies a label. L–Tr
inspects the formulae in e1 and their terms. Arguments that correspond to the
label according to the map then receive a new variable. To make an example,
if lf is the list of premises of (t-app) and m is defined as above (input-output
modes), the operation uniquefy(lf ,m, “out”) ⇒ (x, y) : e3 creates the premises
of (t-app’) shown in the introduction. Furthermore, the computation continues
with the expression e3 in which x is bound to these premises and y is bound to a
map that summarizes the changes made by uniquefy. This latter map associates
every variable X to the list of new variables that uniquefy has used to replace
X . For example, since uniquefy created the premises of (t-app’) by replacing
T1 in two different positions with T11 and T12, the map {T1 7→ [T11, T12]} is
passed to e3 as y. Section 3 will show two examples that make use of uniquefy.

Control Flow : L–Tr includes the if-then-else statement with typical guards.
L–Tr also has the sequence operation ; (and skip) to execute language transfor-
mations one after another. e1;r e2, instead, executes sequences of transformations
on rules. After e1 evaluates to a rule, e2 makes use of that rule as the subject of
its transformations.

Programming Rules, Premises, and Terms : In L–Tr a programmer can write
L–Tr terms (t̂), L–Tr formulae (f̂), and L–Tr rules (r̂) in expressions. These dif-
fer from the terms, formulae and rules of language definitions in that they can
contain arbitrary expressions, such as if-then-else statements, at any position.
This is a useful feature as it provides a declarative way to create rules, premises,
or terms. To make an example with rule creation, we can write

prems[T1 <: T2] : just T2 <: T1

f

where prems is the list of premises from above, and f is a formula. As we can
see, using expressions above the horizontal line is a convinient way to compute
the premises of a rule.

Other Operations : The operation fold predname e creates a list of formulae
that interleaves predname to any two subsequent elements of the list e. To make
an example, the operation fold = [T1, T2, T3, T4] generates the list of formulae
[T1 = T2, T2 = T3, T3 = T4]. vars(e) returns the list of the meta-variables in
e. newVar returns a meta-variable that has not been previously used. The tick
operator e’ gives a prime ′ to the meta-variables of e1 (X becomes X ′). vars
and the tick operator also work on lists of terms.

Variables and Substitution: Some variables have a special treatment in L–Tr.
We can refer to the value that a selector iterates over with the variable self . If
we are in a context that manipulates a rule, we can also refer to the premises and
conclusion with variables premises and conclusion . We use the notation e[v/x]
to denote the capture-avoiding substitution. θ ranges over finite sequences of
substitutions denoted with [v1/x1, . . . , vn/xn]. e[v1/x2, v1/x2, . . . , vn/xn] means
((e[v1/x1])[v2/x2]) . . . [vn/xn]. We omit the definition of substitution because it

6 Mourad and Cimini

is standard, for the most part. The only aspect that differs from standard sub-
stitution is that we do not substitute self , premises and conclusion in those
contexts that will be set at run-time (;r, and selector body). For example,
(e1;r e2)[v/X] ≡ (e1[v/X]);r e2, where X ∈ {self , premises , conclusion}.

2.2 Operational Semantics of L–Tr

In this section we show a small-step operational semantics for L–Tr. A configura-
tion is denoted with V ;L; e, where e is an expression, L is the language subject of
the transformation, and V is the set of meta-variables that have been generated
by newVar. Calls to newVar make sure not to produce name clashes.

The main reduction relation is V ;L; e −→ V ′;L′; e′, defined as follows. Eval-
uation contexts E are straightforward and can be found in Appendix A.

V ;L; e −→@ V ′;L′; e′

⊢ L′

V ;L;E[e] −→ V ′;L′;E[e′]

V ;L; e −→@ V ′;L′; e′

6⊢ L′

V ;L;E[e] −→ V ;L; error

V ;L;E[error] −→ V ;L; error

This relation relies on a step V ;L; e −→@ V ′;L′; e′, which concretely performs
the step. Since a transformation may insert ill-formed elements such as ⊢ T T
or → e e in the language, we also rely on a notion of type checking for language
definitions ⊢ L′ decided by the language designer. For example, our implementa-
tion of L–Tr compiles languages to λ-prolog and detects ill-formed languages at
each step, but the logic of Coq, Agda, Isabelle could be used as well. Our type
soundness theorem works regardless of the definition of ⊢ L′.

Fig. 1 shows the reduction relation V ;L; e −→@ V ′;L′; e′. We show the most
relevant rules. The rest of the rules can be found in Appendix B.

(r-cname-ok) and (r-cname-fail) handle the encounter of a category
name. We retrieve the corresponding list of terms from the grammar or throw
an error if the production does not exist.

(r-getRules) retrieves the list of rules of the current language, and (r-
setRules) updates this list.

(r-new-syntax) replaces the grammar with a new one that contains the
new production. The meta-operation G\cname in that rule removes the pro-
duction with category name cname from G (definition is straightforward and
omitted). The position of cname in (cname X ::= v) is not an evaluation con-
text, therefore (r-cname-ok) will not replace that name. (r-add-syntax-ok)
takes a step to the instruction for adding new syntax. The production to be
added includes both old and new grammar terms. (r-add-syntax-fail) throws
an error when the category name does not exist in the grammar, or the meta-
variable does not match.

(r-rule-seq) applies when the first expression has evaluated, and starts the
evaluation of the second expression. (Evaluation context E; e evaluates the first
expression)

(r-rule-comp) applies when the first expression has evaluated to a rule,

A Calculus for Language Transformations 7

Dynamic Semantics V ;L; e −→ V ;L; e

{cname X ::= v} ∈ G

V ; (G,R); cname −→@ V ; (G,R); v
(r-cname-ok)

{cname X ::= v} 6∈ G

V ; (G,R); cname −→@ V ; (G,R); error
(r-cname-fail)

V ; (G,R); getRules −→@ V ; (G,R);R (r-getRules)

V ; (G,R);setRules v −→@ V ; (G, v); skip (r-setRules)

G′ = (G\cname) ∪ {cname X ::= v}

V ; (G,R); (cname X ::= v) −→@ ∅; (G′, R); skip
(r-new-syntax)

{cname X ::= v′} ∈ G

V ; (G,R); (cname X ::= . . . v) −→@ ∅; (G,R); cname X ::= v′@v
(r-add-syntax-ok)

{cname X ::= v′} 6∈ G

V ; (G,R); (cname X ::= . . . v) −→@ ∅; (G′, R);error
(r-add-syntax-fail)

V ;L; (skip; e) −→@ V ;L; e (r-seq)

V ;L; v;r e −→@ V ;L; eθ(v)
rule

(r-rule-comp)

V ;L; nil[p] : e −→@ V ;L; nil (r-selector-nil)

match(v1, p) = θ θ′ =

{

θ
(r)
rule

if v1 = r

{self 7→ v1} otherwise

V ;L; (cons v1 v2)[p] : e −→@ V ;L; (cons∗ eθθ′ (v2[p] : e))
(r-selector-cons-ok)

match(v1, p) 6= θ

V ;L; (cons v1 v2)[p] : e −→@ V ;L; (v2[p] : e)
(r-selector-cons-fail)

X ′ 6∈ V ∪ vars(L) ∪ range(tick)

V ; (G,R); newVar −→@ V ∪ {X ′};L;X ′
(r-newvar)

(lf ′, v2) = uniquefy
lf
(lf , v1, str,map([], []))

V ;L; uniquefy(lf , v1, str) ⇒ (x, y) : e −→@ V ;L; e[lf ′/x, v2/y]
(r-uniquefy-ok)

uniquefy
lf
(lf , v1, str,map([], [])) = fail

V ;L; uniquefy(lf , v1, str) ⇒ (x, y) : e −→@ V ;L; error
(r-uniquefy-fail)

where θ
(r)
rule

≡ [r/self , v1/premises , v2/conclusion] if r =
v1
v2

Fig. 1. Reduction Semantics of L–Tr

8 Mourad and Cimini

and starts the evaluation of the second expression where θ
(v)
rule

sets this rule as
the current rule.

Rules (r-selector-*) define the behavior of a selector. (r-selector-cons-
ok) and (r-selector-cons-fail)make use of the meta-operationmatch(v1, p) =
θ. If this operation succeeds it returns the substitutions θ with the associations
computed during pattern-matching. The definition of match is standard and
is omitted. The body is evaluated with these substitutions and with self in-
stantiated with the element selected. If the element selected is a rule, then the

body is instantiated with θ
(v)
rule

to refer to that rule as the current rule. The
body of the selector always returns an option type. However, cons∗ is defined
as: cons∗ e1 e2 ≡ if (isNothing e1) then e2 else cons (get e1) e2. Therefore,
nothings are discarded, and values wrapped in justs are unwrapped.

(r-newvar) returns a new meta-variable and augments V with it. Meta-
variables are chosen among those that are not in the language, have not previ-
ously been generated by newVar, and are not in the range of tick . This meta-
operation is used by the tick operator to give a prime to meta-variables. r-
newvar avoids clashes with these variables, too.

(r-uniquefy-ok) and (r-uniquefy-fail) define the semantics for uniquefy.
They rely on the meta-operation uniquefy r(lf , v, str, map([], [])), which takes the
list of formulae lf , the map v, the string str, and an empty map to start com-
puting the result map. The definition of uniquefy r is mostly a recursive traversal
of list of formuale and terms, and we omit that. It can be found in Appendix C.
This function can succeed and return a pair (lf ′, v2) where lf ′ is the modified
list of formulae and v2 maps meta-variables to the new meta-variables that have
replaced it. uniquefy r can also fail. This may happen when, for example, a map
such as {→ 7→ “contra”} is passed when → requires two arguments.

2.3 Type System of L–Tr

In this section we define a type system for L–Tr. Types are defined as follows

Type T ::= Language | Rule | Formula | Term
List T | Map T T | Option T | String | OpName | PredName

Type Env Γ ::= ∅ | Γ, x : T

We have a typical type environment that maps variables to types. Fig. 2 shows
the type system. The typing judgement ⊢ V ;L; e means that the configuration
V ;L; e is well-typed. This judgment checks that the variables of V and those in
L are disjoint. This is an invariant that ensures that newVar always produces
fresh names. We also check that L is well-typed and that e is of type Language.

We type check expressions with the typing judgement Γ ⊢ e : T , which
means that e has type T under the assignments in Γ . Most typing rules are
straightforward. We omit rules about lists and maps because they are standard.
We comment only on the rules that are more involved. (t-selector) type checks
a selector operation. We use Γ ⊢ p : T ⇒ Γ ′ to type check the pattern p and
return the type environment for the variables of the pattern. Its definition is

A Calculus for Language Transformations 9

Type System (Configurations) Γ ⊢ V ;L; e

V ∩ vars(L) = ∅ ⊢ L ∅ ⊢ e : Language

⊢ V ;L; e

Type System (Expressions) Γ ⊢ e : T

(t-var)

Γ, x : T ⊢ x : T

(t-opname)

Γ ⊢ e : List Term

Γ ⊢ (opname e) : Term

(t-opname-var)

Γ ⊢ e : List Term

Γ, x : OpName ⊢ (x e) : Term

(t-meta-var)

X : Term

(t-abs)

Γ ⊢ e : Term

Γ ⊢ (z)e : Term

(t-subs)

Γ ⊢ e1 : Term Γ ⊢ e2 : Term

Γ ⊢ e1[e2/z] : Term

(t-predname)

Γ ⊢ e : List Term

Γ ⊢ (predname e) : Formula

(t-predname-var)

Γ ⊢ e : List Term

Γ, x : PredName ⊢ (x e) : Formula

(t-rule)

Γ ⊢ e1 : List Formula

Γ ⊢ e2 : Formula

Γ ⊢
e1
e2

: Rule

(t-seq)

Γ ⊢ e1 : Language
Γ ⊢ e2 : Language

Γ ⊢ e1; e2 : Language

(t-rule-comp)

Γ ⊢ e1 : Rule
Γ, Γrule ⊢ e2 : Rule

Γ ⊢ e1;r e2 : Rule

(t-selector)

Γ ⊢ e1 : List T Γ ⊢ p : T ⇒ Γ ′

Γ ′′ =

{

Γrule if T = Rule

self : T otherwise
Γ, Γ ′, Γ ′′ ⊢ e2 : Option T ′

Γ ⊢ e1[p] : e2 : List T ′

(t-syntax-new and t-syntax-add)

Γ ⊢ e : List Term

Γ ⊢ cname X ::= e : Language
Γ ⊢ cname X ::= . . . e : Language

(t-cname)

Γ ⊢ cname : List Term

(t-getRules)

Γ ⊢ getRules : List Rule

(t-setRules)

Γ ⊢ e : List Rule

Γ ⊢ setRules e : Language

(t-uniquefy)

Γ ⊢ e1 : List Formula

Γ ⊢ e2 : Map T ′ (List String) T ′ = OpName or T ′ = PredName

Γ, x : List Formula, y : Map Term (List Term) ⊢ e3 : T

Γ ⊢ uniquefy(e1, e2, str) ⇒ (x, y) : e3 : T

(t-skip)

Γ ⊢ skip : Language

(t-newvar)

Γ ⊢ newVar : Term

where Γrule ≡ self : Rule, premises : List Formula, conclusion : Formula

Fig. 2. Type System of L–Tr

10 Mourad and Cimini

standard and is omitted. When we type check the body e2 we then include Γ ′. If
the elements of the list are rules then we also include Γrule to give a type to the
variables for referring to the current rule. Otherwise, we assign self the type of
the element of the list. Selectors with keep are analogous and omitted. (t-rule-
comp) type checks a rule composition. In doing so, we type check the second
expression with Γrule. (t-uniquefy) type checks the uniquefy operation. As we
rename variables depending on the position they hold in terms and formulae,
the keys of the map are of type OpName or PredName, and values are strings. We
type check e3 giving x the type of list of formulae, and y the type of a map from
meta-variables to list of meta-variables.

We have proved that L–Tr is type sound.

Theorem 1 (Type Soundness). For all Γ , V , L, e, if ⊢ V ;L; e then V ;L; e −→∗

V ′;L′; e′ s.t. i) e′ = skip, ii) e′ = error, or iii) V ′;L′; e′ −→ V ′′;L′′; e′′, for
some e′′.

The proof is by induction on the derivation ⊢ V ;L; e, and follows the standard
approach of Wright and Felleisen [13] through a progress theorem and a subject
reduction theorem. The proof can be found in Appendix D.

3 Examples

We show the applicability of L–Tr with two examples of language transforma-
tions: adding subytyping [10] and switching to big-step semantics [8]. In the code
we use let-binding, pattern-matching, and an overlap operation that returns true
if two terms have variables in common. These operations can be easily defined in
L–Tr, and we show them in Appendix E. The code below defines the transforma-
tion for adding subtyping. We assume that two maps are already defined,mode =
{⊢ 7→ [“inp”, “inp”, “out”]} and variance = {→ 7→ [“contra”, “cova”]}.

1 setRules

2 getRules(keep)[(⊢ [Γ, e, T])] :
3 uniquefy(premises,mode, “out”) ⇒ (uniq, newpremises) :
4 newpremises @ concat(mapKeys(uniq)[Tf] : fold <: uniq(Tf))

5 conclusion
6 ;r
7 concat(premises(keep)[T1 <: T2] :
8 premises[(⊢ [Γ, ev, (cv Tsv)])] :
9 let vmap = map(Tsv, variance(cv)) in

10 if vmap(T1) = “contra” then T2 <: T1

11 else if vmap(T1) = “inv” and vmap(T2) = “inv” then T1 = T2 else T1 <: T2)

conclusion
12 ;r
13 let outputVars = match conclusion with (⊢ [Γ, ec, Tc]) ⇒ vars(Tc) in
14 let joins = mapKeys(uniq)[Ti] :
15 if Ti in outputVars then (⊔ uniq(Ti) = Ti) else nothing

16 in premises @ joins

17 conclusion

A Calculus for Language Transformations 11

Line 1 updates the rules of the language with the rules computed by the code in
lines 2-17. Line 2 selects all typing rules, and each of them will be the subject
of the transformations in lines 3-17. Line 3 calls uniquefy on the premises of
the selected rule. We instruct uniquefy to give new variables to the outputs of
the typing relation ⊢, if they are used more than once in that position. As pre-
viously described, uniquefy returns the list of new premises, which we bind to
newpremises , and the map that assigns variables to the list of the new variables
generated to replace them, which we bind to uniq. The body of uniquefy goes
from line 4 to 17. Lines 4 and 5 build a new rule with the conclusion of the
selected rule (line 5). It does so using the special variable name conclusion. The
premises of this rule include the premises just generated by uniquefy. Further-
more, we add premises computed as follows. With mapKeys(uniq)[Tf], we iterate
over all the variables replaced by uniquefy. We take the variables that replaced
them and use fold to relate them all with subtyping. In other words, for each
{T 7→ [T1, . . . , Tn]} in uniq, we have the formulae T1 <: T2, . . . , Tn−1 <: Tn.
This transformation has created a rule with unique outputs and subtyping, but
subtyping may be incorrect because if some variable is contravariant its cor-
responding subtyping premise should be swapped. Lines 7-11, then, adjust the
subtyping premises based on the variance of types. Line 7 selects all subtyping
premises of the form T1 <: T2. For each, Line 8 selects typing premises with
output of the form (cv Tsv). We do so to understand the variance of variables.
If the first argument of cv is contravariant, for example, then the first element of
Tsv warrants a swap in a subtyping premise because it is used in the contravari-
ant position. We achieve this by creating a map that associates the variance to
each argument of cv. The information about the variance for cv is in variance.
If T1 or T2 (from the pattern of the selected premise) appear in Tsv then they
find themselves with a variance assigned in vmap. Lines 10-11 generate a new
premise based on the variance of variables. For example, if T1 is contravariant
then we generate T2 <: T1.

The program written so far (lines 1-11) is enough to add subtyping to several
typing rules. For example, (t-app) can be transformed into (t-app’) with this
program. However, some typing rules need a more sophisticated algorithm. Below
is the typing rule for if-then-else on the left, and its version with subtyping on
the right, which makes use of the join operator (⊔) (see, [10]).

Γ ⊢ e1 : Bool
Γ ⊢ e2 : T Γ ⊢ e2 : T

Γ ⊢ (if e1 e2 e3) : T
=⇒

Γ ⊢ e1 : Bool Γ ⊢ e2 : T1

Γ ⊢ e3 : T2 T1 ⊔ T2 = T

Γ ⊢ (if e1 e2 e3) : T

If we removed T1 ⊔ T2 the meta-variable T would have no precise instantiation
because its counterpart variables have been given new names. Lines 13-17 ac-
commodate for cases of the like. Line 13 saves the variables that appear the
output type of the rule in outputVar. We then iterate over all the keys of uniq,
that is, the variables that have been replaced. For each of them, we see if they
appear in outputVar. If so then we create a join operator with the variables newly
generated to replace this variable, which can be retrieved from uniq. We set the

12 Mourad and Cimini

output of the join operator to be the variable itself, because that is the one used
in the conclusion.

The algorithm above shows that uniquefy is a powerful operation of L–Tr.
To illustrate uniquefy further, let us consider a small example before we address
big-step semantics. Suppose that we would like to make every test of equality
explicit. We therefore want to disallow terms such as (op e e e) to appear in
the premises, and want to turn them into (op e1 e2 e3) together with premises
e1 = e2 and e2 = e3. In L–Tr we can do this in the following way. Below we
assume that the map allOps maps each operator to the string “yes” for each of
its arguments. This instructs uniquefy to look for every argument.

1 ...

2 uniquefy(premises, allOps, “yes”) ⇒ (uniq, newpremises) :
3 newpremises @ concat(mapKeys(uniq)[Tf] : fold = uniq(Tf))

Below, we show the code to turn language definitions into big-step semantics.

1 setRules

2 Value[v] : v −→ v @
3 getRules(keep)[(op es) −→ et] :
4 if isEmpty(Expression[(op)] : self) then nothing else

5 let vres = newVar in

6 let emap = createMap((es[e] : newVar), es) in
7 (mapKeys(emap)[e] : if isVar(emap(e)) and not(emap(e) in vars(et))
8 then nothing else e −→ emap(e))
9 @ (if not(et in es) then [(et −→ vres)] else nil) @ premises

10 (op (mapKeys(emap))) −→ if not(et in es) then vres else et

Line 1 updates the rules of the language with the list computed in lines 2-9.
Line 2 generates reduction rules such as λx.e −→ λx.e, for each value, as it is
standard in big-step semantics. These rules are appended to those generated in
lines 3-9. Line 3 selects all the reduction rules. Line 4 leaves out those rules that
are not about a top-level expression operator. This skips contextual rules that
take a step E[e] −→ E[e′], which do not appear in big-step semantics. To do so,
line 4 make use of Expression[(op)] : self). As op is bound to the operator we
are focusing on (from line 2), this selector returns a list with one element if op
appears in Expression, and an empty list otherwise. This is the check we perform
at line 4. Line 5 generates a new variable that will store the final value of the
step. Line 6 assigns a new variable to each of the arguments in (es). We do so
creating a map emap. These new variables are the formal arguments of the new
rule being generated (Line 9). Line 7-8 makes each of these variables evaluate to
its corresponding argument in es (line 8). For example, for the beta-reduction an
argument of es would be λx.e and we therefore generate the premise e1 −→ λx.e,
where e1 is the new variable that we assigned to this argument with line 6. Line
7 skips generating the reduction premise if it is a variable that does not appear
in et. For example, in the translation of (if-true) (if true e2 e3) −→ e2 we
do not evaluate e3 at all. Line 9 handles the result of the overall small-step
reduction. This result is evaluated to a value (vres), unless it already appears in
the arguments es. The conclusion of the rule syncs with this, and we place vres

A Calculus for Language Transformations 13

or et in the target of the step accordingly. Line 9 also appends the premises from
the original rule, as they contain conditions to be checked.

When we apply this algorithm to the simply typed λ-calculus with if-then-else
we obtain: (we use standard notation rather than L–Tr syntax)

(λx.e v) −→ e[v/x] ⇒
e′1 −→ λx.e e′2 −→ v e[v/x] −→ vres

(e′1 e′2) −→ vres

(if true e1 e2) −→ e1 ⇒
e′1 −→ true e′2 −→ e2

(if e′1 e′2 e′3) −→ e2

We have implemented L–Tr and we have applied it to the examples in this
paper as well as λ-calculi with lists, pairs, sums, options, let-binding, function
composition (g ◦ f)(x), and System F. We also considered these calculi in both
call-by-value and call-by-name version, as well as lazy evaluation for data types
such as pairs and lists. The languages produced by our tool are compiled to λ-
prolog, which type checks them successfully and, in fact, can execute them. We
have tested subtyping with simple programs and checked that this functionality
has been added. We have also tested big-step evaluations with simple programs
and our tests evaluate to the expected values in one step.

The tool, repo of languages generated, and details of our tests can be found
at the website of our tool [9].

4 Related Work

An excellent classification of language transformations has been provided in [5].
The paper defines five operations: language extension, language unification, lan-
guage restriction, self-extension of an (embedded) language, and support for
composition of extensions. Language workbenches (Rascal, Spoofax, etcetera)
implement these types of transformations and similar ones. These transforma-
tions are coarse grained in nature because they do not access the components of
languages with precision. L–Tr, instead, includes operations to scan rules, and
select/manipulate formulae and terms with precision. In this regard, we offer
low-level manipulations, and yet programmers can enjoy a rather declarative
language. We are not aware of calculi that provide these features. We are also
not aware of type soundness proofs of similar calculi.

Proof assistants are optimized for handling inductive (rule-based) definitions,
and can automatically generate powerful inductive reasoning mechanisms from
these definitions. L–Tr does not provide these features, and does not assist lan-
guage designers with their proofs. On the other hand, proof assistants do not
have reflective features for programmatically retrieving their own inductive def-
initions, selected by a pattern, and for manipulating them to form a different
specification, which is instead characteristic of L–Tr. It would be interesting to
explore the merging of the features of proof assistants and L–Tr in one tool.
Another limitation of L–Tr compared to proof assistants (and general-purpose

14 Mourad and Cimini

programming languages) is that L–Tr does not offer recursion but only a simple
form of iteration.

We are not aware of algorithms that automatically add subtyping. Instead,
there has been some work on deriving big-step semantics, which we discuss be-
low. The work of Danvy et al [4,2,3] offers a comprehensive translation from
small-step to big-step semantics. The approach derives small-step abstract ma-
chines first, which are then translated into to big-step abstract machines and
finally into big-step reduction semantics. The approach is rather elaborate and
involves techniques such as refocusing and transition compression. It would be
interesting to express these algorithms in L–Tr, extending the calculus if needed.
Our algorithm differs slightly from that of Ciobâcă [1]. Rules in [1] have been
proved correct. We do not offer correctness theorems about our algorithms, and
we have shown them solely to demonstrate the kinds of manipulations that our
calculus offers.

5 Conclusion

We have presented L–Tr, a calculus for expressing language transformations.
The calculus is expressive enough to model interesting transformations such as
adding subtyping, and switching from small-step to big-step semantics. We have
proved the type soundness of L–Tr, and we have implemented the calculus in a
tool. As L–Tr manipulates inference systems it can, in principle, be applied to
logical systems, and we plan to explore this research venue. Overall, we believe
that the calculus offers a rather declarative style for manipulating languages.

References

1. Ştefan Ciobâcă: From small-step semantics to big-step semantics, automatically.
In: Integrated Formal Methods, 10th International Conference, IFM 2013, Turku,
Finland, June 10-14, 2013. Proceedings. pp. 347–361 (2013)

2. Danvy, O.: Defunctionalized interpreters for programming languages. In: Proceed-
ings of the 13th ACM SIGPLAN International Conference on Functional Program-
ming. pp. 131–142. ICFP ’08, ACM, New York, NY, USA (2008)

3. Danvy, O.: From reduction-based to reduction-free normalization. Advanced Func-
tional Programming pp. 66–164 (2009)

4. Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. BRICS Report Series
11(26) (2004)

5. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. pp.
7:1–7:8. LDTA ’12, ACM, New York, NY, USA (2012)

6. Erdweg, S., Storm, T., Vlter, M., Boersma, M., Bosman, R., Cook, W., Gerritsen,
A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D.P., Molina, P., Palatnik, M., Po-
hjonen, R., Schindler, E., Schindler, K., Solmi, R., Vergu, V.A., Visser, E., Vlist,
K., Wachsmuth, G.H., Woning, J.: The State of the Art in Language Workbenches.
In: Erwig, M., Paige, R.F., Wyk, E. (eds.) Software Language Engineering, Lec-
ture Notes in Computer Science, vol. 8225, pp. 197–217. Springer International
Publishing (2013)

A Calculus for Language Transformations 15

7. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press (2009)

8. Kahn, G.: Natural semantics. In: STACS 87, 4th Annual Symposium on The-
oretical Aspects of Computer Science, Passau, Germany, February 19-21, 1987,
Proceedings. pp. 22–39 (1987)

9. Mourad, Benjamin and Cimini, Matteo: L-Tr: A Calculus for Language Transfor-
mations. http://www.cs.uml.edu/~{}mcimini/LTR/index.html (2019)

10. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
11. Plotkin, G.D.: A structural approach to operational semantics. DAIMI Report

FN-19, Computer Science Department of Aarhus University (1981)
12. Rosu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. The Journal

of Logic and Algebraic Programming 79(6), 397–434 (Aug 2010)
13. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information

and Computation 115(1), 38–94 (1994)

A Evaluation Contexts

Evaluation Contexts E ::= cons E e | cons v E | head E | tail E | E@e | v@E
| map(E, e) | map(v, E) | E(e) | v(E) | mapKeys E
| just E | get E
| cname X ::= E | cname X ::= . . . E
| setRules E
| E[p] : e | E(keep)[p] : e
| uniquefy(E, e, str) ⇒ (x, x) : e
| uniquefy(v, E, str) ⇒ (x, x) : e
| fold predname E
| E ; e | E;r e
| vars(E) | E’

| if E == e then e else e | if v == E then e else e
| if isEmpty E then e else e
| if E in e then e else e | if v in E then e else e
| if isNothing E then e else e

| e
E

| E
v

| predname E
| opname E | (X)E | E[e/X] | v[E/X]

http://www.cs.uml.edu/~{}mcimini/LTR/index.html

16 Mourad and Cimini

B Rest of Operational Semantics

We provide the reduction rules for the selector with keep, fold, and the tick
operator.

V ;L ; nil(keep)[p] : e −→@ V ;L ; nil (r-selector-nil)

match(v1, p) = θ θ′ =

{

θ
(r)
rule

if v1 = r

{self 7→ v1} otherwise

V ;L ; (cons v1 v2)(keep)[p] : e −→@ V ;L ; (cons∗ eθθ′ (v2[p] : e))
(r-selector-cons-ok)

match(v1, p) 6= θ

V ;L ; (cons v1 v2)(keep)[p] : e −→@ V ;L ; cons v1 (v2[p] : e)
(r-selector-cons-fail)

V ;L ; fold predname (cons v1 (cons v2 v3))
−→@

V ;L ; (cons (predname [v1, v2] (fold predname (cons v2 v3)))
(r-fold-2)

V ;L ; fold predname (cons v nil) −→@ V ;L ; nil (r-fold-1)

V ;L ; fold predname nil −→@ V ;L ; nil (r-fold-0)

V ;L ; (opname v1)’ −→@ V ;L ; (opname v1’) (r-tick-opname)

V ;L ; X’ −→@ V ;L ; if X in vars(v2) then tick(X) else X (r-tick-var)

V ;L ; ((z)t)’ −→@ V ;L ; (z)(t’) (r-tick-abs)

V ;L ; (t1[t2/z)]’ −→@ V ;L ; (t1’)[(t2’)/z] (r-tick-sub)

V ;L ; (cons v1 v2)’ −→@ V ;L ; (cons (v1’) (v2’)) (r-tick-cons)

V ;L ; nil’ −→@ V ;L ; nil (r-tick-nil)

The reduction rules for lists, maps, options and if-then-else are standard and
are omitted. We omit the reduction rules for vars() because they are straightfor-
ward. They traverse terms and list of terms in a similar way as the tick operator,
though they expose the variables met along the way.

A Calculus for Language Transformations 17

C Uniquefy

uniquefy
lf
(nil,m, str,mr) ≡ (nil, mr)

uniquefy
lf
((cons v lv),m, str,mr) ≡

let (v′,mr′) = uniquefy
f
(v,m, str,mr) in

let (lv′,mr′′) uniquefy
lf
(lv,m, str,mr′) in ((cons v′ lv′),mr′′)

uniquefy(f and t)((name v),m, str,mr) ≡ (where name is predname or opname)

if name in m then if checkZip(v,m.name) then
let (v′, mr′) uniquefy•((zip(v,m.name),m, str,mr) in ((name v′),mr′)

else fail

else let (v′,mr′) uniquefy
lt
(v,m, str,mr) in ((name v′),mr′)

uniquefy
t
(X,m, str,mr) ≡ (X,mr)

uniquefy
t
(x)t,m, str,mr) ≡ ((x)t,mr)

uniquefy
t
(t[t/x],m, str,mr) ≡ (t[t/x],mr)

uniquefy•(nil,m, str,mr) ≡ (nil, mr)
uniquefy•((cons (v, str′) lv), m, str,mr) ≡

let (lv′, mr′) uniquefy•(lv,m, str,mr) in
if str str′then ((cons v lv′),mr′)

else let (v′,mr′′) uniquefy
†
t (v,mr′) in((cons v′ lv′),mr′′)

uniquefy
†

(f and t)
((name v),mr) ≡ (where name is predname or opname)

let (v′,mr′) uniquefy
†
t (v,mr) in ((name v′),mr′)

uniquefy
†
t (X, map(keys, values) as mr) ≡

let (keys′, values′) remove(X,mr) in
if X in mr then (tick(last(mr.X)), map(keys′ @ [X], values′ @ [tick(last(mr.X))]))

else(tick(X), map(keys′ @ [X], values′ @ [tick(X)]))

uniquefy
†
t ((x)tv,mr) ≡ let (tv′,mr′) uniquefy

†
t (tv,mr) in ((x)tv′,mr′)

uniquefy
†
t (tv1[tv2/x],mr) ≡ let (tv′1,mr′) uniquefy

t
(tv1, m, str,mr) in

let (tv′2,mr′′) uniquefy
t
(tv2,m, str,mr′) in (tv′1[tv

′
2/x],mr′′)

remove(t,m) removes the key t and its corresponding value in the map m.
last(l) returns the last element of a list, and @ is list append.

The function is mostly a straightforward recursive traverse of terms, for-
mulae, list of terms and list of formulae. The only elements to notice are that
when uniquefy detects a context that potentially contain the string str then it
switches to uniquefy•, which is a meta-operation that seeks for str. In turn, when
uniquefy• finds an argument in a position prescribed by str, then it switches to
uniquefy†, which is a meta-operation that is responsible for actually replace vari-
ables and record the association. zip is a meta-operation that combines two lists.
Of course, it may fail if the two lists do not have the same length. This happens
in the scenario described above about → and its number of argumets. CheckZip
performs just that check and can make the function fail.

D Proof of Type Soundness

D.1 Progress Theorem

Theorem 2 (Canonical Form Lemmas).

18 Mourad and Cimini

– ∅ ⊢ e : Language, and e is a value then e = skip.
– ∅ ⊢ e : Rule, and e is a value then e = r.
– ∅ ⊢ e : Formula, and e is a value then e = f .
– ∅ ⊢ e : Term, and e is a value then e = t.
– ∅ ⊢ e : List T , and e is a value then e = nil ∨ e = cons v1v2.
– ∅ ⊢ e : Map T1 T2, and e is a value then e = map(v1, v2).
– ∅ ⊢ e : Option T1T2, and e is a value then e = nothing ∨ = just v.
– ∅ ⊢ e : String, and e is a value then e = str.
– ∅ ⊢ e : OpName, and e is a value then e = opname.
– ∅ ⊢ e : PredName, and e is a value then e = predname.

Proof. Each case is proved by case analysis on ∅ ⊢ e : T . Each case is straight-
forward.

Theorem 3 (Progress Theorem Expressions). For all , if ∅ ⊢ e : T then
either

– e = v, or
– e = error, or
– for all V,L, V ;L; e −→ V ′;L′; e′, for some V ′,L′, e′.

Proof. We prove the theorem by induction on the derivation of ∅ ⊢ e : T . Let us
assume the proviso of the theorem, that is (H1) ∅ ⊢ e : T .

Case 1 (t-opname). Since (H1) then we have e = (opname e) with ∅ ⊢ e :
List Term. By IH, we have that

– e = v. Then we have (opname v) which is a value.
– e = error. Then we have (opname error) and by ctx-err we have

V ;L ; (opname error) −→ V ;L ; error, for all V,L because of the evalua-
tion context (opname E).

– for all V,L, V ;L; e −→ V ′;L′; e′, for some V ′,L′, e′. Then (opname e) takes
a step by ctx-succ or ctx-lang-err.

Case 2 (t-rule-comp). Since (H1) then we have e = (e1;r e2) with ∅ ⊢ e1 :
List Rule. By IH, we have that

– e1 = v. Then we have v;r e2 and r-rule-comp applies.
– e1 = error. Then we have error;r e2 and by ctx-err we have

V ;L ; error;r e2 −→ V ;L ; error, for all V,L because of the evaluation
context E;r e.

– for all V,L, V ;L; e1 −→ V ′;L′; e′1, for some V ′,L′, e′. Then e1;r e2 takes a
step by ctx-succ or ctx-lang-err.

Case 3 (t-seq). Since (H1) then we have e = e1; e2 with ∅ ⊢ e1 : Language. By
IH, we have that

– e1 = v. By Canonical form e1 = skip. Then we have skip; e2 which by takes
a step.

A Calculus for Language Transformations 19

– e1 = error. Then we have error; e2 and by ctx-err we take a step to an
error.

– for all V,L, V ;L; e1 −→ V ′;L′; e′1, for some V ′,L′, e′. Then by ctx-succ or
ctx-lang-err, we take a step.

Case 4 (t-selector). Since (H1) then we have that ∅ ⊢ e1 : List T . By IH,
we have that

– e1 = v. By Canonical form e1 can have two forms:
• e1 = nil Then we apply r-selector-nil takes a step.
• e1 = cons v1v2. Then we have two cases: ether match(v1, p,) succeeds,
then we apply r-selector-cons-ok and take a step, or match(v1, p,)
fails, then we apply r-selector-cons-fail and take a step.

– e1 = error. Then by ctx-err we take a step to an error.
– for all V,L, V ;L; e1 −→ V ′;L′; e′1, for some V ′,L′, e′. Then by ctx-succ or

ctx-lang-err, we take a step.

The case for selectors with keep are analogous.

Case 5 (t-uniquefy). Since (H1) then we have that ∅ ⊢ e1 : Rule, ∅ ⊢ e2 :
Map OpName (List String). By IH on e1, we have that

– e1 = v1. By Canonical form e1 = r. By IH on e2 we have the three cases:
• e2 = v2. Then we there are two cases: Either uniquefy succeeds and we
apply r-uniquefy-ok to take a step, or fails and we apply r-uniquefy-
fail to take a step.

• e2 = error. Then by ctx-err we take a step to an error.
• for all V,L, V ;L; e2 −→ V ′;L′; e′2, for some V ′,L′, e′2. Then by ctx-succ
or ctx-lang-err, we take a step.

– e1 = error. Then by ctx-err we take a step to an error.
– for all V,L, V ;L; e1 −→ V ′;L′; e′1, for some V ′,L′, e′1. Then by ctx-succ or

ctx-lang-err, we take a step.

The case of ∅ ⊢ e2 : Map PredName (List String) is analogous.

Case 6 (t-tick). Since (H1) then we have that ∅ ⊢ e1 : T , ∅ ⊢ e2 : List Term.
By IH on e1, we have that

– e1 = v1. By IH on e2:
• e2 = v2. Then we have two cases depending on T :

∗ T = Term. By Canonical forms, we have that e1 can be of the fol-
lowing forms:
· (opname v′1). Then we apply r-tick-opname and take a step.
· X . Then we apply r-tick-var and take a step.
· (zv′1). Then we apply r-tick-abs and take a step.
· v′1[v

′′
1 /z]. Then we apply r-tick-sub and take a step.

∗ T = List Term. By Canonical form e1 can have two forms:
· e1 = nil. Then we apply r-tick-nil takes a step.
· e1 = consv1v2. Then we apply r-tick-cons takes a step.

20 Mourad and Cimini

• e2 = error. Then by ctx-err we take a step to an error.
• for all V,L, V ;L; e2 −→ V ′;L′; e′2, for some V ′,L′, e′2. Then by ctx-succ
or ctx-lang-err, we take a step.

– e1 = error. Then by ?? we take a step to an error.
– for all V,L, V ;L; e1 −→ V ′;L′; e′1, for some V ′,L′, e′1. Then by ctx-succ or

ctx-lang-err, we take a step.

All other cases follow similar lines as above. ⊓⊔

Theorem 4 (Progress Theorem for Configurations). For all , if ∅ ⊢ V ;L; e
then either

– e = skip, or
– e = error, or
– V ;L; e −→ V ′;L′; e′, for some e′.

Proof. Let us assume the proviso: ∅ ⊢ V ;L; e. Then we have ∅ ⊢ e : Language.
By Progress Theorem for Expressions, we have that

– e = v. By Canonical forms, e = skip.
– e = error, which satisfies the theorem.
– V ;L; e −→ V ′;L′; e′, for some e′, which satisfies the theorem.

⊓⊔

D.2 Subject Reduction Theorem

Lemma 1 (Substitution Lemma). if Γ, x : T ⊢ e : T ′ and ∅ ⊢ v : T then
Γ ⊢ e[v/x] : T ′.

Proof. The proof is by induction on the derivation of Γ, x : T ⊢ e : T ′. As usual,
the case for variables (t-var) relies on a standard weakening lemma: Γ ⊢ e : T ′

and x is not in the free variables of e then Γ, x : T ⊢ e : T ′, which can be
proved by induction on the derivation of Γ ⊢ e : T ′. An aspect that differs
from a standard proof is that our substitution does not replace all instances of
variables self , premises , and conclusion in certain context. Then extra care must
be taken in the substitution lemma because the substituted expression may still
have those as free variables. The type system covers for those cases because it
augments the type environment with Γrule.

⊓⊔

Lemma 2 (Pattern-matching typing and reduction). if ∅ ⊢ p : T ⇒ Γ ′

and match(v, p) = θ then for all x : T ′ ∈ Γ ′, [x/v′] ∈ θ and ∅ ⊢ v′ : T ′.

Proof. The proof is by induction on the derivation of ∅ ⊢ p : T ⇒ Γ ′. Each case
is straightforward. ⊓⊔

Lemma 3 (uniquefy
lf
produces well-typed results or fails).

uniquefy
lf
(lf,m, str,mr) = res

A Calculus for Language Transformations 21

– res = (lf ′,mr′) such that
∅ ⊢ lf ′ : List Formula, and ∅ ⊢ mr′ : Map MetaVar (List Term).

– res = fail .

Proof. Straightforward induction on the definition of uniquefy lf. Most cases rely
on the analogous lemmas for formulae, terms, list of terms and list of formulae:

– uniquefy f(f,m, str,mr) = res
• res = (f ′,mr′) such that
∅ ⊢ f ′ : Formula, and ∅ ⊢ mr′ : Map Term (List Term).

• res = fail .
– uniquefy t(t,m, str,mr) = res

• res = (t′,mr′) such that
∅ ⊢ t′ : Term, and ∅ ⊢ mr′ : Map Term (List Term).

• res = fail .
– uniquefy

lt
(lt,m, str,mr) = res

• res = (lt′,mr′) such that
∅ ⊢ lt′ : List Term, and ∅ ⊢ mr′ : Map Term (List Term).

• res = fail .

Each can be proved with a straightforward induction on the definition of uniquefyX

where X ∈ {f,t,lt}. ⊓⊔

Lemma 4 (Compositionality of ⊢). if ∅ ⊢ E[e] : T then there exits T ′ such
that ∅ ⊢ e : T ′ and for all e′ if ∅ ⊢ e′ : T ′ then ∅ ⊢ E[e′] : T .

Proof. Proof is by induction on the structure of E. Each case is straightforward.

Theorem 5 (Subject Reduction (−→@)). V ∩ vars(L) = ∅, ∅ ⊢ e : T , and
V ;L ; e −→@ V ′;L′ ; e′ then V ′ ∩ vars(L′) = ∅, and ∅ ⊢ e′ : T .

Proof. Let us assume the proviso of the theorem, that is, (H1) V ∩ vars(L) = ∅,
(H2) Γ ⊢ e : T , and (H3) V ;L ; e −→ V ′;L′ ; e′. Case analysis on (H3).

Case 7 (r-seq-ok). V ;L ; (skip; e) −→ V ;L ; e. We need to prove vars(L) ⊆
V , which we already have by (H1). We need to prove ⊢ L, which we have by
(H2). We have to prove that Γ ⊢ e : T where Γ ⊢ (skip; e) : T . By t-seq we
have that Γ ⊢ (skip; e) : Language (i.e. T = Language), Γ ⊢ e : Language.

Case 8 (r-newar). V ; (G,R) ; newVar str −→@ V ∪ {X ′};L ; X ′. We need
to prove vars(L) ⊆ V ∪ {X ′}, which we have because by (H1), we have that
vars(L) ⊆ V , and we additionally we have that X ′ 6∈ vars(L). We have to
prove that Γ ⊢ X ′ : Term because Γ ⊢ newVar : Term. This holds thanks to
t-metaVar.

Case 9 (r-rule-comp). V ;L ; v;r e −→@ V ;L ; eθ
(v)
rule

. We need to prove
V ∩ vars(L) = ∅, which we have because by (H1). We have to prove that

(#) ∅ ⊢ eθ
(v)
rule

: Rule when (*) ∅ ⊢ v;r e : Rule. From (*) we infer (HRULE)
∅ ⊢ v : Rule and Γrule ⊢ e : Rule, that is (HE) self : Rule, premises :

22 Mourad and Cimini

List Formula, conclusion : Formula ⊢ e : Rule. By Canonical Form Lemma,

from (HRULE) we infer that v =
v1
v2

and since it is typeable (HRULE),

by t-rule have ∅ ⊢ v1 : List Formula and ∅ ⊢ v2 : Formula. eθ
(v)
rule

=
e[r/self , v1/premises , v2/conclusion] = e[v/self][v1/premises][v2/conclusion].

Given (HE), and given (HRULE), by Substitution Lemma we have (HE1)
premises : List Formula, conclusion : Formula ⊢ e[v/self] : Rule.

Given (HE1), and given Γ ⊢ v1 : List Formula , by Substitution Lemma we
have (HE2) conclusion : Formula ⊢ e[v/self][v1/premises] : Rule.

Given (HE2), and given ∅ ⊢ v2 : Formula , by Substitution Lemma we have
∅ ⊢ e[v/self][v1/premises][v2/conclusion] : Rule.

Case 10 (r-selector-nil). V ;L ; nil[p] : e −→@ V ;L ; nil. We need to
prove V ∩ vars(L) = ∅, which we have because by (H1). We have to prove
that (#) Γ ⊢ nil : List T when (*) Γ ⊢ nil[p] : e : List T . Thanks to
t-emptyList this holds.

Case 11 (r-selector-cons-ok). V ;L ; (cons v1 v2)[p] : e −→@

V ;L ; (cons∗ eθθ′ (v2[p] : e)). We need to prove V ∩vars(L) = ∅, which we have
because by (H1). We have to prove that (#) ∅ ⊢ (cons∗ eθθ′ (v2[p] : e)) : List T ′

when (*) Γ ⊢ (cons v1 v2)[p] : e : List T ′. By t-selector we have that
Γ ⊢ (cons v1 v2) : List T , and therefore by t-cons, we have that Γ ⊢ v1 : T .
We do a case analysis on whether T = Rule or not, to prove in both cases that
Γ ⊢ eθθ′ : Option T ′.

– T = Rule: By Canonical Form, then we have that v1 =
v′1
v′2

. Then

θ′ = [v1/self , v
′
1/premises , v′2/conclusion]. From (*) we infer that Γ ′, self :

Rule, premises : List Formula, conclusion : Formula ⊢ e2 : Option T ′,
where Γ ′ comes from the pattern-matching. By applying the same reasoning
as in r-rule-comp, we can apply the Substitution lemma three times to
have Γ ′ ⊢ eθ′ : Option T ′. By Lemma 2 (pattern-matching correctness) we
have that for all (x : T ′′) ∈ Γ ′ there is [x/v′′] ∈ θ such that ∅ ⊢ v′′ : T ′′.
Then, for all such (x : T ′′) ∈ Γ ′ we can use the Substitution Lemma to
substitute its [x/v′′], and end up with ∅ ⊢ eθθ′ : Option T ′.

– T 6= Rule: Then θ′ = [v1/self] and by Substitution lemma we have Γ ′ ⊢ eθ′ :
Option T ′. By pattern-matching correctness, the same reasoning as in the
previous case leads us to ∅ ⊢ eθθ′ : Option T ′.

As now we know that (*) Γ ⊢ eθθ′ : Option T ′ in all cases. If we expand
(cons∗ eθθ′ (v2[p] : e)) we have
if (isNothing eθθ′) then (v2[p] : e) else cons (get eθθ′) (v2[p] : e). Here
isNothing and get are applied to eθθ′ of type Option T ′, therefore are well-
typed. Also, both branches of the if return an expression of type List T ′.

Case 12 (r-uniquefy-ok). V ;L ; uniquefy(lf , v1, str) ⇒ (x, y) : e −→@

V ;L ; e[lf ′/x, v2/y]. We need to prove V ∩ vars(L) = ∅, which we have be-
cause by (H1). We have to prove that (#) Γ ⊢ e[lf ′/x, v2/y] : T when (*)

A Calculus for Language Transformations 23

Γ ⊢ uniquefy(r, v, str) ⇒ (x, y) : e : T . By r-uniquefy-ok we have (r′,m) =
uniquefy r(r, v, str, emptyMap), and by Lemma 3 we have that
∅ ⊢ lf ′ : List Formula, and ∅ ⊢ v2 : Map Term (List Term). By t-uniquefy
we have that Γ, x : List Formula, y : Map Term (List Term) ⊢ e3 : T . By
Substitution Lemma, we then have Γ ⊢ e[lf ′/x, v2/y] : T .

All other cases are analogous.

Theorem 6 (Subject Reduction (−→)). For all V , V ′, L, L′, e, e′, if ∅ ⊢
V ;L; e and V ;L; e −→ V ′;L′; e′ then ∅ ⊢ V ′;L′; e′.

Proof. Let us assume the proviso of the theorem and have (H1) ∅ ⊢ V ;L; e
and V ;L; e −→ V ′;L′; e′. The proof is by case analysis on the derivation of
V ;L; e −→ V ′;L′; e′

Case 13 (ctx-succ). V ;L;E[e] −→ V ′;L′;E[e′] when (H2) V ;L; e −→@ V ′;L′; e′.
From (H1) we know that (H6) ∅ ⊢ E[e] : T , for some T . Then we can apply
Lemma 4 to have that (H3) ∅ ⊢ e : T ′, for some T ′. With (H2) and (H3) we
can apply Subject Reduction for −→@ and obtain that (H4) ∅ ⊢ e : T ′ and (H5)
V ′ ∩ vars(L′) = ∅. By Lemma 4, since we have (H6) and (H4) we can derive
∅ ⊢ E[e′] : T , and since we have (H5), we can derive ∅ ⊢ V ;L;E[e′].

Case 14 (ctx-lang-err). V ;L ; E[e] −→ V ;L ; error. (H1) implies V ∩
vars(L) = ∅ and ⊢ L. We need to prove V ∩vars(L) = ∅, which we already have,
and ⊢ L, which we already have. We need to prove Γ ⊢ error : Language, which
we can prove with (t-error).

Case 15 (ctx-err). Similar lines as ctx-lang-err.

D.3 Type Soundness

Theorem 7 (Type Soundness). For all Γ , V , L, e, if ⊢ V ;L; e then V ;L; e −→∗

V ′;L′; e′ s.t. i) e′ = skip, ii) e′ = error, or iii) V ′;L′; e′ −→ V ′′;L′′; e′′, for
some e′′.

The proof is straightforward once we have the Subject Reduction (−→) the-
orem, and the Progress for Configuration theorem, and that typeability is pre-
served in multiple steps (provable by straightforward induction on the derivation
of −→∗).

E Let-Binding and Match in L–Tr

let x = e1 in e2 ≡ head ([e1][x] : e2)

The pattern-matching that we use is unary-branched and either succeeds or
throws an error.

match e1 with p ⇒ e2 ≡
let x = ([e1][p] : e2)) in if (isEmpty x) then error else head x

	A Calculus for Language Transformations

