
Parallel approach to sliding window sums

Roman Snytsar1 and Yatish Turakhia2

1 Microsoft Corp., One Microsoft Way, Redmond WA 98052, USA
Roman.Snytsar@microsoft.com

2 Stanford University, Stanford CA 94305, USA

Abstract. Sliding window sums are widely used in bioinformatics ap-
plications, including sequence assembly, k-mer generation, hashing and
compression. New vector algorithms which utilize the advanced vector
extension (AVX) instructions available on modern processors, or the par-
allel compute units on GPUs and FPGAs, would provide a significant
performance boost for the bioinformatics applications.
We develop a generic vectorized sliding sum algorithm with speedup for
window size w and number of processors P is O(P/w) for a generic
sliding sum. For a sum with commutative operator the speedup is im-
proved to O(P/log(w)). When applied to the genomic application of
minimizer based k-mer table generation using AVX instructions, we ob-
tain a speedup of over 5×.

1 Introduction

Bioinformatics algorithms for sequence assembly, indexing, search, and compres-
sion evolve at a breakneck rate. Still, many foundational ideas, like using short
substrings known as k-mers, hashing schemas, and bespoke indexing mecha-
nisms, stay relevant. A relatively new idea quickly gaining popularity is the use
of minimizers [9]. Minimizers exploit the sequence contiguity allowing to repre-
sent the sequence with a smaller number of k-mers, thus producing more compact
indices. Minimizers have been successfully used for k-mer counting [3], sequence
alignment [7], and indexing [14]. While some research has been directed towards
improving the performance of minimizers [8], little attention has been paid to
the properties of the underlying algorithm of sliding window minimum.

In this paper we explore the properties of generic sliding window sums and
uncover the potential for parallel speedup. We show a novel sliding sum ap-
proach could be extended beyond minimizers to k-mer generation and hashing,
and develop fast vector implementations not only for minimizer generation but
also for k-mer hashing. In partiulcar, our approach provides a parallel speedup
of O(P/w) for a generic sliding sum with a window size w and P processors,
which could be further improved to a speedup of O(P/log(w)) for a sliding sum
with a commutative operator. The rest of the paper is organized as follows. In

ar
X

iv
:1

81
1.

10
07

4v
2

 [
cs

.D
S]

 3
 S

ep
 2

01
9

2 R. Snytsar and Y. Turakhia

section 2, we provide background for prefix sum and sliding sum algorithms, and
their applications to the popular seed-filter-extend paradigm used in bioinfor-
matics, particularly in the context of minimizers. In section 3, we present our
generic vectorized sliding sum algorithm and show how it could be applied to
our bioinformatics applications. We present our results in section 4 and conclude
in section 5.

2 Background

2.1 Prefix Sum

Parallel algorithms are often constructed from a set of universal building blocks.
One of the hardest to identify, but extremely useful is the concept of a prefix
sum, and the accompanying scan algorithm. A prefix sum is a transformation
that takes an operator ⊕, and a sequence of elements

x0, x1, . . . , xk, . . .

and returns the sequence

yi =

i∑
j=0

xj = x0 ⊕ x1 ⊕ . . .⊕ xi (1)

Despite the data carry dependency, the first N elements of the prefix sum
with an associative operator could be computed in O(log(N)) parallel steps using
scan algorithm, as shown by [2].

2.2 Sliding Window Sum

Sliding window sum (sliding sum) takes a window size w in addition to an
operator ⊕, and a sequence of elements, and returns the sequence

yi =

i+w−1∑
j=i

xj = xi ⊕ xi+1 ⊕ . . .⊕ xi+w−1 (2)

where each sum is defined in terms of the operator ⊕ and contains exactly w
addends. The asymptotic complexity of a naive sliding sum algorithm is O(wN)
where N is the length of the source sequence.

It is worth mentioning that every sum defined by Equation 2 is a prefix sum
with operator ⊕ and input sequence xi . . .⊕ xi+w−1. Many useful operators are
associative, so the prefix scan algorithm is applicable here, reducing complex-
ity of every sum in Equation 2 to O(log(w)) and, trivially, the overall sliding
sum complexity to O(Nlog(w)) parallel steps. We have observed this optimiza-
tion being implemented by the vectorizing compilers. It is, however, possible to
further improve performance by exploiting more subtle operator properties.

Parallel approach to sliding window sums 3

2.3 The seed-filter-extend paradigm

Most heuristics to local sequence alignment are based on the seed-filter-extend
paradigm, which was first popularized by the BLAST algorithm [1]. In aligning
a reference sequence R with a query sequence Q, the seeding stage finds small
local matches, called seed hits, of size k (also called k-mer, typically 10-19 base-
pairs in size) between R and Q. The filtering stage itself may consist of several
smaller sub-stages, which further reduces the search space by a combination of
techniques, such as ungapped extension [1, 4] or chaining multiple seed hits in
a diagonal band [7, 13]. The extension stage typically performs the compute-
intensive dynamic programming step, usually employing the Smith-Waterman
equations [10].

2.4 Seed tables and minimizers

Fig. 1: An example reference sequence and seed table used in D-SOFT.

Heuristics based on the seed-filter-extend paradigm often maintain a seed
table — a data structure that enables fast lookup of seed hits in reference, R.
Figure 1 shows an example reference sequence and seed table for seed size k=2.
Seed table maintains two tables: (i) a seed pointer table and (ii) a seed position
table. For each of the 4k possible seeds (16 seeds in Figure 1), lexicographically
sorted, the seed pointer table points to the beginning of a list of hits in the seed
position table. In Figure 1, lookups to ‘CG’ and ‘CT’ in the seed pointer table
give the start and end addresses in the seed position table for hits of ‘CT’ in the
reference.

Starting with R = r0, r1, ...rn, we can define k-mers of R as a sliding sum
over window size k, string concatenation operator, and R.

4 R. Snytsar and Y. Turakhia

Minimizer seeds (or minimizers for short), an idea originally proposed for
compressing large seed tables in 2004 by Roberts et al. [9], have seen a recent
revival in bioinformatics with the advent long read alignment [7] and metage-
nomics [15]. Minimizers can greatly reduce the storage requirements for the seed
position table by storing only a subset of the seeds with only a small drop in
sensitivity of the aligner.

(a) (b)

Fig. 2: Illustration of minimizer seeds using (k=3, w=3). (a) An example refer-
ence sequence with a minimizer window sliding over 4 positions. The three seeds
within the window are underlined in red and the minimizer seed within the win-
dow is highlighted in bold. (b) Minimizer seed-position pairs as constructed from
(a).

Figure 2 illustrates how minimizers can be used to build a seed position table
with an example. In addition to the seed size k, minimizers require a parameter
w, the minimizer window size. In Figure 2, k = 3 and w = 3. In each position
p of the reference R, a window w consecutive seeds of size k (k-mers) starting
from position p in R are used to find the lexicograpically minimum seed s and
its position p′, which is recorded in the seed position table. Adjacent windows
can share the same minimizer (i.e. the (s, p′) pair), which reduces the storage
requirement for the seed position table. Figure 2a shows the minimizers for four
consecutive positions 0-3 in R and the corresponding entries in the seed position
table in Figure 2b. Windows at positions p = 1 and p = 2 share the same
minimizer (‘CTT’, 2), which is stored only once in Figure 2b. Moreover, as seen
in Figure 2b, seeds at position 0, 2 and 5 are stored in the seed position table
but those at positions 1, 3 and 4 are dropped. Roberts et al. [9] have shown that
with a minimizer window of size w, a new minimizer occurs every w/2 bases on
average.

Minimizers are a key innovation in Minimap [6] and its successor Minimap2 [7],
both of which achieve an order of magnitude speedup over prior techniques, most
speedup resulting from fewer seed hits per read due to minimizers. We have found
that turning off minimizers (using w = 1 instead of the default w = 10) slows
down the seeding and filtering stage of Minimap2 by nearly 7× with only 0.5%

Parallel approach to sliding window sums 5

higher sensitivity for sequencing reads from Pacific Biosciences. As evident from
figure 2, minimizer seed table construction is a form of sliding window sum with
operator min over a window of k-mers, requiring O(wN) for construction. It is
possible to achieve O(N) complexity at the cost of using elaborate queue-based
data structures [12]. Constructing seed tables can take several hours for the de
novo assembly of a human genome [13]. In this paper, we take a closer look at
the connection between sliding sums and prefix sums, and attempt to supersede
the linear complexity achieved by previous approaches.

3 Methods

3.1 Vector Algorithms

Our first algorithm is a vector-friendly way of calculating sliding sum assuming
the input sequence elements become available one by one and are processed using
the vector instructions of width P > w:

Algorithm 1 Scalar Input

procedure ScalarInput(x0 . . . xn−1)

Y ←
(w−2∑

j=0

xj ,

w−2∑
j=1

xj , . . . , xw−3 ⊕ xw−2, xw−2︸ ︷︷ ︸
w−1

, 0, . . . , 0
)

for i = w − 1 to N do

X ←
(
xi, xi, . . . , xi︸ ︷︷ ︸

w

, 0, . . . , 0
)

Y ← Y ⊕X
yi−w+1 ← Y [0]
Y ← Y ≪ 1

end for
end procedure

Vector Y is initialized to the suffix sums with the number of elements de-
creasing from w−1 to 0. Then in a loop every incoming element xk is broadcast
to the first w elements of vector X. After vector addition the zeroth element of Y
contains the next sliding sum. Next, the vector Y is shifted left by one element,
as denoted by operator ≪, and the state is ready for the next iteration. The
data flow of the scalar algorithm is depicted on the Figure 3

Asymptotic complexity of the scalar input algorithm is O(N) with no addi-
tional requirements on the operator ⊕.

This result could be improved if we assume that the input sequence arrives
packed in vectors of width P > w.

At every iteration P input elements are placed into vector X. X1 is filled
with the prefix sums of up to w addends, and Y1 is filled with the suffix sums

6 R. Snytsar and Y. Turakhia

Fig. 3: Data flow of the scalar input sliding sum algorithm.

Algorithm 2 Vector Input

procedure VectorInput(x0 . . . xn−1)

Y ←
(w−2∑

j=0

xj ,

w−2∑
j=1

xj , . . . , xw−3 ⊕ xw−2, xw−2︸ ︷︷ ︸
w−1

, 0, . . . , 0
)

for i = w − 1 to N step P do

X ←
(
xk, xk+1, . . . , xk+p−1

)
X1←

(
X0, X0 ⊕X1, . . . ,

w−2∑
j=0

Xj︸ ︷︷ ︸
w−1

,
w−1∑
j=0

Xj , . . . ,
p−1∑

j=p−w

Xj

)

Y 1←
(

0, . . . , 0,

p−1∑
j=p−w

Xj ,

p−2∑
j=p−w

Xj , . . . , Xp−w︸ ︷︷ ︸
w−1

)

Y ← Y ⊕X1
yk−w+1 . . . yk−w+p ← Y [0] . . . Y [p− 1]
Y ← Y 1 ≪ (P − w)

end for
end procedure

Parallel approach to sliding window sums 7

Fig. 4: Data flow of the vector input sliding sum algorithm.

constructed from the elements of X, as shown on the Figure 4. Then the vector
sum of Y and X1 yields the next P output elements. Finally, the suffix sums
from Y 1 are shifted into proper positions in vector Y , and it is ready for the
next iteration.

The asymptotic complexity thus is O(N · w/P) with the parallel speedup
O(P/w) for any operator ⊕. If ⊕ is associative, the prefix/suffix sums could be
computed in parallel using the algorithm in [2], and the complexity is reduced
to O(N · log(w)/P) with the speedup improving to O(P/log(w)).

For example, since min is an associative operator, the sliding window mini-
mum can be computed using the faster version of the vector input algorithm.

4 Results

We tested the performance of various sliding minimum algorithms using the
hashed 15-mers of the reference human genome assembly (GRCh38) from the
Genome Reference Consortium. The test imitates a minimizer based seed ta-
ble construction by a long-read aligner, such as Minimap2 [7], GraphMap [11]
or Darwin [13]. Figure 5 compares the performance of the näıve array-based
algorithm, linear dequeue-based algorithm, and our proposed vector algorithm.

Deque-based algorithm performance is indeed independent of the window
size. It comes, however, at the cost of a significant overhead of managing the
deque data structure and unpredictable branching.

8 R. Snytsar and Y. Turakhia

4 6 8 10 12 14 16 18

20

40

60

80

Window Size

T
im

e
s

Dequeue

Array

Vector

Fig. 5: Performance of the sliding minimum algorithms.

Array-based algorithm, despite the worst asymptotic complexity, is simple to
implement, and benefits from the automatic compiler vectorization. It is clear
how the times drop when the window size is aligned with the SIMD vector width
(P = 4, 8, and 16). For small window sizes the array algorithm is competitive
with the deque approach.

Our vector sliding sum algorithm beats both previous implementations by a
factor of 5×. With the SSE/AVX instruction set, any window size requires the
same number of instructions as the closest (larger) power of 2. So the perfor-
mance of our vector implementation does not change linearly with w but drops
when we switch to the different SIMD vector width P at w = 5, 9, 17. Also, prefix
sum computation across wider vectors incurs additional latencies for cross-lane
data exchanges, resulting in the speedup less than theoretical 2×.

5 Conclusion

We introduced a family of algorithms for parallel evaluation of sliding window
sums. The parallel speedup for window size w and number of processors P is
O(P/w) for a generic sliding sum. For a sum with a commutative operator
the speedup is improved to O(P/log(w)). For a family of sliding sums that al-
low recurrent interpretations, the speedup is independent of w: O(P/log(P)).
This gives the developer a choice of fast branchless algorithms suitable for im-
plementation on any modern parallel architecture including modern CPUs with
instruction-level parallelism, pipelined GPUs, or FPGA reconfigurable hardware.

While we concentrate on the faster sliding window sum algorithms for bioin-
formatics, our findings are relevant for accelerating all the numerous sliding

Parallel approach to sliding window sums 9

window applications from compression and cryptography to high frequency data
mining [5].

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology 215(3), 403 – 410 (1990)

2. Blelloch, G.E.: Prefix sums and their applications. In: Synthesis of Parallel Algo-
rithms. Morgan Kaufmann (1993)

3. Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: Kmc 2: fast and
resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015)

4. Harris, R.S.: Improved pairwise alignment of genomic DNA. ProQuest (2007)
5. Ikonomovska, E., Loskovska, S., Gjorgjevik, D.: A survey of stream data mining.

In: Proceedings of 8th National Conference with International participation, ETAI.
pp. 19–21 (2007)

6. Li, H.: Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics 32(14), 2103–2110 (2016)

7. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 1,
7 (2018)

8. Marçais, G., Pellow, D., Bork, D., Orenstein, Y., Shamir, R., Kingsford, C.: Im-
proving the performance of minimizers and winnowing schemes. Bioinformatics
33(14), i110–i117 (2017)

9. Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.: Reducing storage
requirements for biological sequence comparison. Bioinformatics 20(18), 3363–3369
(2004)

10. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of molecular biology 147(1), 195–197 (1981)

11. Sović, I., Šikić, M., Wilm, A., Fenlon, S.N., Chen, S., Nagarajan, N.: Fast and
sensitive mapping of nanopore sequencing reads with graphmap. Nature commu-
nications 7, 11307 (2016)

12. Tangwongsan, K., Hirzel, M., Schneider, S.: Constant-time sliding window aggre-
gation. IBM, IBM Research Report RC25574 (WAT1511-030) (2015)

13. Turakhia, Y., Bejerano, G., Dally, W.J.: Darwin: A genomics co-processor pro-
vides up to 15,000 x acceleration on long read assembly. In: Proceedings of the
Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems. pp. 199–213. ACM (2018)

14. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biology 15(3), R46 (Mar
2014). https://doi.org/10.1186/gb-2014-15-3-r46, https://doi.org/10.1186/

gb-2014-15-3-r46

15. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome biology 15(3), R46 (2014)

https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46

	Parallel approach to sliding window sums

