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Abstract

Atrial fibrillation (AF) is the most common clinically significant arrhythmia, of-

ten severely disrupting cardiac hemodynamics and drastically increasing the risk of

thromboembolic events. Around 90% of such intracardiac thrombus formation in AF

patients takes place in the left atrial appendage (LAA). Such thrombus have been

related to blood stasis, which at the moment, can be only assessed through noisy

imaging data from transesophageal echocardiography (TEE) at one single point in

space and time, vastly oversimplifying the characterization of the complex 4D na-

ture of blood flow patterns. Alternatively, attempts have been made to relate LAA

morphology to the risk of thrombi formation, some studies suggesting reduced risk

of thrombosis on chicken-wing morphologies. Nonetheless, such classification of the

LAA morphology has been found to be highly inconsistent and subjective, excluding

as well, several fundamental morphological parameters such as the ostium size or

the pulmonary vein (PV) orientation among others.

More recently, computational fluid dynamics (CFD) have been employed on the left

atrium (LA), seeking to assess the risk of thrombogenesis more quantitatively. CFD

has proven to be an invaluable tool in establishing a mechanistic relation between

patient-specific organ morphology and its characteristic hemodynamics. In fact, it

has long been implemented in other human tissues, such as the coronary arteries,

cerebral aneurysms and the aorta with unparalleled success, enabling early diagnosis

and risk assessment of various cardiovascular diseases. Nevertheless, traditional CFD

methods are renowned for their large memory requirements and long computing

times, which severely hinders its suitability for time-sensitive clinical applications.

Hence, this thesis seeks to harness the immense potential of deep learning (DL) by

developing a deep neural network (DNN), with the objective of generating a fast

and accurate surrogate of CFD, capable of instantaneously evaluating the risk of

thrombus formation in the LAA. Already having revolutionized fields such as data

processing, it has only recently begun to employ DNNs in high-dimensional, com-

plex dynamical systems such as fluid dynamics. In fact to our knowledge, this study



represents the first successful implementation of a DL surrogate of CFD analysis in

a structure as complex as the LAA, which had only been previously attempted in

the aorta. For that purpose, two DL architectures have been successfully designed

and trained, which receive the specific LAA geometry as an input, and accurately

predict its corresponding endothelial cell activation potential (ECAP) map, param-

eter linked to the risk of thrombosis. The first approach, is based on a simple

fully-connected feedforward network, while the latter, also embeds unsupervised

learning. An statistical shape model (SSM) of the LAA was created to generate the

training dataset, encompassing 210 virtual shapes, on which CFD simulations were

performed to attain the ground truth ECAP mappings. Once trained, the final DL

networks have accurately predicted the ECAP distributions resulting in an average

error of 4.72% for the simple fully-connected network and 5.75% for the unsuper-

vised learning model. Most importantly, the obtention of the ECAP predictions was

quasi-instantaneous, orders of magnitude faster than conventional CFD. Therefore,

this study is one of the first to demonstrate, the feasibility and unparalleled potential

of DL models as accurate and substantially faster surrogates of CFD, potentially

enabling future real-time assessment of thrombogenesis risk on the LAA.

Keywords: Deep Learning; Thrombus Formation; Left Atrial Appendage; Compu-

tational Fluid Dynamics; Hemodynamics



Chapter 1

Introduction

1.1 Atrial Fibrillation

Atrial fibrillation (AF) is the most common arrhythmia of clinical significance, with

an estimated lifetime development risk of around 22% to 26% and affecting approxi-

mately 0.4% to 1% of the global population. Aging is the predominant demographic

cause of this type of arrhythmia, multiplying AF incidence by a factor of 15 to 20

between the ages of 35 and 85 [1, 2]. As a consequence, the number of patients

with AF is likely to increase 2.5-fold by 2050, reflecting the growing proportion of

elderly individuals [3]. AF is defined by a quivering or irregular heartbeat (arrhyth-

mia), which prevents effective flow of the blood to the ventricles [4]. This leads to

increased morbidity of heart failure, blood clots, ischemic stroke and other hemody-

namic disturbances [5, 6]. AF may be asymptomatic and as a result, is often only

diagnosed when complications such as stroke arise. In addition, these strokes tend

to be more severe and deadly than those originating from other aetiologies [7, 8, 9].

AF is often classified in two subgroups: valvular and non-valvular. The first encom-

passes only those patients suffering from mitral valve (MV) stenosis or that have

undergone surgery for artificial heart valve implantation or MV reparation. As for

the latter, presence of non-valvular AF increases the risk of cerebrovascular acci-

dents, such as transient ischemic attack and ischemic stroke, by allowing thrombus

1



2 Chapter 1. Introduction

formation within the left atrium (LA); if dislodged, such thrombi can occlude the

cerebral circulation, causing a thromboembolic (ischemic) stroke [10]. As a mat-

ter of fact, AF is responsible for 15 to 20% of all cardioembolic ischemic strokes,

90% of which are caused by thrombus formed in the left atrial appendage (LAA), a

finger-like cavity located in the LA [11, 12].

1.2 Left Atrial Appendage (LAA)

The LAA, also known as auricle, is a long, tubular, hooked structure derived from

the anterior wall of the LA. It is a remnant of the original fetal LA, mainly formed by

the adsorption of the primordial pulmonary veins and their branches. Its junction

to the LA is well defined by a narrowing of the appendage’s orifice [2].

For a long period of time the LAA has been considered as a mere atrial outgrowth,

but its direct relationship with stroke and the increase in LAAO interventions has

renewed the interest in the possible influence of LAA over LA hemodynamics. No

longer considered a static chamber, LAA is thought to be a highly dynamic structure,

working both as a contractile reservoir and decompression chamber, by producing

suction during ventricular systole and as a conduit during diastole [13]. Besides its

role in LA hemodynamics, LAA seems to have an endocrine function by releasing

atrial and brain natriuretic peptides (BNP). Patients suffering from AF, especially

those suffering from non-valvular AF, produce high levels of BNP in the LAA, which

has been directly related with a pro-thrombotic state [14].

Figure 1: Main classification of the LAA morphology (from Di Biase et al.[12])
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Moreover, as aforementioned, the structure of the LAA is highly heterogeneous

presenting a tremendous inter-patient variability in its size and shape. The wide

range in which the different features used to characterize the LAA vary, represent a

prime example of the high heterogenicity of the LAA structure: volume can range

from 0.7 ml to 19.2 ml; ostium minimum diameter can go from 5 to 27 mm and

its maximum diameter ranges from 10 to 40 mm. Finally, there can be also great

variation in the LAA orifice length, from 16 up to 51 mm [15]. Furthermore, LAA

typically presents several lobes that protrude from their main body. Based on the

heterogenicity of the shape, number of lobes, trabeculations and overall dimensions

of the LAA, it is commonly classified into four distinct morphological categories as

shown in Figure 1.

Several attempts have been made to establish a relationship between LAA morphol-

ogy and the risk of thromboembolic events. In fact, latest research suggests that

patients with chicken wing LAA morphology are less likely to develop thromboem-

bolic events than those with non-chicken wing morphology [12, 16]. Nevertheless,

inconsistent LAA morphology classification coupled with low interobserver and in-

traobserver agreement, suggests caution when directly linking LAA morphology to

the risk of stroke. Indeed, in a recent study by Wu et al. [17], CT images of 2264 AF

patients were handed to 3 experts for independent judgement of their morphology.

Of all the cases studied, only in 655 was consensus achieved between the 3 review-

ers, which means that less than 30% of the patients were classified to be part of the

same morphology group. This highlights the need for a clinically feasible practice,

to directly evaluate and link the patient-specific mechanic structure of the LA and

its appendage with the risk of intracardiac thrombosis.

1.3 Atrial fibrillation treatment

AF patients, often suffer from chaotic electric activity, which leads to irregular con-

traction and wall rigidity of the LA, altering the hemodynamics and decelerating the

blood. Together with blood stagnation in the LAA, AF patients often present en-

dothelial or endocardial dysfunction, fibrinolysis, abnormal hemostasis and platelet
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count, effectively fulfilling the Virchow triad criteria and explaining the prothrom-

botic state caused by AF [18].

To avoid such deleterious outcome, specially among the elderly, the most common

approach consists in the prescription of oral anticoagulation therapy. Nevertheless,

attaining perfect equilibrium between thrombus prevention and avoidance of hem-

orrhagic events is complex, requiring delicate personalized dose monitoring.

Figure 2: LAA occlusion devices (a) Watchman device (b) Amplatzer device [19]

Left Atrial Appendage Occlusion (LAAO) devices have risen as response for those

on high hemorrhagic risk. The task of isolating the LAA is extremely complex due

to its highly heterogenic structure morphology [20]. These innovative devices are

implanted percutaneously through the femoral vein, under fluoroscopic and echocar-

diographic guidance to avoid the blood stasis in the LAA. Despite the relative novelty

of these therapies, models such as the Watchman Device (Boston Scientific Corp.,

Natick, Massachusetts) or the Amplatzer Cardiac Plug (ACP) (St. Jude Medical,

Inc., St. Paul, Minnesota) shown on Figure 2, have proven to successfully occlude

the LAA in several randomized trials and multiple published cohorts, leading to

reduced thrombus formation and consequently avoiding stroke events [21, 19].

Despite low invasiveness and relative success of LAAO device implantations, there

have been documented cases of air embolism, LAA tear/rupture and stroke related
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to the trans-septal puncture and implantation of the device. One of the most com-

mon causes of such undesired outcomes, is the improper sizing and placement of the

device, which unfortunately leads to a substantial percentage of thrombi formation

post-LAAO implantation [22, 23, 24]. In order to avoid such post-surgical com-

plications, the device is properly sized using a chart after meticulously measuring

the LAA structure through contrast X-Ray Computer Tomography (CT) or 3D Ro-

tational Angiography (3DRA). Nonetheless, this pre-operative procedure does not

consider the way in which the blood flow patterns are affected post-LAAO implanta-

tion, which is crucial to ensure that the risk of thrombus formation no longer exists.

Thus, an innovative procedure allowing instantaneous analysis of the behavior of the

local hemodynamic to changes in the position and size of the LAAO devices would

be of great help in avoiding these setbacks.

1.4 Hemodynamics and TIA/CVA risk

Thrombi formation within the LAA is associated to a combination of several hemo-

dynamic conditions. A number of studies have pointed out that blood stasis is good

risk predictor of blood clot formation. As a matter of fact, blood flow velocities

below 40 cm/s, have been associated to increased stroke risk and those below 20

cm/s, with the formation of clots in the LAA [2]. This emphasizes the great poten-

tial of LA hemodynamics analysis as a useful tool to determine the risk of thrombi

formation.

With this in mind, there have been several attempts at characterizing LAA hemo-

dynamics precisely, though at the moment, it can be only assessed through noisy

imaging data from transesophageal echocardiography (TEE). Unfortunately, TEE

can only provide blood velocity at one single point in space and time, vastly oversim-

plifying the characterization of the complex 4D nature of blood flow patterns. In this

regard, 4D-flow magnetic resonance imaging is said to revolutionize the field in the

near future, as it is able to capture the LA blood flow on the 3 dimensions of space

through time, allowing for comprehensive evaluation of complex blood flow patterns.

In the meantime, given that 4D MRI is still under development [25], Computational



6 Chapter 1. Introduction

fluid dynamics (CFD) arises as a promising alternative to fully characterize the com-

plex hemodynamics and blood flow patterns in the different patient-specific LA and

LAA morphologies.

1.5 Computational fluid dynamics for hemodynam-

ics characterization

Computational fluid dynamics (CFD) is a branch of fluid mechanics that deals with

numerically solving and analyzing fluid flow. For years, it has been a vital tool for

computer simulation in such disparate fields such as aerodynamics, aerospace indus-

try, combustion analysis and weather simulation. More recently, it has also been

successfully employed and become widespread in the field of biomedical engineer-

ing. It has been of special interest in the study of the cardiovascular system being

employed in the design of blood pumps as early as 1990 [26].

Advances in imaging techniques have made it possible to study the physiological

mechanisms of human tissues and organs, allowing the development of patient-

specific treatment strategies. As aforementioned, there have been several attempts

to employ CFD in blood flow analysis of human LA and LAA. Otani et al. performed

personalized blood flow analysis with 3D LA endocardial surface motion estimated

from patient-specific cardiac CT images [27]. Garcia-Isla et al. performed a sensi-

tivity analysis to identify the most relevant LA and LAA morphological parameters

in atrial hemodynamics, pointing out the relevance of pulmonary vein configuration

on LAA blood flow patterns [28]. In addition, Bosi et al. [29] attempted patient

stratification under thrombogenesis risk, based on the conventional 4 group LAA

classification previously shown in Figure 1, while Masci et al. sought to link blood

stasis to a set of relevant geometrical descriptors and morphological features [30].

Finally, the work by Aguado et al. [31], focused on clinical translation by develop-

ing a web-based 3D interactive virtual implantation platform designated as VIDAA.

The aim is to help clinicians in selecting the most appropriate LAAO configura-

tions for the given patient-specific LAA morphology and export them for posterior
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computation of CFD simulations.

Hence, CFD rises as an invaluable tool to establish a mechanistic relationship be-

tween the patient-specific LAA morphology and intracardiac thrombosis by charac-

terizing the LA hemodynamics. Nevertheless, despite its huge potential and high-

accuracy results, conventional CFD methods are known for their high computational

cost, vast memory requirements and long computing times, often taking several

hours or even days for the simulations to converge. In many studies, CFD analysis

becomes one of the most intensive and time-consuming processes in the workflow,

specially if numerical convergence issues emerge [32, 33]. Moreover, the generation

of the mesh can also turn out to be a very time consuming process and can lead to

multiple problems if not completed properly.

This represents a major drawback of CFD models and prevents its embedding in

the clinical workflow of time-sensitive applications, which require fast diagnosis and

treatment planning [34, 35]. Effectively skipping the computation of CFD would

provide clinicians with really powerful tools to enable widespread implementation

of patient-specific hemodynamic characterization in the clinical environment and

instantaneously assess the risk of thrombosis. This would suit perfectly the afore-

mentioned application consisting in the pre-operative evaluation of the optimal po-

sitioning and sizing of LAAO devices in the LAA, aiming to minimize future risk of

thrombus formation. At the moment, it is not feasible to perform a high-accuracy

CFD analysis to prompt quasi-instantaneous feedback about the LAAO device po-

sitioning to clinicians, due to obvious time constraints on daily clinical practice.

This would be an invaluable tool on optimizing the positioning of devices such as

the Amplatzer or the Watchman which could potentially avoid several post-surgical

complications.

For all these reasons, there is an ever-growing body of work to create reduced order

or surrogate models of fluid flow simulations that can be evaluated with significantly

less computational resources [33]. Towards this end, deep neural networks (DNN)

provide an innovative approach that both compresses the computation time and

reduces the memory usage of CFD simulations.
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1.6 Deep neural networks and computational fluid

dynamics

It was only a matter of time before deep leaning (DL) made its way into fluid

flow modelling. DNNs have been widely applied on several fields such as image

segmentation with outstanding success, several studies claiming to outperform hu-

man clinicians, not without controversy [36, 37]. Nonetheless, it has not been until

recently that DL has made its way into the field of high-dimensional, complex dy-

namical systems. First applied by Ling et al. in 2016, modern DNNs have achieved

performance improvement over competing state of the art methods such as finite

element analysis, which suggests DNNs may play a critically enabling role in the

future of modelling complex flows [38].

It hasn’t been long before DNNs have been also implemented in the study of tissue

biomechanics. Liang et al. [35] proposed a DNN based CFD surrogate that directly

estimated the aortic wall shear stress (WSS) distributions given the patient-specific

geometry of the aorta, which to the best of our knowledge represents the first time

this kind of approach has been successfully attempted in biological fluid flow [35].

The DL model was designed and trained to take as an input the finite element

mesh of the aorta and directly output the aortic WSS distribution. The novel

approach managed to reproduce the CFD results with an average discrepancy of

0.492% and simultaneously reducing computation time from hours to mere seconds.

This unbelievable time performance improvement over current methods without the

need to sacrifice accuracy is the main reason making DNNs so compelling. In this

regard, DNNs could pave the way for development of instantaneous fluid dynamic

analysis that could be embedded in time-sensitive clinical applications.
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1.7 Objectives

Despite the immense escalation of computational power and the increased avail-

ability of commercial software in the recent decades, high fidelity CFD model solv-

ing, still requires an impressive amount of time and computational resources that

severely hinders its embedding in time-sensitive clinical applications. Hence, this

master thesis seeks to develop a deep learning surrogate of CFD, with the goal of di-

rectly retrieving the endothelial cell activation potential (ECAP) in the LAA, which

has been linked to potential risk of thrombogenesis, solely from patient-specific LA

and LAA morphologies, effectively skipping the numerical computation of the CFD

model. With this in mind, two distinct DNNs have been developed, one being based

upon a simple fully-connected (SFC) feedforward network, while the other performs

dimensionality reduction of the input and ouptut data by means of principal compo-

nent analysis (PCA), as a previous step to the non-linear regression on the multilayer

neural network. In the future, the aim is to embed the created CFD surrogate on

the aforementioned VIDAA web platform, as an additional tool to speed up the

hemodynamic characterization of the LA by orders of magnitude.

For that purpose, the hosting research group, BCN MedTech, has collaborated with

several hospitals and research groups for the obtention of an artificial population of

LA and LAA 3Dmeshes. More specifically, researchers from the Technical University

of Denmark (DTU) have collaborated by providing the tools to generate sets of

virtual LAA representations [39].



Chapter 2

Methods

Figure 3: General pipeline of the project. Following the enumeration, the geometries
are generated from the SSM [1], assembled [2] and aligned [3]. Afterwards, the 3D
volumetric mesh is generated [4] and CFD simulations are carried out [5] before
calculating the ECAP maps [6]. Once the training data has been generated, the deep
neural networks are trained (in red). As the final step the accuracy of the networks
is tested with a set of new geometries (in green). LAA: Left Atrial Appendage, SSM:
Statistical Shape Model, CFD: Computational Fluid Dynamics, ECAP: Endothelial
Cell Activation Potential.

10
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This section seeks to delve into the procedures applied throughout the development

of this thesis. As shown in Figure 3, the workflow is divided into two major blocks.

First, a breakdown of the procedures or the generation of the training data is carried

out. Likewise, the deep neural networks employed for the machine learning analysis

are described.

The first objective of the project consisted on ensuring that the same connectivity

and number of elements was shared across all geometries. That meant establishing

correspondence between all the different morphologies. Several assumptions had to

be made in order to accelerate the working pipeline and keep the model simple. For

the LA, the geometry was to be approximated as an ovoid geometry. As for the

LAA, an statistical shape model (SSM) was constructed, allowing the generation of

an unlimited population of varying geometries sharing the same connectivity and

number of nodes. Secondly, the development of the DL architecture took place. The

network needed to be trained both, with the LAA geometries and the ECAP maps

attained through CFD analysis. Two approaches were proposed: The first entailing

the dimensionality reduction of the input tensors through truncated principal com-

ponent analysis (PCA). Then a multilayer DNN would relate the low dimensional

representation of the shape and the endothelial cell activation potential (ECAP)

which would then be mapped back to the LAA geometry. For the latter, a simple

fully-connected feedforward network was employed to perform a direct non-linear

mapping. Finally, the effectiveness of the DL surrogate model was be validated

against the ECAP distributions predicted by the recently trained DNNs through a

Monte Carlo cross-validation.

2.1 Geometry

Due to the complexity and high variability of the anatomy of both the LA and the

LAA, a decision was taken to represent the LA cavity by an ovoid structure based

on the work by García-Isla et. al. [28]. The idea behind this choice was to disregard

the effect of LA heterogeneity on the atrial hemodynamics and focus on the effects

caused by the complex morphology of the LAA. In addition, it was decided that
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the input to the neural network would consist on the spatial (x, y, z) coordinates

of each of the nodes that make up the mesh of the LAA geometries. Therefore,

correspondence between LAA meshes was set as a requirement, that is to say, each

of the cases had to have the same number of nodes and maintain the same inter-

nodal connectivity. To fulfill such demands an statistical shape model (SSM) of

the LAA was created, allowing the creation of a big enough training dataset while

establishing node correspondence between each geometry. As a result, the final set

of virtual geometries, represented by a unstructured triangular 3D mesh, all shared

the same oval LA structure and cavity. Furthermore, inter-nodal connectivity and

correspondence was imposed on the LAA morphologies that vary according to an

SSM, so that changes in hemodynamics depend solely on the LAA geometry.

We have made use of several software to carry out the task. The assemble of the

LAA meshes was performed on Meshmixer [40] and MeshLab [41] open-source soft-

ware, while the alignment process was carried out on Space Claim 19.2 by ANSYS

(Student License Version) [42]. Subsequently, the generation of the tetrahedral vol-

umetric mesh was completed on gmsh 4.3.0 [43]. The CFD simulations were all

automatized with the AAS toolbox on MATLAB R2018b (Academic License) [44]

that allowed to complete all the simulations on ANSYS Fluent 19.2 [45] without the

need for supervision. During the simulations, pressure values, the velocity vector,

the vorticity magnitude, the wall shear stress and the shear strain were stored at

each time step. The ECAP parameter was calculated using MATLAB scripts, later

visualizing the results on ParaView 5.6.0-RC3 (open-source) [46].

2.1.1 LAA Statistical Shape Model (SSM)

The complex morphology of the LAA coupled with the vast amount of samples re-

quired by DNNs to be effectively trained, made fulfilling the aforementioned require-

ments a non-trivial task. Consequently, generating a dataset of artificial LAA ge-

ometries was regarded as the most sensible approach. For that purpose, researchers

from the Technical University of Denmark (DTU) provided us with datasets ob-

tained from a Statistical Shape Model (SSM) of the LAA developed by Slipsager et
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al. [39]. In the study, non-rigid volumetric registration of signed distance fields was

applied to 103 patient LAA surfaces, ensuring that all geometries shared the same

inter-nodal connectivity and number of nodes. The LAA surfaces were reconstructed

from CT images, provided by the Department of Radiology, Rigshospitalet, Univer-

sity of Copenhagen. Afterwards, the SSM was generated based on PCA, which

represented the shape probability distribution by a mean shape and modes of shape

variation through a vector of spatial point coordinates. As a result, the generated

SSM allowed to create as many artificial geometries as desired by varying the most

meaningful eigenvalues as shown in the equation,

x = x+ Pb (2.1)

where x is the mean shape of the dataset, P = (p1, . . . , pn) is the set of n retained

eigenvectors and B = (b1, . . . , bn) is the set of n weights for each eigenvector defined

as follows:

−3
√
λk ≤ bk ≤ 3

√
λk (2.2)

The set of weights for the selected eigenvectors was chosen following a normal dis-

tribution N(0, 1). In order to preserve the variance of the SSM, we attempted to

keep as many eigenvectors as possible. Nevertheless, as the number of eigenvalues

included in the model increased, some kind of “noise” appeared in the mesh surface.

This leads to defects such as self-intersecting faces that might cause the volumetric

meshing to crash and the CFD simulations to diverge. For that matter, as shown on

Figure 4, datasets with a number of principal components (PC) equal to PC = 15,

retained 92% of the variance but the defects observed in its mesh rendered the

dataset useless causing continuous convergence problems. On the other hand, the

dataset with n=5 showed a nice, smooth surface mesh but only retained 70% of the

variability. Consequently, PC=10 was chosen as an acceptable trade-off between

preserving variability (87% of the variance) and surface mesh quality.
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Figure 4: SSM generated with varying number of retained principal components
(PC) A) PC = 5, B) PC = 10, C) PC = 15. In red a set of self-intersecting faces
responsible for the divergence of the CFD simulations

Additionally, the number of nodes in the artificial LAA meshes was also studied.

Considering the dependence of the fineness of the 3D volumetric mesh from gmsh on

the surface grid, the number of nodes was minimized to avoid long computational

times. Therefore, a geometry with 5000 elements was chosen as the template to

which all the generated geometries from the SSM were registered.

With all of this in mind, a final dataset of 300 virtual LAA geometries was generated,

preserving 10 PCs with a total number of 5000 faces and 2536 nodes.

2.1.2 Oval representation of the LA

The LA, similarly to its appendage, also shows an extraordinary interpatient vari-

ability, such as a varying number of pulmonary veins with several possible orienta-

tions and diverse cavity volumes. Consequently, aiming to reduce the complexity

of the model and accelerating the workflow, the LA was approximated to an ovoid

shape based on the work by García-Isla et al. [28]. As reported on Figure 5 the oval

LAA consists of 4 cylindrical PVs and a cylindrical MV. Doing so, the effect of LA

morphology on atrial hemodynamics is disregarded.
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Figure 5: Oval representation of the LA cavity. sRPV: Superior right pulmonary
vein, iRPV: Inferior right pulmonary vein, sLPV: Superior left pulmonary vein,
iLPV: Inferior left pulmonary vein, MV: Mitral valve.

It must be emphasized, that contrary to the LAA, no correspondence is imposed in

the LA and therefore, the total number of nodes and the connectivity varies from one

case to another. Only the nodes belonging to the LAA on which correspondence

has actually been imposed comprise the input to the DNN. The values for the

volume and area of the LA chamber, veins and mitral valve shown on Table 1, were

set by computing the average of 11 real study cases [28]. After several numerical

convergence problems the fineness of the oval mesh was reduced to match that of

the SSM generated LAAs. This resulted in an oval geometry with a surface mesh

mesh composed of approximately 20000 elements.

Table 1: Ovoid LAA dimensions, VLA: Volume Left Atrium, VLAA: Volume Left
Atrial Appendage, ALPV: Area Left Pulmonary Veins, ARPV: Area Right Pul-
monary Veins, AMV: Area Mitral Valve

VLA [mm3] VLAA [mm3] ALPV [mm2] ARPV [mm2] AMV [mm2]

170.63 11.59 165.59 224.76 855.83

2.2 Preliminary simulations

Several preliminary CFD simulations were carried out to ensure that the oval ap-

proximation managed to generate sufficiently “realistical” ECAP values compared to
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Figure 6: ECAP maps for both real patient and SSM generated LA surfaces. On
the left the LA cavity is supposed to be motionless, while on the right a dynamic
mesh is implemented on the MV annulus.

those obtained from CFD simulations on real patient LA geometries. Furthermore,

a dynamic mesh method [47] was implemented on the MV to simulate the physio-

logical motion of the LA cavity during the heart cycle and avoiding mass imbalance

[48]. More details about its implementation can be found on Section 2.3.1.

Figure 6 showcases the ECAP maps obtained from real patient geometries and its

oval counterparts. Both the realistic and artificial mesh of the LA, shared the volume

and area shown on Table 1. The simulations with motion, implemented the dynamic

mesh, while the motionless examples did not.

Both motionless simulations attained significantly higher maximum ECAP values

than its counterparts, reaching peak values of 12 on the oval geometry and 21 on

the patient geometry. In contrast, the dynamic simulation resulted on a maximum

of 6.7 on the ovoid while the realistic geometry had a ECAP score of 8.3. The 90th

quartile for both the motionless simulations were 15 and 9 respectively, well above

its counterparts, which just reached values of 4 and 6.
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2.2.1 Geometry Assemble

Figure 7: Assembly procedure of the geometry. 1. LAA shape obtained from the
SSM 2. Seal the ostium 3. Extrude twice the ostium cover 4. Assemble with the
Oval 5. Separate the second extrude and perform a boolean union with the Oval
6. Combine back the oval and second extrude to the LAA and the first extrude,
eliminate LAA 7. Load the LAA again 8. Seal and smooth the elements 9. Align
the MV on the z-axis.
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Due to the need to maintain unaltered the inter-nodal connectivity, this process

turned out to be one of the most delicate in the whole computational pipeline. It

was completed in its entirety in Meshmixer. The different steps involved on the

assembly of the final geometry are shown in Figure 7.

First of all, the original LAA SSM shapes, stored at first on vtk files, were converted

to ply format both, to be able to work with them on Meshmixer and to track that

the connectivity of the mesh was not altered throughout the process. The aim of

steps 2-6 is to allow the LAA geometry to be attached to the oval cavity without

altering the LAA surface mesh in anyway. With that in mind, the ostium was sealed

(2) and later on, extruded twice (3). Then, the oval LA was imported, and slightly

rotated to align it to the LAA (4). To aid in this endeavour, the oval was color coded

so that all the appendages were attached nearly on the same position. Afterwards,

the second extrude was separated from the LAA and joined with the LA ovoid

through a boolean union. If done directly on the LAA, this process would have

completely remeshed the geometry of interest, ruining the mesh correspondence.

Once completed, the first extrude was joined back to the second one (5) using

the "Combine" functionality in Meshmixer, having created a mesh that perfectly

matches our LAA geometry.

Before the ensemble was completed, the LAA had to be removed and loaded again,

to preserve the order of the nodes on the ply files (6-7). This time as the first extrude

matches exactly the LAA they can be joined without altering the mesh connectivity.

Later on, the smoothing tool allowed to eliminate defects on the LAA surface by

rearranging all the elements as evenly as possible without altering the connectivity,

seeking to avoid numerical convergence problems (8). This process was completed

manually through visual inspection of the mesh.

Finally, the pulmonary veins and mitral valve of all the geometries were aligned to a

template on Space Claim (9). The MV of the template was previously aligned on the

Z-axis direction, which is essential for the correct implementation of the dynamic

mesh as it will be explained on the next section.
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Following this pipeline, we managed to obtain 300 completely aligned virtual LAA

geometries. From case to case, only the relative position of each node forming the

LAA varies slightly. The tetrahedral 3D mesh was then generated on gmsh and

saved on a bdf file, which resulted in volumetric meshes composed of approximately

350.000 elements each (µ = 352180, δ = 11237). It is worth mentioning that,

while we imposed correspondence on the surface mesh, the same is not true for the

volumetric grid. Nonetheless, since the parameter of interest is computed over the

elements of the surface this fact is irrelevant as this remains untouched.

2.3 Generation of risk indices for thrombus forma-

tion - ECAP

The endothelial cell activation potential (ECAP) was the parameter chosen to eval-

uate the risk of thrombus generation following studies such as the one by Di Achille

et al. [49]. This parameter is based on the wall shear stress, but it is averaged over

time. Therefore, it greatly simplified the required DL architecture. The wall shear

stress was obtained through conventional CFD simulations before computing the

ECAP values which served as the ground truth for the posterior DL analysis.

2.3.1 CFD simulations and boundary conditions

As previously stated, all the simulations were automatically performed through the

MATLAB - ANSYS Fluent interface. A script was developed for that purpose, which

automatically switched the volumetric mesh and run all the simulations on a loop.

Each of the completed simulations encompasses a full cardiac cycle. The systole

lasted 0.40s , imposing an input blood flow through the PVs obtained from clinical

observations made by Fernandez-Perez et al. [50]. Wall boundary conditions were

applied to the MV during this cardiac phase, as it is closed during this period. On

the other hand, the diastole was defined to last 0.65 imposing an outlet pressure of

1067 Pa on the MV, simulating an open valve. Thus, the total length of the cardiac

cycle is 1.05 seconds.
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To simulate the motion of the LA and to prevent breaking the law of mass conser-

vation during the cardiac cycle [48], a diffusion-based smoothing dynamic mesh is

applied in the MV annulus on the longitudinal direction (z-axis). Accordingly, the

mesh motion is governed by the following diffusion equation [47],

∇ · (γ∇−→u ) = 0 γ =
1

dα
(2.3)

where −→u is the mesh displacement velocity, d is a normalized boundary distance

and γ is the diffusion coefficient, a function of the boundary distance. When using

smoothing, the interior nodes of the mesh move and “absorb” the movement of the

boundary, but the number of nodes and their connectivity does not change. At first

several CFD simulations were attempted with γ = [1, 2]. After facing continuous

problems on the convergence of the simulations due to negative cell volumes, a

diffusion coefficient of γ = 0 was chosen as a last resort.

Figure 8: PVs inlet velocity profile throughout the whole cardiac cycle from systole
0− 0.40s to diastole 0.41− 1.05s. The red line indicates the transition between the
two cardiac cycles.
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Regarding the remeshing process, local cell remeshing was chosen, setting the length

scale to the values obtained from the mesh scale info, a cell skewness of 0.9 and

remeshing interval of 6 to avoid exceedingly long computation times. The interior

and exterior zones were defined as deforming areas, the PVs as stationary and the

MV as a rigid body with a cell height of 0.001.

The longitudinal motion is imposed through a transient-table oriented on the z-

axis with data from real-time 3D echocardiography measurements performed by

Veronesi et al [51]. Blood was modeled as an incompressible Newtonian fluid with

density ρ = 1060 kg/m3 and dynamic viscosity of µ = 0.0035Pa s. Flow was assumed

laminar with isothermal and non-gravitational conditions. Blood flow was simulated

using the incompressible Navier-Stokes equations. For the equation’s resolution,

a time step of ∇t = 0.01s, 200 maximum iterations and a second order implicit

unsteady formulation was used, together with a standard partial discretization for

the pressure with an under-relaxation factor of 0.3 and 0.7 respectively.

Each time step the density, the velocity field,the absolute and total pressure, the vor-

ticity, the mass-imbalance and the wall-shear stress were recorded in an encase gold

file, essential parameters for the ECAP calculation and that ensured the successful

completion of the simulation.

2.3.2 ECAP definition

The endothelial cell activation potential (ECAP), defined by Di Achille et al. [49],

unifies several parameters related with the localization of thrombogenic areas. The

time-averaged wall shear stress (TAWSS) is defined as follows

TAWSS =
1

T

∫ T

0

| −→τW | dt (2.4)

, where | −→τW | represents the instantaneous magnitude of the WSS [N/m2] and T[s]

the duration of the pulse period.

The oscillatory shear index (OSI) measures the differences between both parame-
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ters exposing the WSS vector deflection from the main blood flow direction. It is

computed by the following expression,

OSI =
1

2

(
1−

|
∫ T
0
−→τW dt |∫ T

0
| −→τW | dt

)
(2.5)

Its value range goes from 0, which represents the complete absence of deviation,

to 0.5, that indicates a 180◦ WSS vector deflection. High values are associated to

complex flows and complex shapes.

Finally, the ECAP measures the ratio of OSI to TAWSS with the aim of localizing

regions with high clot susceptibility. High values are associated with endothelial

susceptibility and risk of thrombus formation.

ECAP =
OSI

TAWSS
(2.6)

2.3.3 Simulation post-processing

After the completion of a simulation for a given geometry, each one of the executed

simulations was imported to ParaView [46] to extract all the required data for the

ECAP computation. With the aim of accelerating the process, the ParaView-python

interface, pvpython, was employed to run a trace file that automatically stored all

the data necessary for the obtention of the parameters of interest. The information

of each time-step stored in the encase file was converted to .csv files and the LA

geometry was saved to an stl file. Finally, a MATLAB script was used to compute

the ECAP.

Once all the data was gathered, the generated models and simulations were visually

inspected to ensure the ground truths for the training data were correct. For that

purpose, the connectivity of all geometries was verified to be the same. As shown on

Figure 9, it was discovered that the identification number for the nodes in the first

ring of the LAA (in red), area corresponding to the ostium, had been altered . As

a consequence, this nodes had to be removed, since reestablishing correspondence
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Figure 9: 70 nodes (in red) where eliminated on the outer ring of the LAA. The rest
of the 2466 nodes (in blue) where retained for the deep learning analysis.

on all the geometries proved to be imposible. By removing this set of 70 nodes only

2466 remained for the posterior DL analysis.

Afterwards, the ECAP maps obtained for the SSM generated LAAs, were subjec-

tively compared to those obtained on a small group of real patients LAA geometries

in order to spot simulations in which the results were clearly unrealistic due to nu-

merical problems during the simulation. After this screening, a final training dataset

of 210 LAA geometries and corresponding ECAP maps was obtained.

2.4 Deep Learning Model

The main goal of the machine learning analysis was to develop a surrogate of the

CFD simulations, enabling an accurate analysis of LAA thrombogenesis with un-

precedented speed. Given an input LAA shape, the machine learning algorithm

should be able to output the LAA ECAP maps while being consistent with the

performed finite element analysis. Thanks to its innate capability to establish non-

linear relationships between two sets of variables, DNNs suit perfectly the description
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above, given that sufficient data is provided for an adequate training of the network.

With these objectives in mind, the workflow of Liang et al. [35] was taken as a

basis, due to the obvious resemblance of the tasks in hand, and adapted to the

specific requirements of this project. That being said, it is of utmost importance to

emphasize the substantial differences between the aorta and the LAA, specially in

terms of morphological complexity, which represents a far more daunting challenge.

Moreover, two distinct DL models were tested on this work, further details about

their implementation being provided on the following sections.

With regard to software, Keras 2.2.4 (open-source) [52] was chosen as the high-

level neural network API in which to implement the DL model, due its highly

modular networks and fast prototyping. It was run on top of TensorFlow 1.13.1

(open-source) [53], using Anaconda (Python 3.7) [54] as the python development

environment. The code compilation was carried out through the Spyder IDE. The

hardware available for this process was composed by a laptop with 16 GB RAM

and an Intel Core i7-8565 quad-core processor. Due to the availability of a NVIDIA

GTX 1050 graphic card with enough compute capability (6.1), it was possible to

leverage TensorFlow’s GPU support by installing the CUDA toolkit 1.10.1 [55] and

its corresponding cuDNN 7.6.0 [56] library for accelerated parallel computing on the

model training.

2.4.1 Simple fully connected (SFC) network

At first sight, having achieved complete nodal correspondence among all of the LAA

meshes, performing a simple non-linear regression by implementing a simple fully-

connected feed-forward network between the space coordinates and the ECAP maps

seemed to be the most sensible approach. Accordingly, a multilayer neural network

was designed to map the space coordinate triplets to their corresponding ECAP

values. As shown on Figure 10, the final layout, is comprised of two equally sized

hidden layers, counting a total of 5000 nodes each. The depth of the network was

chosen following the recommendations by Heaton et al. [57] suggesting the us of

no more than two layers in feedforward neural networks, which at the same time
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Figure 10: Network structure for the simple fully-connected feedforward network.
no = Number of mesh nodes, U = Number of activation units.

happened to offer superior performance over deeper architectures. Following the

same guidelines, the chosen number of hidden nodes was somewhere between the

input (7398) and output (2466) unit number.

2.4.2 PCA dimensionality reduction network

Afterwards, an alternative approach was attempted, which more closely resembled

that of Liang et.al [35]. As stated earlier, the input of the neural network would be

the spatial (x, y, z) coordinates of the 2466 nodes forming the LAA geometries. The

deep neural network would try to approximate the non-linear function relating the

LAA shape defined by the spatial coordinates and its corresponding ECAP map.

This means that the input and output of the neural network would be composed of

7398 and 2466 nodes, representing the surface of the mesh and the predicted ECAP

values respectively.

This implies a exceedingly high input and output space dimensionality that could

hinder the network training time cost, lead to undesirably high computational power

consumption and potentially increase the likelihood of convergence problems of the
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Figure 11: Network structure for the dimensionality reduction DL model. no =
Number of mesh nodes, U = Number of activation units. Figure adapted from
Liang et al. [35].

training algorithm [58]. For this reason, truncated PCA was performed in both the

input feature space and the output ECAP variables as a previous step to carrying

out the non-linear regression.The basic pipeline of this approach goes as follows:

1. Dimensionality reduction of both the spatial geometry and ECAP map data

to a small set of scalar values through truncated PCA;

2. Training of the non-linear mapping by feeding through the set of low dimen-

sional scalar values representing the shape and ECAP of the training dataset;

3. Predict the ECAP maps of the test geometric dataset by feeding its corre-

sponding low dimensional representations to the net and reconstructing the

ECAP values through matrix multiplication.

As aforementioned, truncated PCA was implemented on both the input and output

spaces to partially reduce the complexity of the problem. Besides, it is well known

that neural network training tends to converge faster if the input is whitened, that

is, linearly transformed to have zero mean, unit variances, and being decorrelated
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[59]. That is precisely what PCA does, allowing for dimensionality reduction of large

datasets at the same time that the information loss is minimized by generating new

uncorrelated variables that are linear functions of the original dataset. These new

variables are known as principal components (PC). Following this definition we can

describe a specific LAA shape as shown on the equation below [60]:

X = X +
M∑
m=1

αm
√
λmWm (2.7)

, whereX is the mean shape andWm and λm is the set of eigenvectors and eigenvalues

of the covariance matrix for the retained number m of PCs. If the variability of

the dataset is explained by a small set of PCs, that is, most of the variability is

concentrated in a small number of PCs, the shape of the LAA can be accurately

represented by a small set of scalar values as follows

βm =
W T
m(X −X)√

λm
εn =

W T
n (Y − Y )√

λn
(2.8)

The same can be employed on the ECAP distributions, effectively reducing the

dimensionality of the input and the output. In our model the number of PCs retained

was chosen by performing a grid search on the obtained prediction accuracy. In the

final model, m = n = 32 PCs were kept for both the shape and the ECAP, which

retained a total variability of 97,6% and 90,3% respectively.

Having performed the truncated PCA, a fully-connected feed-forward neural network

was designed to perform a non-linear regression between the low dimensional scalars,

βm and εn, representing both the geometry and the ECAP, similarly to Section 2.4.1.

The structure of the network is shown on Figure 11 which is composed of 3 hidden

layers of 512 units, both the number of nodes and the layer depth being selected

due to superior performance over other alternatives.
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Once the deep neural network has been successfully trained, predicted ECAP values

are reconstructed from its low-dimensional representations reversing Equation 2.8

Y = Y +
N∑
n=1

(
εn ·

√
λn

)
Wn (2.9)

2.4.3 Training of the model

After setting up the network structure, the loss function, optimizers and different

hyperparameters were chosen in order to tune up the DL model. Most of the fol-

lowing parameters have been employed equally on both of the DL networks. First

of all, Adam was selected as the compiler of choice, a modification of the classic

stochastic gradient that has been shown to outperform similar algorithms while of-

fering improved efficiency [61]. On the other hand, the mean square error (MSE)

was selected as the loss function due to superior performance.

Likewise, among all the options available for non-linear regression, ReLU units were

chosen over other nonlinear units, such as Leaky ReLU or Softplus, as they delivered

better results. Furthermore, the number of epochs was also assessed to find the

sweet-spot between under and overfitting. For the simple feedforward network, 200

epochs seemed optimum while for the PCA approach 300 epochs were employed. A

batch size of 20 was used on both cases.

2.4.4 Evaluation of the model

The predictive capabilities of both DL models were evaluated through Monte Carlo

cross-validation. This means that in each round of the cross-validation 90% of

the dataset was randomly selected for training purposes, while the rest served to

compute the performance of each neural network.

With this in mind, two different metrics were chosen: mean absolute error (MAE)

and the root mean square error (RMSE), being some of the most common metrics

to measure accuracy on continuous variables.
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MAE measures the average magnitude of the errors in a set of predictions, where

all observed individual differences between prediction and ground truth share equal

weight. NMAE is its dimensionless variation, obtained by dividing MAE by the

maximum absolute ground truth observation.

MAE =
1

n

n∑
j=1

| yj − yj | (2.10)

RMSE is calculated as the square root of the average of squared differences between

prediction and ground truth. It also expresses average model prediction error in

units of the variable of interest, but it also gives more weight to large errors as the

difference is squared.

RMSE =

√√√√ 1

n

n∑
j=1

(
yj − yj

)2 (2.11)

Aside from the aforementioned accuracy measures, a set of different metrics was

used in order to evaluate the performance of the DL model on predicting the peak

ECAP values that have been linked to potential risk of thrombogenesis. For that

purpose, the absolute error (AE) was computed between the maximum predicted

and ground truth values. Aiming to avoid this measurement to be conditioned by

a small set of outlier nodes with exceedingly high values of ECAP, this metric was

also calculated for the 99th and 90th percentile of the highest ECAP values.

AE =| max (| yj |)−max
(
| yj |

)
| (2.12)

In addition the normalized absolute error (NAE) was also calculated as follows

NMAE =
MAE

max (| yj |)
· 100 (2.13)
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Results

3.1 Deep Learning model

As previously stated, a final dataset of 210 artificial LAA surface meshes was as-

sembled, each composed of 2466 nodes sharing the same inter-nodal connectivity.

At the same time, the ECAP values considered as the ground truth were obtained

through CFD simulations and later contrasted with the predicted ECAP maps from

the DNNs.

Once all the required data was gathered both the DL networks were trained. During

this process a significant difference on time performance was noticed between the

two employed approaches. Each cross-validation iteration on the truncated PCA

model required just 30 seconds to perform the unsupervised learning analysis, the

non-linear mapping and the reconstruction matrix multiplications. In contrast, the

training of simple fully-connected (SFC) network took about 25 minutes.

3.1.1 Performance

With the aim of quantitatively assessing each network’s performance a Monte Carlo

cross-validation of 100 folds was implemented. The details about the methods, data

and performance metrics employed are described in depth on Section 2.4.4. The

accuracy achieved by each of the networks is shown on Table 2. It is important to

30
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Table 2: Performance of DL models on a 100 fold Monte Carlo cross-validation.
MAE: Mean Absolute Error, RMSE: Root Mean Square Error, NMAE: Normalized
Mean Absolute Error.

Network MAE RMSE NMAE

PCA 0.6457 ± 0.0493 0.8905 ± 0.0856 4.7197± 1.4625%

SFC 0.6486 ± 0.0462 0.8852 ± 0.0848 5.7558± 1.523%

point out that the ECAP parameter is a pure positive scalar quantity and therefore,

both the MAE and the RMSE have no physical dimension assigned. Both DL models

achieve very similar accuracy, attaining an average MAE of 0.6457 ± 0.0493 for the

dimensionality reduction model and 0.6486 ± 0.0462 for the SFC network.

Table 3: Absolute error (AE) error of peak ECAP values. Max: Maximum peak
values, 99th: Upper 99th percentile, 90th: Upper 90th percentile.

Network AE Max AE 99th AE 90th

PCA 1.4978 ± 0.1559 0.7869 ± 0.0893 0.5210 ± 0.0460

SFC 1.4759 ± 0.2112 0.7723± 0.1330 0.5157 ± 0.0815

Table 4: Normalized absolute error (NAE) of peak ECAP values. Max: Maximum
peakvalues, 99th: Upper 99th percentile, 90th: Upper 90th percentile.

Network NAE Max NAE 99th NAE 90th

PCA 20.93 ± 1.98% 16.13 ± 3.05% 14.52 ± 1.83%

SFC 21.63 ± 3.79% 16.6 ± 6.3% 14.98 ± 3.84%

Regarding peak ECAP values related to thrombosis risk, there seems to be a notice-

able downward trend as we go from peak values to lower percentiles of the absolute

error (AE), as seen on Table 3. This trend seems to be mirrored by the normalized

absolute error (NAE) values on Table 4.

The predicted ECAP mappings alongside with the ground truth, can be visualized

for 7 representative LAA shapes in Figure 12. These specific set of LAA shapes,

belong to one single iteration of the Monte Carlo cross-validation, both networks

being trained with same dataset composed of 189 instances. Once trained, a test

dataset of 21 shapes was used to generate the predictions shown in the figure. The
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Figure 12: Set of ECAP values on a random test dataset of 21 shapes, 7 of which
are shown in here. Each row corresponds to a given geometry while the columns
from left to right represent: Ground truth (GT) obtained from CFD simulations,
predicted ECAP from the Simple Fully connected (SFC) network, prediction of the
PCA network, difference between GT - SFC, difference between GT - PCA



3.1. Deep Learning model 33

Table 5: Mean average error (MAE) for the first 7 LAA geometries in Figure 12

Networks A B C D E F G

PCA MAE 0.6498 1.0815 0.5509 0.4652 0.5138 0.5682 0.6774

SFC MAE 0.7950 0.6591 0.6861 0.5259 0.5459 0.7537 0.6254

ground truth (GT) can be seen along the predictions from both DL models in a

discrete scale ranging from 0 to 6. Besides, the absolute error of the predictions

can be observed in the rightmost columns at the same scale. The posterior face of

the first 7 geometries shown in here and the results for the remaining 14 geometries

can be seen in the Appendix A.1 and A.2. In addition, the MAE for the first 7

geometries are reported on Table 5, while the metrics for the rest of instances can

be found on Appendix B.2.

Figure 13: Total node count of the 21 test simulations in each range of ECAP values

Subsequently, the decision was made to divide the nodes in a set of ranges according

to their ECAP value following the discrete scale on Figure 12. The results are

reported on the histogram on Figure 13, making it fairly clear that the DL models

tend to underestimate the number of nodes with the most extreme values. The

specific values for each range and network are reported on Table 7 on Appendix B.
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Figure 14: ECAP difference computed as the substraction between the ground-truth
(GT) and the PCA based DL model on the left columns, and the GT and the simple
fully-connected (SFC) model on the right columns. The front-face is shown in here.
The posterior faces can be found on Figure 22
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To analyze the central tendency of the ECAP mappings the mean was computed,

resulting in a slightly higher mean for the GT with µGT = 2.3446 ± 0.2540 , while

the mean for both predictive models turned out be almost identical with µPCA =

2.2398± 0.2456 and µSFC = 2.2428± 0.2021. Similarly for the standard deviation,

the GT comes up on top δGT = 1.4982, compared to its DL counterparts which are

almost identical δPCA = 1.3019, δSFC = 1.2967.

On the other hand, the substraction of the CFD obtained ECAP maps and its pre-

dictions can be seen on Figure 14, with the PCA and SFC results being side by side.

This time all the 21 test geometries are shown together avoiding the computation of

the absolute difference so that any tendency of the predicted ECAP maps to have

lower or higher values than the GT could be better visualized. The scale was set to

[−3, 3] to better appreciate the subtle changes between the models. The figures for

the posterior faces can be found on Appendix A.4.

Similarly, to learn if each of the different DL models was better suited to capture

specific features of the geometry and to better spot the disparity in their predictive

capabilities, their substraction was also computed and it is shown on Figure 21.

3.1.2 Detection of potentially high risk thrombotic areas

While previously the whole ECAP value range has been considered to measure the

accuracy of the predictions, throughout this section the focus is going to be set on

the highest ECAP values, as they are the most relevant when assessing the potential

risk of thrombogenesis. Following the study by Di Achille et al. a value of 4 was set

as the lower bound for high thrombogenic risk [49]. Consequently, any node with

an ECAP value above such threshold is considered to be on high risk for thrombi

generation.

With this in mind, a binary classification of the nodes with ECAP value above 4 was

performed, with the positive condition being ECAP > 4, that is, corresponding to a

region with potential thrombi risk and the negative condition represented by ECAP

≤ 4. The results are shown on Figure 15. Following the statements above, nodes
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Table 6: Confusion matrices for both SFC and PCA predicted ECAP values
T
ru

e
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SFC Prediction outcome

DL Risk DL Safe

Risk 233.95
0.5967

158.14
0.4118

Safe 55.57
0.0268

2018.3
0.9732

Total 289.5 2176.5

PCA Prediction outcome

DL Risk DL Safe Total

230.62
0.5882

161.48
0.4033

2073.9

50.19
0.0242

2023.7
0.9758

392.1

280.8 2185.2

above the threshold of 4 in both the GT and DL predictions were considered as true

positives (TP), those that stood above just on the GT were labeled as false negatives

(FN), ECAP values that were mistakenly predicted as high risk were defined as false

positives (FP) and finally, nodes below the threshold on both cases were classified

as true negatives (TN). The above labels have been color-coded as follow on Figure

15: TN - Green, FN - Blue, FP - Red and TN - Grey.

Furthermore, to perform a qualitative assessment of the networks classifying capa-

bilities, a couple of confusion matrices were constructed for each of the DL networks

which are reported on Table 6. The mean number of nodes across the 21 sample

shapes for each of the labels appears on the top row of the matrices with their corre-

sponding rates shown below. On the right column the true amount of positive and

negative condition values is shown, while the predicted numbers are shown below.
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Figure 15: An ECAP value of 4 has been chosen as a threshold for potential thrombi
formation risk. The performance of the DL model to detect such risk areas is
evaluated by measuring the areas in which the ECAP > 4 on both the GT and the
DL predictions (True Positive in green) intersect, areas that only appear to be risky
on GT (False negative in blue) and areas that have been misdiagnosed by the DL
model (False positive in red)



Chapter 4

Discussion and conclusions

In this thesis, a DL based surrogate of CFD simulations was proposed, with the

aim of reducing computational time and cost of hemodynamic characterization, by

directly estimating the ECAP values of the LAA from its geometrical shape alone.

With this objective in mind, two different DNN models were developed to perform

a non-linear regression between the variables. The first and simplest approach,

consisted on a simple fully-connected feed-forward network. The latter, combined

supervised and unsupervised learning by performing dimensionality reduction of

the involved variables through truncated PCA, and reconstructing them back once

the non-linear mapping was over. To our knowledge, the work developed in this

thesis represents, only behind the study performed by Liang et al. [35], one of the

first successful implementations of DL techniques for fast and accurate prediction of

hemodynamic parameters conventionally attained through CFD.

First and foremost, the main objective of the study being the reduction of the pro-

cessing time and computational requirements of finite element analysis, the time

required to obtain the ECAP distributions has dropped down several orders of mag-

nitude thanks to the implementation of the DNNs. As a matter of fact, while the

CFD simulations performed to obtain the ground truth ECAP values took an hour

and a half on average, once trained and given a set of input shapes, the DL networks

required less than a second to obtain their corresponding predictions. Furthermore,

38
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the training of the DNNs took less time than the completion of one single CFD sim-

ulation. Yet, it must be stated that the SFC approach took much longer to train, 25

minutes approximately, than the dimensionality reduction model, which completed

the training of the multilayer neural network in under 30 seconds.

Secondly, the performance of both DNNs was benchmarked against the ground truth

ECAP maps obtained from the CFD simulations through a 100-fold Monte Carlo

cross-validation. This led to a MAE of ∼ 0.64 for both DL models. Thus, it is clear

that DNNs had remarkable success in providing highly consistent predictions of

ECAP distributions with those obtained through traditional finite element analysis.

The performance of the DL networks is going to be analyzed more in depth on the

sections below.

4.1 Oval geometry and dynamic mesh

After thoroughly analyzing the ECAP results obtained on the 4 different configu-

rations, it was decided that the more sensible approach was combining the ovoid

representation of the LAA together with the implementation of the dynamic mesh.

First of all, the CFD simulations in which the LA walls were considered rigid, as-

sumption that might be partially correct on patients with AF, was completely dis-

carded due to the abnormal ECAP distribution on the main lobe and exceedingly

high peak values unlike those seen in studies such as the one by Di Achille et al. [49].

The rigid wall assumption means that the volume of the LAA cavity does not change

during the cardiac cycle. As a consequence, the continuous blood inlet through the

PVs, as defined in Figure 8, coupled with the closed MV during ventricular systole

breaks the mass conservation law, resulting in mass imbalance. As the ECAP incor-

porates the TAWSS parameter, which is time averaged, and the systole being the

most relevant time frame influencing ECAP, motionless simulations showcase much

higher overall ECAP values.

In fact, this is what can be observed in Figure 6, ECAP peaks being concentrated at

the end of the main lobe, with big patches showcasing an ECAP value well above 10,
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exceeding by far the 99th upper higher ECAP percentiles presented by Di Achille et

al. [49]. As a result, motionless simulations were deemed unsuitable for the study.

In contrast, the upper percentiles observed in the dynamic simulations are much

closer to those observed in the study, rarely exceeding values above 5.

Secondly, a decision had to be made between the artificial or anatomical repre-

sentation of the LAA. The ECAP distribution of both morphologies share some

resemblance, as well as more “realistical” peak values, but making use of real ge-

ometries would be always preferable. For that purpose, a code was provided by the

research group to generate meshes from patient geometries that would share the

same connectivity and number of nodes. Nevertheless, since the performed CFD

simulations would not have had any clinical relevance regardless of the chosen LA,

due to artificial LAA populations being used for the geometry assemble, the oval

was chosen over the real geometries due to time constraints and in order to simplify

the workflow.

4.2 DL Performance

As has been noted, both DNN networks developed in this thesis show more than

adequate predictive capability given the difficulty of the task in hand, as it is clearly

shown on Figures 12, 16 and 17. It seems that the multilayer networks are able to

capture the non-linear relationship between the LAA geometry and the shape, with

great overall resemblance between the ECAP distribution patterns of the GT and

the DL predictive models.

On the other hand, it is well known that DL methods are considered as “black

boxes” due to the difficulty in interpreting the results, that is, figuring out which of

the input features are the most relevant or how they relate to the observed output.

The DNNs on this thesis are no exception, and while we can measure how accurate

the obtained prediction is, it is hard to discern any clear pattern or geometrical

feature with which the neural network is struggling to capture. Giving a look at the

absolute differences between GT and predictions on the aforementioned figures, it
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can be observed that the differences stay mostly below one, with the exception of

a couple of geometries on which the DL model struggles more for reasons beyond

understanding.

Machine learning techniques, and more precisely DNNs, have not been widely im-

plemented yet as a substitute to CFD simulations, and the studies looking to predict

clinical hemodynamic parameters are fewer still. In fact, to our knowledge Liang et

al. [35] have been the first in successfully implementing these networks with such ob-

jective in mind. Therefore, their work is the only reference available against which

to benchmark our results. Overlooking obvious differences between both studies,

since they are measuring several components of the stress tensor instead of a single

parameter such as the ECAP, Liang et al. managed to obtain an average error of

0.492%, an order of magnitude lower than the NMAE of 4.72% and and 5.756%

obtained by the PCA and SFC DL networks employed on this study. Although at

first glance it may look like a remarkable drop on the DL prediction accuracy, there

are a number of reasons that explain such a disparity.

To begin with, perhaps the most influential factor is the complexity of the studied

geometry. Compared to the LAA, the aorta is a very simple geometry with mainly

laminar flow, making DNN-based surrogate estimation easier. Furthermore, a sim-

plified version of the aorta was employed by Liang et al., which had the branches of

the aortic arch removed. In contrast, the LAA morphology from the SSM employed

on this study, presents much higher heterogeneity with high size and cavity volume

variability, different number of lobes or distinct direction in the folding of the main

lobe among others. That being said, while it is true that the employed SSM of the

LAA manages to capture major variations of a real anatomical appendage, by no

means it encompasses the astonishing complexity and heterogeneity found on real

anatomical LAA populations.

Secondly, this very complexity of the LAA morphology, severely restricted the pos-

sibility of applying structured grids when meshing the different shapes. This com-

pletely negated the employment of convolutional neural networks on regular patches

of the geometry, similarly to what Liang et al. implemented, in order to successfully
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extract features from the ECAP maps, which we hypothesize could vastly improve

the prediction accuracy obtained in the study. Lastly, the size of the final dataset

used in the training of the neural network was 3 times smaller than the one employed

by Liang et al.. Nevertheless, this last point seems to be quite irrelevant, since the

DNNs were trained with sequentially increasing dataset sizes and the performance

of both networks hardly improved from 160 training geometries onward.

Alternatively, several attempts were made to improve the overall accuracy of both

DL networks by including learning rate schedulers or increasing the depth of the

network with little or no success. All things considered, it is believed that DL models

employed throughout this thesis manage to approximate the non-linear function

relating the LAA geometry and its ECAP maps quite successfully.

4.3 DL network model comparison

Despite the fact, that the input and output tensors for both models are drastically

different, both in value and in size, due to the dimensionality reduction implemented

on the PCA network, identical accuracy values are obtained for all relevant metrics.

Conceptually, the dimensionality reduction network should have delivered superior

performance since the non-linear function to be fitted is far more complex for the SFC

model, a priori. Nonetheless, the set of input-output variables are so distinct that

is very difficult to perform a proper assessment of the causes. This surprising result

is ratified by the comparison made on Figure 14, where the subtraction between the

GT and both predictions are plotted side by side. The overall patterns of difference

between the ECAP mappings of both models seem to be identical. Interestingly,

looking at the MAE values reported on Table 5 there seems to be no visible trend

by which one network obtains a better precision than the other in a specific geometry.

However, Table 7 seems to showcase the most apparent difference between the two

models. First of all, the central tendency for both ECAP predictions (more of the

predicted nodes fall in the 1-4 ECAP value range than in the ground truth) seems

to be a little bit lower than the ground truth. This is corroborated by the slightly
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higher mean of the CFD attained ECAPs. As for the difference between the two

networks in each of the 7 ranges, here seem to be no substantial differences except

for the highest ECAP values scoring above 6, in which the PCA approach appears

to obtain substantially higher number of nodes. In fact, looking on Figures 12,16

and 17 at the geometries in which the ECAP value seems to be the higher, such as

the shapes C,F,M and Q, it can be observed that the SFC slightly underestimates

peak ECAP values, which is translated in worse MAE score as seen in Table 5.

Furthermore, Figure 21, which is the result of the subtraction of both predictions,

showcases that in the aforementioned C,F,M,Q geometries the SFC approach has

lower values on the final end of the main lobe. The histogram of Figure 13 further

confirms this hypothesis as it clearly showcases that the SFC has the lower count

on the total amount of nodes above 5 in comparison with the ground truth.

The absolute error on the peak ECAP values and the upper percentiles are shown in

Tables 3 and 4. Similarly to the study by Di Achille et al. [49], the upper percentiles

were also taken in account as it might be more convenient and robust than only

considering peak nodal values so that areas with high values over a non-negligible

region are also included instead of just isolated outliers nodes. It can be seen that

while the AE is quite bad for the peak values as we go down on the percentiles the

value improves. Therefore, it seems that the DL networks are able to successfully

predict the overall areas in which ECAP values are high, but no so much the values

of the outlier isolated nodes. In fact, if looked closely at the histogram on Figure

13, it is obvious at first glance that both DL predicted ECAP values have a stronger

central tendency than the GT, which has its values much more evenly spreaded.

This is supported by the slightly higher standard deviation δGT = 1.4982, compared

to the predictions with δPCA = 1.3019 and δSFC = 1.2967. Given this points, it

seems that the developed DL networks are not capable of properly adjusting to

extreme values, probably due to the lower frequency of occurrence on the training

dataset.

Even though the accuracy results for both approaches may seem equal, the same

cannot be said about the time performance of the neural network training. This
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represents the most remarkable advantage of the PCA approach over its counterpart.

Due to the implemented truncated PCA, the dimensions of the input and output

space of the multilayer neural network performing the non-linear regression are much

lower, going from the 7500 input units of the SFC model, to the comparatively

insignificant 32 units of the PCA approach. This also extends to the hidden layers,

while the difference is smaller, going from 5000 to 512 ReLU units respectively.

Since the unsupervised learning method implemented on the latter is completed

almost instantaneously, it represents enormous savings not only in time, but on

CPU and GPU resources employed. This resulted in the PCA network being trained

astonishingly fast, just over 30 seconds, while the SFC based model required near

25 minutes to complete its training.

Overall, both approaches seem to generate acceptable predictions of the ECAP map-

pings given the input LAA shapes. Nonetheless, since the same result is achieved

with fewer computer resources and orders of magnitude faster, the dimensional-

ity reduction network is thought to have an edge over the simple fully-connected

network.

4.4 High ECAP values

Despite the fact this thesis lacks any clinical relevance and focuses on the feasibility of

the concept rather than its clinical implications, studying the prediction capabilities

of the networks in detecting the highest ECAP values was thought to be of interest.

Constrained by the lack of literature and the absence of validated ECAP values on

the LA, the study performed by Di Achille et al. [49] on thrombotic abdominal aortic

aneurysms was taken as the reference for high ECAP values, with a value of the top

99th percentile of 4. This value was set as the threshold above which we consider

a node, to have a higher risk of thrombi formation. Figure 15 makes it easier to

visualize the accuracy of the DL models on predicting the highest ECAP values. In

addition the posterior face can be seen on Appendix A.5. Green areas correspond

to true positive nodes (TP), that is, nodes that have been correctly classified above

an ECAP value of 4 by the DL networks, while blue and red areas represent false
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negatives (FN) and false positives (FP) respectively.

The quantitative analysis performed through the confusion matrices seems to re-

inforce the idea that both predictive DL networks tend to underestimate the most

extreme ECAP values, that is, the number of nodes that are the farthest from the

mean value. As a matter of fact, it can be observed at first glance in Figures 15 and

23 that the number of FN nodes far exceeds that of FP nodes. As reported on Table

6 the FN nodes are 3 fold more numerous, which means that the number of nodes

that the DL networks have wrongly predicted to be below the threshold is 3 times

higher than the nodes that have been incorrectly assigned to be in thrombosis risk.

On the other hand, although the true positive rate is rather low at ∼ 0.6, it must be

stated that almost all significantly large FP and FN areas are found surrounding the

edges of TP patches colored in green. This means that while the number of wrongly

classified nodes is not negligible, the networks manage to capture the approximated

areas of high ECAP values and that no missclassifications occur outside of this

regions. Therefore, the developed DL architectures can give insight into the general

layout of the areas on risk of thrombus formation, but are unable to capture the full

extent of the areas at risk, with a tendency to underestimate their size compared to

the GT distributions.

4.5 Study limitations

As the goal of this study was to assess the feasibility of DNNs as a possible surrogate

of CFD, several assumptions and simplifications were made to alleviate the workload.

First and foremost, employing an artificial ovoid representation of the LA completely

neglects any possible clinical relevance that the predicted ECAP maps might have.

Moreover, the same ovoid geometry was employed for all artificial patients without

any inter-patient variation. However, these limitations can be easily overcome if

a sufficiently big dataset of real LA patients is obtained. Similarly to the LAA,

some kind of registration would be needed in order to establish the same nodal

connectivity and number of nodes.
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Secondly, while the SSM is based on a dataset of 103 patient geometries provided by

the Technical University of Denmark (DTU), it still does not capture the full variabil-

ity and the complexity observed on real LAA geometries. Therefore, at the moment,

the neural networks would probably fail at predicting the ECAP maps of real LAA

geometries. Nevertheless, this can be easily fixed in the future by constructing the

SSM with a much bigger dataset of real patient geometries, encompassing the whole

range of variability showcased by anatomical LAAs.

Another important drawback of the study, is the complete absence in the literature

of validated ECAP maps on the LAA. Without it, no matter how the DL model is

improved, the obtained predictions will never have any clinical relevance, because

there is no way to validate neither the ground truth ECAP distributions from the

CFD simulation, nor the predicted ECAP maps from the DNNs. In order to over-

come this problem, technology such as 4D-Flow MRI imaging would need to further

develop so that intracardiac hemodynamics could be characterized without the need

for computational simulations.

It is worth noting that at first the thesis aimed to predict the flow velocity vector, but

due to obvious time constraints imposed on the completion of a master thesis this

idea was discorded in favour of the ECAP prediction. Since, the ECAP is calculated

with the TAWSS, which is time averaged, it avoided getting involved in much more

complex neural network architectures than the simple multilayer fully-connected

networks presented in here.

4.6 Conclusions

In this study a successful DL surrogate of CFD was developed for the estimation of

the ECAP parameter in the LAA, aiming to evaluate the potential thrombogenic

risk. We believed this study to be one of the earliest implementations of DL as

a substitute of finite element analysis, and the first to be successfully employed

on analyzing the LAA. The developed DNNs managed to capture the non-linear

function relating the geometry of the LAA and its ECAP distributions which resulted
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in accurate predictions consistent with the ground truth values obtained through

CFD simulations. Moreover, the task was completed order of magnitudes faster

than any conventional CFD approach. Hence, with this study, the feasibility of

DL approaches for the analysis of bodily fluids has been established, that could

potentially enable quasi-instantaneous hemodynamic analysis in the future, opening

up a wide range of innovative clinical applications.

Despite all of the work presented on the previous sections, there is still much to

be done to improve the model. Furthermore, once the feasibility of the DL models

as CFD surrogate has been proven, it could be used to characterize many other

hemodynamic parameters.

First of all, it would be interesting to test the robustness of the DL networks to real-

patient geometries. For this purpose, the non-volumetric registration performed

by Slipsager et al. [39] would be needed to generate correspondence on the new

geometries. Afterwards, it would be as simple feeding the space coordinates of the

new geometry dataset to the DL networks to evaluate its performance.

On the other hand, data augmentation could be included on the training dataset

of LAA shapes, by rotating the geometries employed on this thesis. Therefore, the

atrial hemodynamics would not be only influenced by the LAA shape, but also by

its orientation respect to the LA. A further step would be the variation of the mor-

phological parameters of the employed LA ovoid, similarly to the study performed

by Garcia-Isla et al. [28]. Different cavity volumes and PV and MV sizes could be

included, and later, evaluate the performance of the DL model over this changes.

Lastly, the final challenge would suppose the inclusion of realistic LA geometries

and imposing correspondence in the whole LA and LAA assemble. The great com-

plexity of the LA geometries, which present very heterogeneous morphology such as

different numbers of PVs, could require the implementation of more elaborated DL

architectures.

As a final objective for future studies, the prediction of the velocity flow field could

be also considered. This would require a completely different pipeline and alternative
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DL architectures such as physics-informed deep generative models [62], in order to

predict the components of the velocity vector on the volumetric voxels. In addition,

many different neural networks have been successfully employed on graphic simula-

tions of complex turbulent flow, such as on smoke particles, based on convolutional

neural networks that could be soon implemented in realistic physical simulations

[63].
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A.1 Prediction figures - Front

Figure 16: Set of ECAP values on a random test dataset of 21 shapes, the front of
geometries H to N is shown in here. From left to right: Ground truth (GT) obtained
from CFD simulations,predicted ECAP from the Simple Fully connected (SFC)
network, prediction of the PCA network, difference between GT - SFC, difference
between GT - PCA
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Figure 17: Set of ECAP values on a random test dataset of 21 shapes, the front of
geometries O to U is shown in here. From left to right: Ground truth (GT) obtained
from CFD simulations,predicted ECAP from the Simple Fully connected (SFC)
network, prediction of the PCA network, difference between GT - SFC, difference
between GT - PCA
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A.2 Prediction figures - Back

Figure 18: Set of ECAP values on a random test dataset of 21 shapes, the back of
geometries A to G is shown in here. From left to right: Ground truth (GT) obtained
from CFD simulations,predicted ECAP from the Simple Fully connected (SFC)
network, prediction of the PCA network, difference between GT - SFC, difference
between GT - PCA
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Figure 19: Set of ECAP values on a random test dataset of 21 shapes, the back of
geometries H to N is shown in here. From left to right: Ground truth (GT) obtained
from CFD simulations,predicted ECAP from the Simple Fully connected (SFC)
network, prediction of the PCA network, difference between GT - SFC, difference
between GT - PCA
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Figure 20: Set of ECAP values on a random test dataset of 21 shapes, the back of
geometries O to U is shown in here. From left to right: Ground truth (GT) obtained
from CFD simulations,predicted ECAP from the Simple Fully connected (SFC)
network, prediction of the PCA network, difference between GT - SFC, difference
between GT - PCA
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A.3 SFC - PCA difference

Figure 21: ECAP difference computed as the substraction between the PCA based
prediction and the SFC generated ECAP maps.
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A.4 GT - Prediction difference back-face

Figure 22: ECAP difference computed as the substraction between the ground-truth
(GT) and the PCA based DL model on the left columns, and the GT and the simple
fully connected model on the right columns. The back-face is shown in here.
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A.5 FP back-face

Figure 23: Back-faces corresponding to Figure 15. The performance of the DL
model to detect areas in which the ECAP>4 (thrombogenesis risk) is evaluated.
True positive (TP) in green, where both the GT and the DL predictions intersect,
False negatives (FN) in blue, False positives (FP) in red.
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B.1 Total amount of nodes in each ECAP range

Table 7: Number of nodes in each range of ECAP values. The rows 1-3 represent
the total number of nodes of the 21 test simulations in each range. The last two
rows represent the ratio between the amount of nodes detected for the predictions
and the ground truth.

Networks 0-1 1-2 2-3 3-4 4-5 5-6 > 6

GT 11153 13943 10873 7583 5083 1380 762

SFC 9062 16978 11385 8281 4721 1237 122

PCA 9380 16642 11902 7965 4226 1380 291

SFC/GT 0.8125 1.2177 1.0471 1.0920 0.9288 0.5178 0.1601

PCA/GT 0.8410 1.1936 1.0946 1.0504 0.8314 0.5776 0.3819

B.2 Mean Absolute Error of simulations H-U

Table 8: Mean average error (MAE) for geometries H to N in Figure 16

Networks H I J K L M N

PCA MAE 0.6229 0.5455 0.5656 0.6790 0.4823 1.0496 0.5453

SFC MAE 0.6965 0.5513 0.5161 0.7204 0.5314 0.9299 0.6262

Table 9: Mean average error (MAE) for geometries H to N in Figure 17

Networks O P Q R S T U

PCA MAE 0.6814 0.5793 0.4868 0.4503 0.5833 0.5386 0.6877

SFC MAE 0.6141 0.5107 0.8221 0.4644 0.5169 0.5338 0.6386
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