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Abstract. Deep learning has been widely applied for left ventricle (LV) analy-

sis, obtaining state of the art results in quantification through image segmenta-

tion. When the training datasets are limited, data augmentation becomes critical, 

but standard augmentation methods do not usually incorporate the natural varia-

tion of anatomy. In this paper we propose a pipeline for LV quantification ap-

plying our data augmentation methodology based on statistical models of de-

formations (SMOD) to quantify LV based on segmentation of cardiac MR 

(CMR) images, and present an in-depth analysis of the effects of deformation 

parameters in SMOD performance. We trained and evaluated our pipeline on 

the MICCAI 2019 Left Ventricle Full Quantification Challenge dataset, and 

achieved average mean absolute error (MAE) for areas, dimensions, regional 

wall thickness and phase of 106mm2, 1.52mm, 1.01mm and 8.0% respectively in 

a 3-fold cross-validation experiment. 

Keywords: Deep Learning · Data Augmentation · LV Quantification. 

1 Introduction 

Automatic quantification of the left ventricle (LV) has been greatly enhanced by the 

development of deep learning algorithms in the past few years. Convolutional neural 

networks have shown great accuracy and flexibility for LV quantification. Recently, 

the MICCAI 2018 Left Ventricle Full Quantification Challenge made possible to 

compare a wide range of deep learning algorithms performing on the same benchmark 

dataset with both direct regression [1] and segmentation based [2, 3, 4] approaches. 

Direct regression approaches have shown promising results, while segmentation-

based approaches were in general, at the time of the challenge, more accurate. 

                                                           
* Jorge Corral Acero and Hao Xu contributed equally. 
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With the development of big databases such as UK Biobank [5], applying deep 

learning algorithms on big data has become possible in biomedical applications [6, 7], 

influencing the choice and design of neural networks. With more training data, deeper 

networks with more parameters can be trained, which usually results in better perfor-

mance. However, in clinical practice, especially for pathological cases, it is difficult 

to acquire such big dataset, and data augmentation becomes important. In this regard, 

our recently developed augmentation method based on statistical models of defor-

mation has shown promising results on a variety of datasets for segmentation task. [8] 

The MICCAI 2019 Left Ventricle Full Quantification Challenge has provided a 

benchmark dataset which, compared to the corresponding 2018 dataset, is closer to 

real-life clinical conditions, with no pre-processing applied to the images. We propose 

a segmentation-based quantification pipeline enhanced with statistical models of de-

formation, developed and evaluated on this dataset. 

2 Methods 

We propose a complete pipeline for quantifying the LV from cardiac MR (CMR) 

images, consisting of the following steps. We first build a population-specific atlas, 

and train an initial neural network to locate the centre of the heart in all the images. 

We then rigidly register each image to the atlas previously calculated. We build the 

statistical models of deformation, which we use to augment the images using different 

strategies. Finally, we train a second neural network to perform the fine segmentation 

and retrieve the LV metrics from the segmentation results. 

2.1 Data 

We developed and evaluated our pipeline using the MICCAI 2019 Left Ventricle Full 

Quantification Challenge dataset, which consists of 56 training subjects and 30 testing 

subjects. For each subject in the training data, a single short-axis (SAX) CMR se-

quence consisting of 20 frames was provided together with a set of clinically signifi-

cant LV indices including regional wall thicknesses, cavity dimensions, cavity areas 

and myocardium and cardiac phase for each frame. Endocardial and epicardial seg-

mentation binary masks were also made available as reference, and pixel-spacing 

values were also given for metrics evaluation. For subjects in the testing dataset, only 

CMR image sequences and pixel-spacing values were provided. 

Comparing to MICCAI 2018 Left Ventricle Full Quantification Challenge, which 

had 145 training subjects and 30 testing subjects, the size of training dataset reduced 

by 61.4% and the testing dataset remained the same size. [10] 

2.2 Rigid Registration 

Our rigid registration method was based on the maximization of cross-correlation of 

image intensities. In order to avoid converging to a local minimum, the algorithm was 

initialized to different transformations distributed in the space of possible transfor-
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mations. Diffeomorphic Log Demons [11] was applied for non-rigid registration (ıfluid 

= 2, ıdiff = 1.8 and ıi/ıx = 0.82). 

2.3 Atlas 

In order to build the atlas, the set of images, I, was first rigidly aligned, using only the 

first frame, and then non-rigidly registered. 

For rigid alignment, the atlas was initialized to a randomly selected instance among 

the training set, which we denote as A0, and cropped to completely contain the heart. 

The rest of the instances were first centred, assuming the mass centre of the epicardi-

um reference segmentation as the centre of the LV, and then rigidly registered to A0, 

constraining the transformation to rotations only. The obtained transformations for 

each of the first frames were extended to the other frames to obtain the registered set 

IT0. The intensity average of the images in the IT0 set was calculated to obtain the first 

iteration of the atlas, A1. 

For non-rigid alignment, the segmentations of IT0 were non-rigidly registered to 

the segmentation of A1, obtaining the transformation set T1. The transformations T1 

were then applied to IT0 and the average of intensities calculated to obtain the atlas, A. 

Since the segmentation masks were used, convergence was achieved in one single 

step. 

2.4 Initial Segmentation and Rigid Registration 

To initialize the rigid alignment, we trained a variation of U-Net [9] for epicardial 

segmentation. We first down-sampled all the images to 256×256 and normalized them 

by clipping the smallest and largest 5% intensity values. More details of the network 

are described in section 2.6. Based on the initial epicardium segmentation of the first 

frames, we centred and oriented the set of images, I, to the atlas, A, as described in 

section 2.2. 

2.5 Statistical Models of Deformation 

We implemented the statistical models of deformation following the SMOD+ method 

in [8]. Once the rigid registration was completed, the set of segmentations of the im-

ages, S, is non-rigidly registered to the atlas segmentation, As, obtaining the set of 

velocity fields, {vi}, to diffeomorphically bring each image to the atlas space. 

This set {vi} intrinsically encodes the shape variability of the set of images, I, with 

respect to the reference A. Thus, the distribution of {vi} can be sampled to obtain new 

velocity fields that implicitly lead to anatomically meaningful deformations within the 

space of plausible shapes, and we built a statistical model of deformations that can be 

exploited to generate new images. 

In order to generate random deformations, vg, we first reduced the dimensionality 

of the distribution of velocity fields by applying principal component analysis (PCA) 
on the residuals. Then, we sampled the relative weights of the main modes of varia-

tion with a multivariate Gaussian distribution, centred at 0 and with standard devia-
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tion ı. Finally, each of the images, i, was brought to the atlas space applying vi and 

transformed back to the image space applying the inverse of the random velocity 

field, vg. Thus, a new image with the appearance of image i but a random shape within 

the space of variability of the original images was obtained. 

 

Fig. 1. Atlas and extreme cases of LV shape. The images were input images of the neural net-

works with the size of 128 × 128 and pixel-spacing of 1.1mm. (a) and (e) are the smallest and 

largest LVs from the original dataset, respectively; (b) to (d) are generated by PCA mode 1 

with ı = −3, ı = 0 and ı = +3. 

2.6 Augmentation Strategies 

We implemented two augmentations strategies: (1) standard augmentation based on 

random flipping, rotations (0 − 360ƕ) and translations (± 11mm in x and y); and (2) 

augmentation based on SMOD+, which we combined with standard augmentation 

samples due to the large variability of LV sizes shown in Figure 1. 

 

Fig. 2. Combined transformation stages. 

The di൵erent transformations needed to generate a new image were mathematically 
combined by convolution as shown in Figure 2, and therefore the images were inter-

polated and resized only once at the end of the process. The final resolution used as 
the neural network input was 128×128, with a pixel-spacing of 1.1mm. 

b c b ca

Original 

@atlas
AtlasOriginal Augmentation

A B

B ƕ A
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2.7 Neural Network 

We compared two neural networks for the final segmentation task, which were a vari-
ation of U-Net [9] and a segmentation network based on VGG-16 [6]. For both net-

works, there were four 2×2 max-pooling stages with the stride of 2×2, and the number 

of filters were 64, 128, 256, 512 and 1024 for each stage accordingly. The size of all 
kernels was 3×3 and the activation functions were ReLU for all layers other than the 

output layer, which was sigmoid. The key di൵erence between the networks was the 
up-sampling process, with step-by-step up-sampling stages for the U-Net and concat-

enated up-samples from each scale for VGG-16. This di൵erence is shown in Figure 3. 
We implemented the training with cross-entropy as the loss function and Adadelta as 

optimizer. 

The initial segmentation network introduced in section 2.3 shared the same U-Net 

architecture, while the input size was 256×256 and the number of filters were de-
creased to 16, 32, 64, 128 and 256 for e൶ciency. 

 

Fig. 3. Schematics of the two neural networks compared in this paper. 

2.8 Metrics Evaluation 

In the absence of a detailed description of metrics calculation in the challenge, the 

following approach was adopted. Metrics were calculated from our segmentation 

results by first converting the neural network outputs to binary masks and then thresh-

olding at 0.5. We extracted the largest object from the binary masks and filled any 
existing holes. The areas were calculated by multiplying the pixel area times the 

number of pixels of the region. The dimensions were calculated by averaging the 

distances between the endocardial contour points and the cavity centroid within the 

corresponding section. To calculate the regional wall thickness, we first calculated the 
middle contour of the myocardium and then averaged the closest point-to-point dis-

tances between both endocardial and epicardial contours to the middle contour for 

each middle contour point. The phase estimation was calculated by first defining the 
frames with maximum and minimum cavity areas to be end-diastolic (ED) and end-

systolic (ES) frames, and then assigning linearly interpolated labels to the other 

frames. 

Applying our metrics estimation method to the reference segmentations provided 

by challenge organisers led to a bias when compared to the set of reference metric 

values also provided by challenge organisers. Such di൵erences with respect to the 
provided dataset introduced unnecessary complexity when designing the pipeline and 

could have been at least partly (and for the areas fully) eliminated with the provision 

Input Image Encoder Decoder Output Image Skip Connection
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of detailed descriptions of metrics calculation by the organisers. To minimize possible 

errors that could be introduced within this stage, we calculated a correction factor Ȝ 

using the reference area metrics (Ar) and the segmentation estimated areas (As), 

which was the only metric independent of LV orientation, by minimizing the error of 

(Ar − ȜAs). The square-root of Ȝ was then multiplied to 1D metrics estimated from the 

segmentation. 

3 Experiments and Results 

We performed 3-fold cross-validation experiments on the training dataset, with the 

size of each fold being 18, 19 and 19. The subjects were randomly assigned to one-

fold, and for each cross-validation experiment we used 4 subjects as validation set and 

kept the rest as training set. 

 

Fig. 4. Example of generated augmentations. Five randomly generated augmentations are 

shown for each of the two images. The augmented cases varied in size, shape and myocardium 

thickness of LV. 

A model of deformation (described in section 2.4) was learnt for each fold, and the 

metrics correction factors (described in section 2.7) were also calculated for each fold 

independently. The network parameters were updated using the training set and model 

selection was performed using the validation set with early stop. For each training 

epoch, new instances of training images were randomly generated and used to update 

the network parameters. Examples of resultant augmented images were shown in 

Figure 4, along with the combined transformations. 
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Table 1. Mean absolute error results. 

 Base

-line 

U-Net 

Std. 

U-Net 

ǔ = 1 

U-Net 

ǔ = 2 

U-Net 

ǔ = 3 

VGG 

Std. 

VGG  

ǔ = 1 

VGG  

ǔ = 2 

VGG  

ǔ = 3 

Test 

Dice 1 0.950 0.949 0.953 0.950 0.938 0.941 0.943 0.941 N/A 

Endo ±0 ±0.02

6 
±0.033 ±0.023 ±0.026 ±0.045 ±0.031 ±0.032 ±0.031  

Dice 1 0.966 0.965 0.967 0.965 0.957 0.958 0.959 0.959 N/A 

Epi ±0 ±0.01

4 
±0.019 ±0.014 ±0.013 ±0.026 ±0.020 ±0.021 ±0.020  

A1 24 102 107 92 100 101 95 90 101 184 
(mm2) ±19 ±87 ±111 ±83 ±83 ±121 ±77 ±79 ±84  

A2 25 132 142 121 135 140 155 126 140 525 

(mm2) ±19 ±105 ±105 ±98 ±105 ±121 ±131 ±110 ±112  
Areas 25 117 125 106 118 121 125 108 120 355 

(mm2) ±19 ±97 ±109 ±91 ±96 ±122 ±111 ±97 ±101  
Dim1 0.64 1.59 1.73 1.46 1.58 1.40 1.40 1.32 1.51 2.59 
(mm) ±0.72 ±1.53 ±2.30 ±1.28 ±1.45 ±1.78 ±1.16 ±1.08 ±1.23  
Dim2 0.68 1.70 1.81 1.53 1.60 2.17 1.72 1.89 1.96 2.33 

(mm) ±0.74 ±1.39 ± 2.18 ± 1.31 ± 1.38 ± 3.01 ± 1.48 ± 1.65 ±1.77 
1.1.7

 
Dim3 0.77 1.65 1.63 1.56 1.64 2.01 1.76 1.83 1.81 2.40 

(mm) ±0.87 ± 1.32 ± 1.59 ± 1.28 ± 1.26 ± 2.54 ± 1.55 ± 1.62 ±1.48 
1.48 

 
Dims 0.69 1.65 1.72 1.52 1.60 1.86 1.63 1.68 1.76 2.44 

(mm) ±0.78 ±1.42 ±2.05 ±1.29 ±1.36 ±2.52 ±1.42 ±1.49 ±1.52  
RWT1 0.35 1.01 0.98 0.85 0.89 0.89 1.01 0.91 0.91 2.40 
(mm) ±0.45 ±1.03 ±0.89 ±0.68 ±0.68 ±0.75 ±0.89 ±0.80 ±0.84  
RWT2 0.41 1.23 1.23 1.05 1.18 1.19 1.19 1.15 1.22 2.39 

(mm) ±0.37 ±0.85 ±0.92 ±0.78 ±0.86 ±0.90 ±0.94 ±0.84 ±0.87  
RWT3 0.33 1.27 1.22 1.10 1.26 1.21 1.21 1.15 1.26 2.20 

(mm) ±0.27 ±0.97 ±0.95 ±0.87 ±1.03 ±0.97 ±0.97 ±0.92 ±1.00  
RWT4 0.36 1.20 1.27 1.21 1.23 1.22 1.16 1.13 1.29 1.91 

(mm) ±0.45 ±0.90 ±0.97 ±1.02 ±1.00 ±0.99 ±0.93 ±0.91 ±1.10  
RWT5 0.41 0.91 1.02 1.00 0.97 1.10 0.93 0.99 1.14 1.98 

(mm) ±0.37 ±0.75 ±0.79 ±0.74 ±0.78 ±1.30 ±0.78 ±0.89 ±0.97  
RWT6 0.45 0.91 0.85 0.84 0.88 1.08 1.02 0.99 0.93 2.21 

(mm) ±0.43 ±0.76 ±0.72 ±0.66 ±0.67 ±1.31 ±0.78 ±0.92 ±0.74  
RWT 0.38 1.09 1.10 1.01 1.07 1.12 1.09 1.06 1.12 2.18 

(mm) ±0.40 ±0.9 ±0.89 ±0.81 ±0.86 ±1.06 ±0.89 ±0.89 ±0.94  
Phase 2.0 7.9 8.3 8.0 8.1 8.2 7.8 8.4 8.2 9.5 

(%)           

 

Results of the experiments are shown in Table 1. Errors in LV metrics obtained 

from ideal segmentations are reported in the baseline experiment, which used the 

reference segmentation provided by challenge organizers after applying the correction 

factor. For area metrics, after applying the correction factor there was still a mean 

absolute error (MAE) of 25mm2, which is around 25% of the MAE with our best 

segmentation results. Such an error might have been removed shall we had an accu-

rate description of metric calculations. We could also see a 2% phase estimation error, 
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which is purely dependent on cavity areas and introduced during resampling the im-

ages, suggesting the reference phase was sensitive to small noise. 

Comparing the two networks, the performance of the U-Net was better than VGG-

16 based segmentation network for Dice score, area, dimension and regional wall 

thickness values. Despite a more accurate estimation of the endocardium using the U-

Net, VGG-16 achieved a more accurate phase estimation. This could be caused by the 

e൵ect of noise we detected in the baseline experiments. From the results we could see 

that there was a negative e൵ect on the segmentation task by removing multiple stage 
up-sampling, even though VGG-16 is deeper in the down-sampling stages. 

Comparing the two augmentation strategies, our modified SMOD+ approach with 
ı = 2 produced the best results. The performance of ı = 1 and ı = 3 were limited be-

cause the variation of the deformation was either too close to the atlas or far enough 

to become unrealistic, and for both cases the generalization of the network was dis-

rupted with either unbalanced data or unexpected data. By calculating the p-values, 

we found significant di൵erences between the two augmentation strategies. 
Bland-Altman plots were produced to show the agreement between our best per-

forming network with the reference metrics in Figure 5. The vast majority of the data 

points lies within mean ± 1.96 × std suggesting a good agreement between the two 

measurements. 

 

Fig. 5. Bland-Altman plots for U-Net with ı = 2. Areas, dimensions and three regional wall 
thickness metrics are shown. 

We also evaluated qualitatively the segmentation results of our best performing 

network. Three examples with Dice score from high to low (including the worst case) 

are shown in Figure 6. Our segmentation results from neural networks appeared to be 

consistent with image features, however, the manual reference segmentation contours 

were comparatively independent from image features. The values of Dice score 

showed similarity between our segmentation results and the provided references, and 

larger Dice score represented better similarity between the two. 
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Fig. 6. Segmentation results of training dataset. (a) to (c) correspond to Dice scores from high 

to low. The yellow contour is the reference segmentation, and the cyan contour is our proposed 

U-Net result based on SMOD+ augmentation. 

 

Fig. 7. Segmentation results of the testing dataset. We presented the segmentation result of the 

first frame of all subjects within the testing dataset. Di൵erent from the training dataset, there 
were no reference segmentation provided, and therefore only the segmentation results from our 

proposed neural networks are shown. 

Patient 53 - Frame 16 Patient 29 - Frame 3 Patient 19 - Frame 6 

a b c
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For the testing dataset we used the entire training dataset to get the model of de-

formation and the correction factor for better generalization. We used all three net-

works of U-Net with ı = 2 and embedded the neural network predictions by averaging 

before calculating the metrics. The performance of our pipeline on the testing dataset 

is shown in Table 1. Comparing to the cross-validation experiment results using the 

training dataset, the testing dataset errors are comparatively larger. For metric A2 

(representing myocardium area), the testing result mean absolute error is more than 4 

times bigger and reaches 525 mm2, which is larger than a square with the side of 2 cm. 

In order to further investigate this di൵erence between training dataset and testing 
dataset results, we produced the segmentation result of all the subjects in the testing 

data for qualitative analysis. Results for the first frame of each subject are shown in 
Figure 7. From the visual inspection, the segmentation results of the testing dataset 

were comparable with the training dataset, and there was no clear evidence suggesting 

why would the metric evaluation of the testing dataset performed worse than in the 

training dataset based on the segmentation results. 

4 Conclusion 

In this paper, we have proposed a full quantification pipeline of the LV using CMR 

mages, developed and applied to the MICCAI 2019 Left Ventricle Full Quantification 

Challenge. We performed 3-fold cross-validation experiments on the training dataset, 

and for all the combinations of network structure and augmentation strategies, U-Net 

with our modified SMOD+ augmentation achieved the best results within our pipe-

line, showing the benefits of using multi-stage up-sampling and advanced augmenta-

tion strategies. 

Compared to MICCAI 2018 Left Ventricle Full Quantification Challenge, the da-

taset was closer to real-life clinical conditions by removing the pre-processing of the 

images. At the same time, the size of the training dataset was reduced from 145 to 56 

subjects. Both changes made the task significantly more challenging, which steered 

our focus towards the pre-processing and metrics evaluation stages, as well as the 

implementation of an anatomically meaningful augmentation method to enhance the 

neural network performance. Despite the more challenging task, our method achieved 

comparable results to last year’s participants for both cross-validation on the training 

dataset and the final testing dataset. 

The performance of our pipeline on the testing dataset did not reach the level of 

our cross-validation experiments, and based on the provided qualitative evaluation of 

the segmentation results the reason of such big di൵erences between the mean absolute 
errors remains unclear to us. Similar performance drops in testing datasets were also 

identified in all the best ranking methods in MICCAI 2018 Left Ventricle Full Quanti-

fication Challenge. [1, 2, 3, 4] It appears to us that this phenomenon is less dependent 

on the candidate methods, but rather closely related to the distribution of subjects in 

the training and testing dataset. Additional details on the testing dataset, and an ex-

plicit description of metrics calculation, would facilitate the interpretability of these 

results and improve future challenges. 
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