Skip to main content

Paradoxes of the Infinite and Ontological Dilemmas Between Ancient Philosophy and Modern Mathematical Solutions

  • Conference paper
  • First Online:
Book cover Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

The concept of infinity had, in ancient times, an indistinguishable development between mathematics and philosophy. We could also say that his real birth and development was in Magna Graecia, the ancient South of Italy, and it is surprising that we find, in that time, a notable convergence not only of the mathematical and philosophical point of view, but also of what resembles the first “computational approach” to “infinitely” or very large numbers by Archimedes. On the other hand, since the birth of philosophy in ancient Greece, the concept of infinite has been closely linked with that of contradiction and, more precisely, with the intellectual effort to overcome contradictions present in an account of Totality as fully grounded. The present work illustrates the ontological and epistemological nature of the paradoxes of the infinite, focusing on the theoretical framework of Aristotle, Kant and Hegel, and connecting the epistemological issues about the infinite to concepts such as the continuum in mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If there are n new guests the simplest choice is to use the function , instead, in case of an infinite countable number, the function (see [22, 39]).

  2. 2.

    The unimaginable numbers are numbers extremely large so that they cannot be written through the common scientific notation (also using towers of exponents) and are behind every power of imagination. To write them some special notations have been developed, the most known of them is Knuth’s up-arrow notation (see [30]). A brief introduction to these numbers can be found in [10], while more information is contained in [7, 11, 25].

  3. 3.

    See Physics, 204a8–204a16, in [4, Vol. I].

  4. 4.

    See Metaphysics, IX.6, 1048a-b, in [4, Vol. I].

References

  1. Amodio, P., Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic. Math. Comput. Simul. 141, 24–39 (2017)

    Article  MathSciNet  Google Scholar 

  2. Antoniotti, A., Caldarola, F., d’Atri, G., Pellegrini, M.: New approaches to basic calculus: an experimentation via numerical computation. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS 11973, pp. 329–342. Springer, Cham (2020)

    Google Scholar 

  3. Antoniotti, L., Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves. Mediterr. J. Math. (to appear)

    Google Scholar 

  4. Barnes, J. (ed.): The Complete Works of Aristotle. The Revised Oxford Translation, vol. I and II. Princeton University Press, Princeton (1991). 4th printing

    Google Scholar 

  5. Bennet, J.: Kant’s Dialectic. Cambridge University Press, Cambridge (1974)

    Google Scholar 

  6. Bird, G.: Kant’s Theory of Knowledge: An Outline of One Central Argument in the Critique of Pure Reason. Routledge & Kegan Paul, London (1962)

    Google Scholar 

  7. Blakley, G.R., Borosh, I.: Knuth’s iterated powers. Adv. Math. 34(2), 109–136 (1979). https://doi.org/10.1016/0001-8708(79)90052-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Caldarola, F.: The Sierpiński curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018). https://doi.org/10.1016/j.amc.2017.06.024

    Article  MATH  Google Scholar 

  9. Caldarola, F.: The exact measures of the Sierpiński \(d\)-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 63, 228–238 (2018). https://doi.org/10.1016/j.cnsns.2018.02.026

    Article  MathSciNet  Google Scholar 

  10. Caldarola, F., d’Atri, G., Maiolo, M.: What are the unimaginable numbers? Submitted for publication

    Google Scholar 

  11. Caldarola, F., d’Atri, G., Mercuri, P., Talamanca, V.: On the arithmetic of Knuth’s powers and some computational results about their density. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS 11973, pp. 381–388. Springer, Cham (2020)

    Google Scholar 

  12. Caldarola, F., Maiolo, M., Solferino, V.: A new approach to the Z-transform through infinite computation. Commun. Nonlinear Sci. Numer. Simul. 82, 105019 (2020). https://doi.org/10.1016/j.cnsns.2019.105019

    Article  Google Scholar 

  13. Calude, C.S., Dumitrescu, M.: Infinitesimal probabilities based on grossone. Spinger Nat. Comput. Sci. 1, 36 (2019). https://doi.org/10.1007/s42979-019-0042-8

    Article  Google Scholar 

  14. Cavini, W.: Ancient epistemology naturalized. In: Gerson, L.P. (ed.) Ancient Epistemology. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  15. Cesa, C.: Guida a Hegel. Laterza, Bari (1997)

    Google Scholar 

  16. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)

    MATH  Google Scholar 

  17. Crivelli, P.: Aristotle on Truth. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  18. D’Alotto, L.: A classification of one-dimensional cellular automata using infinite computations. Appl. Math. Comput. 255, 15–24 (2015)

    MathSciNet  MATH  Google Scholar 

  19. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput. 218(16), 8077–8082 (2012)

    MathSciNet  MATH  Google Scholar 

  20. De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    MathSciNet  MATH  Google Scholar 

  21. David Peat, F.: Superstrings and the Search for the Theory of Everything. Contemporary Books, Chicago (1988)

    Google Scholar 

  22. Faticoni, T.G.: The Mathematics of Infinity: A Guide to Great Ideas. Wiley, Hoboken (2006)

    Book  Google Scholar 

  23. Gribbin, J.: The Search for Superstrings, Symmetry, and the Theory of Everything. Back Bay Books, New York (2000)

    Google Scholar 

  24. Hegel, G.W.F.: The Science of Logic. Cambridge University Press, Cambridge (2010 [1817]). Ed. by G. Di Giovanni

    Google Scholar 

  25. Hooshmand, M.H.: Ultra power and ultra exponential functions. Integral Transforms Spec. Funct. 17(8), 549–558 (2006). https://doi.org/10.1080/10652460500422247

    Article  MathSciNet  MATH  Google Scholar 

  26. Ingarozza, F., Adamo, M.T., Martino, M., Piscitelli, A.: A grossone-based numerical model for computations with infinity: a case study in an Italian high school. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS 11973, pp. 451–462. Springer, Cham (2020)

    Google Scholar 

  27. Kahn, C.H.: The Art and Thought of Heraclitus. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  28. Kant, E.: Critique of Pure Reason. Cambridge University Press, Cambridge (1998 [1791]). Transl. by P. Guyer, A.W. Wood (eds.)

    Google Scholar 

  29. Kirk, G.S.: Heraclitus: The Cosmic Fragments. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  30. Knuth, D.E.: Mathematics and computer science: coping with finiteness. Science 194(4271), 1235–1242 (1976). https://doi.org/10.1126/science.194.4271.1235

    Article  MathSciNet  MATH  Google Scholar 

  31. Margenstern, M.: An application of grossone to the study of a family of tilings of the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Margenstern, M.: Fibonacci words, hyperbolic tilings and grossone. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 3–11 (2015)

    Article  MathSciNet  Google Scholar 

  33. Mazzia, F., Sergeyev, Y.D., Iavernaro, F., Amodio, P., Mukhametzhanov, M.S.: Numerical methods for solving ODEs on the Infinity Compute. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds.) 2nd International Conference “NUMTA 2016 - Numerical Computations: Theory and Algorithms”, AIP Conference Proceedings, vol. 1776, p. 090033. AIP Publishing, New York (2016). https://doi.org/10.1063/1.4965397

  34. Nicolau, M.F.A., Filho, J.E.L.: The Hegelian critique of Kantian antinomies: an analysis based on the Wissenchaft der Logik. Int. J. Philos. 1(3), 47–50 (2013)

    Article  Google Scholar 

  35. Rizza, D.: A study of mathematical determination through Bertrand’s Paradox. Philos. Math. 26(3), 375–395 (2018)

    Article  MathSciNet  Google Scholar 

  36. Rizza, D.: Primi passi nell’aritmetica dell’infinito (2019, preprint)

    Google Scholar 

  37. Rizza, D.: Supertasks and numeral system. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds.) 2nd International Conference “NUMTA 2016 - Numerical Computations: Theory and Algorithms”, AIP Conference Proceedings, vol. 1776, p. 090005. AIP Publishing, New York (2016). https://doi.org/10.1063/1.4965369

  38. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Sergeyev, Y.D.: Arithmetic of infinity. Edizioni Orizzonti Meridionali, Cosenza (2003)

    MATH  Google Scholar 

  40. Sergeyev, Y.D.: Computations with grossone-based infinities. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 89–106. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_6

    Chapter  Google Scholar 

  41. Sergeyev, Y.D.: Evaluating the exact infinitesimal values of area of Sierpinskinski’s carpet and volume of Menger’s sponge. Chaos Solitons Fractals 42(5), 3042–3046 (2009)

    Article  Google Scholar 

  42. Sergeyev, Y.D.: Higher order numerical differentiation on the Infinity Computer. Optim. Lett. 5(4), 575–585 (2011)

    Article  MathSciNet  Google Scholar 

  43. Sergeyev, Y.D.: Lagrange lecture: methodology of numerical computations with infinities and infinitesimals. Rend Semin Matematico Univ Polit Torino 68(2), 95–113 (2010)

    MATH  Google Scholar 

  44. Sergeyev, Y.D.: Solving ordinary differential equations by working with infinitesimals numerically on the infinity computer. Appl. Math. Comput. 219(22), 10668–10681 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Sergeyev, Y.D.: The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area. Commun. Nonlinear Sci. Numer. Simul. 31, 21–29 (2016)

    Article  MathSciNet  Google Scholar 

  46. Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Mat. Soc. Cult. Riv. Unione Mat. Ital. 8(1), 111–147 (2015)

    MathSciNet  Google Scholar 

  47. Sergeyev, Y.D.: Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica 22(4), 559–576 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    Article  MathSciNet  Google Scholar 

  49. Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the Infinity Computer. Int. J. Unconv. Comput. 12(1), 55–66 (2016)

    Google Scholar 

  50. Severino, E.: La Filosofia dai Greci al nostro Tempo, vol. I, II, III. RCS Libri, Milano (2004)

    Google Scholar 

  51. Theodossiou, E., Mantarakis, P., Dimitrijevic, M.S., Manimanis, V.N., Danezis, E.: From the infinity (apeiron) of Anaximander in ancient Greece to the theory of infinite universes in modern cosmology. Astron. Astrophys. Trans. 27(1), 162–176 (2011)

    Google Scholar 

  52. Thompson, J.F.: Tasks and super-tasks. Analysis 15(1), 1–13 (1954)

    Article  Google Scholar 

  53. Weyl, H.: Levels of Infinity/Selected Writings on Mathematics and Philosophy. Dover (2012). Ed. by P. Pesic

    Google Scholar 

  54. Zanatta, M.: Profilo Storico della Filosofia Antica. Rubettino, Catanzaro (1997)

    Google Scholar 

Download references

Aknowledgments

This work is partially supported by the research projects “IoT&B, Internet of Things and Blockchain”, CUP J48C17000230006, POR Calabria FESR-FSE 2014–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Caldarola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caldarola, F., Cortese, D., d’Atri, G., Maiolo, M. (2020). Paradoxes of the Infinite and Ontological Dilemmas Between Ancient Philosophy and Modern Mathematical Solutions. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics