Skip to main content

The Sequence of Carboncettus Octagons

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

Considering the classic Fibonacci sequence, we present in this paper a geometric sequence attached to it, where the word “geometric” must be understood in a literal sense: for every Fibonacci number \(F_n\) we will in fact construct an octagon \(C_n\) that we will call the n-th Carboncettus octagon, and in this way we obtain a new sequence \(\big \{C_n \big \}_{n}\) consisting not of numbers but of geometric objects. The idea of this sequence draws inspiration from far away, and in particular from a portal visible today in the Cathedral of Prato, supposed work of Carboncettus marmorarius, and even dating back to the century before that of the writing of the Liber Abaci by Leonardo Pisano called Fibonacci (AD 1202). It is also very important to note that, if other future evidences will be found in support to the historical effectiveness of a Carboncettus-like construction, this would mean that Fibonacci numbers were known and used well before 1202. After the presentation of the sequence \(\big \{C_n\big \}_{n}\), we will give some numerical examples about the metric characteristics of the first few Carboncettus octagons, and we will also begin to discuss some general and peculiar properties of the new sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this view, a recent result established that a cyclic polygon is equiangular if and only if is isogonal (see [7]). Of course, an equiangular octagon is not cyclic in general, while it is true for 3- and 4-gons (see [2]).

  2. 2.

    Note, for didactic purposes, how the multiplication table of \(D_4\) emerges much more clearly to the mind of a student thinking to \(C_1\) than thinking to a square.

  3. 3.

    The reader certainly remembers the well know property \(\phi ^2=1+\phi \) of the golden ratio that causes the coincidence of the fractional parts of (5) and (6).

References

  1. Antoniotti, L, Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves. Mediterr. J. Math. (in press)

    Google Scholar 

  2. Ball, D.: Equiangular polygons. Math. Gaz. 86(507), 396–407 (2002)

    Article  Google Scholar 

  3. Caldarola, F.: The Sierpiński curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018). https://doi.org/10.1016/j.amc.2017.06.024

    Article  MATH  Google Scholar 

  4. Caldarola, F.: The exact measures of the Sierpiński \(d\)-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlin. Sci. Numer. Simul. 63, 228–238 (2018). https://doi.org/10.1016/j.cnsns.2018.02.026

    Article  MathSciNet  Google Scholar 

  5. Caldarola, F., Maiolo, M., Solferino, V.: A new approach to the Z-transform through infinite computation. Commun. Nonlin. Sci. Numer. Simul. 82, 105019 (2020). https://doi.org/10.1016/j.cnsns.2019.105019

    Article  Google Scholar 

  6. Caldarola, F., Cortese, D., d’Atri, G., Maiolo, M.: Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions. In: Sergeyev, Y., Kvasov, D. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 358–372. Springer, New York (2020)

    Google Scholar 

  7. De Villiers, M.: Equiangular cyclic and equilateral circumscribed polygons. Math. Gaz. 95, 102–107 (2011)

    Article  Google Scholar 

  8. Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2001)

    Book  Google Scholar 

  9. Margenstern, M.: Fibonacci words, hyperbolic tilings and grossone. Commun. Nonlin. Sci. Numer. Simul. 21(1–3), 3–11 (2015)

    Article  MathSciNet  Google Scholar 

  10. Pirillo, G.: A characterization of Fibonacci numbers. Chebyshevskii Sbornik 19(2), 259–271 (2018)

    Article  MathSciNet  Google Scholar 

  11. Pirillo, G.: Figure geometriche su un portale del Duomo di Prato. Prato Storia e Arte 121, 7–16 (2017). (in Italian)

    Google Scholar 

  12. Pirillo, G.: La scuola pitagorica ed i numeri di Fibonacci. Archimede 2, 66–71 (2017). (in Italian)

    Google Scholar 

  13. Pirillo, G.: L’origine pitagorica dei numeri di Fibonacci. Periodico di Matematiche 9(2), 99–103 (2017). (in Italian)

    Google Scholar 

  14. Pirillo, G.: Some recent results of Fibonacci numbers, Fibonacci words and Sturmian words. Southeast Asian Bull. Math. 43(2), 273–286 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Pirillo, G.: Fibonacci numbers and words. Discret. Math. 173(1–3), 197–207 (1997)

    Article  MathSciNet  Google Scholar 

  16. Pirillo, G.: Inequalities characterizing standard Sturmian and episturmian words. Theoret. Comput. Sci. 341(1–3), 276–292 (2005)

    Article  MathSciNet  Google Scholar 

  17. Pirillo, G.: Numeri irrazionali e segmenti incommensurabili. Nuova Secondaria 7, 87–91 (2005). (in Italian)

    Google Scholar 

  18. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, Cosenza (2003)

    MATH  Google Scholar 

  19. Sergeyev, Y.D.: Lagrange lecture: methodology of numerical computations with infinities and infinitesimals. Rend. Semin. Matematico Univ. Polit. Torino 68(2), 95–113 (2010)

    MATH  Google Scholar 

  20. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Aknowledgments

This work is partially supported by the research projects “IoT&B, Internet of Things and Blockchain”, CUP J48C17000230006, POR Calabria FESR-FSE 2014–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Caldarola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caldarola, F., d’Atri, G., Maiolo, M., Pirillo, G. (2020). The Sequence of Carboncettus Octagons. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics