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Abstract. The object of the paper are the so-called “unimaginable
numbers”. In particular, we deal with some arithmetic and computa-
tional aspects of the Knuth’s powers notation and move some first steps
into the investigation of their density. Many authors adopt the conven-
tion that unimaginable numbers start immediately after 1 googol which
is equal to 10100, and G.R. Blakley and I. Borosh have calculated that
there are exactly 58 integers between 1 and 1 googol having a nontrivial
“kratic representation”, i.e., are expressible nontrivially as Knuth’s pow-
ers. In this paper we extend their computations obtaining, for example,
that there are exactly 2 893 numbers smaller than 1010 000 with a non-
trivial kratic representation, and we, moreover, investigate the behavior
of some functions, called krata, obtained by fixing at most two arguments
in the Knuth’s power a↑b c.
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1 Introduction: The unimaginable numbers

An unimaginable number, intuitively and suggestively, is a number that go be-
yond the human imagination. There is not a completely accepted standard formal
definition of unimaginable numbers, but one of the most used is the following:
a number is called unimaginable if it is greater than 1 googol, where 1 googol
is equal to 10100. To better understand the size of numbers like these, consider
that it is estimated that in the observable universe there are at most 1082 atoms;
this justifies the term unimaginable. The first appearance of the unimaginable
numbers was, to our knowledge, in Magna Graecia in the work of Archimedes of
Syracuse. Archimedes in his work called “Arenarius” in Latin, or the “Sand Reck-
oner” in English, describes, using words of the natural language, an extremely
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large number that, in exponential notation, is equal to

108·10
16

= 1080 000 000 000 000 000. (1)

Obviously, writing this number without any kind of modern mathematical nota-
tion, as Archimedes did, is very very difficult. Let us jump to modern times and
introduce the most used notation that allows to write numbers so large that are
definitely beyond the common experience of a human being.

Definition 1 (Knuth’s up-arrow notation). For all non-negative integers
a, b, n, we set

a↑n b :=


a · b if n = 0;

1 if n ≥ 1 and b = 0;

a↑n−1 (a↑n (b− 1)) if n ≥ 1 and b ≥ 1.

(2)

For n = 1 we obtain the ordinary exponentiation, e.g., 3↑4 = 34; for n = 2
we obtain tetration, for n = 3 pentation, and so on. Hence (2) represents the so
called n-hyperoperation. Now, using Knuth’s notation, the Archimedes’ number
(1) can be easily written as follows(

(10↑8)↑2 2
)
↑(10↑8).

In this paper we use an alternative notation to that introduced in Definition 1.
Denoting by IN the set of natural numbers (i.e., non-negative integers) we define
the Knuth’s function k as follows

k : IN× IN× IN −→ IN

(B, d, T ) 7→ k(B, d, T ) := B ↑dT
(3)

and we call the first argument of k (i.e., B) the base, the second (i.e., d) the
depth and the third (i.e., T ) the tag (see [3]).

The paper is organized as follows: in Section 2 we introduce some general
computational problems, while in Section 3, which is the core of this work, we
deal with density and representational problems related to Knuth’s powers. In
particular, Proposition 2 and Corollary 1 give some simple results which char-
acterize the difference of digits in base 10 between two “consecutive” Knuth’s
powers of the simplest “non-trivial” type, i.e., a ↑2 2. Proposition 3 extends,
instead, a computation by Blakley and Borosh (see [3, Proposition 1.1]): they
found that there are exactly 58 numbers smaller than 1 googol (= 10100) nontriv-
ially expressible through the Knuth’s function k. We obtained that such number
increases to 2893 if we consider integers lesser than 1010 000. Among these 2893
numbers, 2888 are expressible through the aforementioned form a↑2 2.

We conclude the introductory section by giving the reader some brief infor-
mation on some useful references to deepen the issues related to unimaginable
numbers. In addition to article [3] which, for our purposes, represents the main
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reference, the same authors investigate the modular arithmetic of Knuth’s pow-
ers in [4]. Knuth himself had instead introduced the notation (2) a few years
earlier in [16] (1976), but these ideas actually date from the beginning of the
century (see [1, 2, 13, 19]). More recent works that start from “extremely large”
or “infinite” numbers are [7, 8, 12, 14, 15, 17, 18, 20, 21, 23]. There are also the
online resources [5, 6, 22]. While [10] provides the reader with a brief general
introduction with some further reference.

2 Representational and computational problems

It is obvious that almost all the numbers are unimaginable, hence a first natural
question is: can we write every unimaginable number using Knuth’s up-arrow
notation? The answer is trivial: we cannot. Actually there are just very few
numbers that are expressible using this notation. More precisely let K0 denote
the image of the map k, i.e., the set of those natural numbers that are expressible
via Knuth’s notation. As customary one can consider the ratio

ρ0(x) =
#
(
K0 ∩ {m ∈ IN : m < x}

)
x

. (4)

The computed values of ρ0(x) are very close to zero and ρ0(x) appears to be
quickly converging to zero as x → +∞. In the next section we compute some
values of a ratio related to this.

In recent years dozens of systems and notations have been developed to write
unimaginable numbers (for example see [1], [6], [7], [14], [15]), most of them can
reach bigger numbers in a more compact notation than Knuth’s notation can, but
the difference between two consecutive numbers with a compact representation
in a specific notation often increases quicker than in Knuth’s notation. Hence,
almost all unimaginable numbers remain inaccessible to write (and to think
about?) and the problem of writing an unimaginable number in a convenient
way is open.

A strictly related open problem is to find a good way to represent an unimag-
inable number on a computer. It is not possible to represent with usual decimal
notation numbers like 3 ↑3 3 on a computer at the present time. Hence, to do
explicit computations involving these numbers is quite hard. Therefore finding
a way, compatible with classical operations, to represent these kind of numbers
on a computer not only would make many computations faster but it would also
help to deeper develop the mathematical properties and the applications related
to unimaginable numbers.

We recall, for the convenience of the reader, some basic properties of Knuth’s
up-arrow notation that will be used in the next section.

Proposition 1. For all positive integers a, b, n, with b > 1, we have:

(i) a↑n b < (a+ 1)↑n b;
(ii) a↑n b < a↑n (b+ 1);
(iii) a↑n b ≤ a↑n+1 b, where the equality holds if and only if a = 1 or a = b = 2.

Proof. See [3, Theorem 1.1].
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3 About the density of numbers with kratic
representation

We follow the nomenclature used in [3] and we say that a positive integer x has
a non-trivial kratic representation if there are integers a, b, n all greater than 1
such that x = a ↑n b. Note that a kratic representation should not be confused
with a kratos: a kratos (pl. krata)4 is a function h that comes from the Knuth’s
function k by fixing at most two arguments (see [3]). It is then a natural question
to ask “how many” numbers have a non-trivial kratic representation.

Example 1. The least positive integer with non-trivial kratic representation is 4,
in fact 2↑n 2 = 4 for all positive integers n.

It is easy to see that numbers with kratic representation of the form a↑2 2 = aa

are more frequent than those with other types of kratic representation. The fol-
lowing proposition states how often they appear with respect to the number of
digits, i.e., it calculates the increment of the number of digits between two “con-
secutive” numbers with kratic representation of that form. We need a further
piece of notation: as usual Log denotes the logarithm with base 10, bαc the floor
of a real number α and ν(a) the number of digits of a positive integer a (in base
10). Using these notation we have

ν(a) = bLog ac+ 1 (5)

for all positive integers a.

Proposition 2. For every integer a ≥ 1 we have

ν
(
(a+ 1)a+1

)
− ν (aa) =

⌊
Log(a+ 1) + aLog

(
1 +

1

a

)⌋
(6)

or

ν
(
(a+ 1)a+1

)
− ν (aa) =

⌊
Log(a+ 1) + aLog

(
1 +

1

a

)⌋
+ 1. (7)

Proof. The proposition states that the difference between the number of digits
of (a + 1)a+1 and aa is given by Formula (6) or (7). For any integer a ≥ 1 we
have

ν
(
(a+ 1)a+1

)
− ν (aa) =

⌊
Log(a+ 1)a+1

⌋
− bLog aac

= b(1 + a)Log(a+ 1)c − baLog ac
= bLog(a+ 1) + aLog(a+ 1)− aLog a

+ aLog ac − baLog ac

=

⌊
Log(a+ 1) + aLog

(
1 +

1

a

)
+ aLog a

⌋
(8)

−baLog ac .
4 Kratos, written in ancient Greek κράτoς, indicated the “personification of power”.
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Since for all real numbers α and β the following inequalities hold

bαc+ bβc ≤ bα+ βc ≤ bαc+ bβc+ 1, (9)

then, combining (9) with (8) we obtain⌊
Log(a+ 1) + aLog

(
1 +

1

a

)⌋
≤ ν

(
(a+ 1)a+1

)
− ν (aa)

≤
⌊

Log(a+ 1) + aLog

(
1 +

1

a

)⌋
+ 1,

proving the proposition.

Corollary 1. For every integer a ≥ 1 the following inequalities hold

bLog(a+ 1)c ≤ ν
(
(a+ 1)a+1

)
− ν (aa) ≤ bLog(a+ 1)c+ 2. (10)

Proof. The first inequality in (10) is an immediate consequence of (6). For the
second one note that, using the previous proposition, the second inequality in
(9) and the well-known bound(

1 +
1

a

)a

< e, for all a ≥ 1, (11)

we obtain

ν
(
(a+ 1)a+1

)
− ν (aa) ≤

⌊
Log(a+ 1) + Log

(
1 +

1

a

)a⌋
+ 1

≤ bLog(a+ 1)c+

⌊
Log

(
1 +

1

a

)a⌋
+ 2

= bLog(a+ 1)c+ 2.

The two possibilities given by (6) and (7) in Proposition 2 and the three
given by Corollary 1

(
that is, ν

(
(a+ 1)a+1

)
− ν (aa)− bLog(a+ 1)c = 0, 1, 2

)
are all effectively realized: it is sufficient to look at the values a = 1, 2, 7 in Table
1.

Table 1. The first 10 values of aa.

a 1 2 3 4 5 6 7 8 9 10

aa 1 4 27 256 3 125 46 656 823 543 16 777 216 387 420 489 10 000 000 000

Remark 1. Note that using (11) and the lower bound 2 ≤ (1 + 1/a)a, for a ≥ 1,
we obtain

2(a+ 1) ≤ (a+ 1)↑2 2

a↑2 2
< e(a+ 1) (12)

for all integers a ≥ 1. It is also interesting that the ratio of two consecutive
numbers of that form can be approximated by a linear function in the base a.
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The previous remark implies that given a number with kratic representation
of the form a↑2 2, the subsequent one, (a+ 1)↑2 2, is rather close to it. Instead,
numbers with kratic representation of other forms are much more sporadic: the
following proposition gives a more precise idea of this phenomenon.

Proposition 3. There are exactly 2893 numbers smaller than 1010 000 that ad-
mit a non-trivial kratic representation. Among them, 2888 have a representation
of the form a↑2 2, and only 5 do not have such a representation.

Proof. By [3, Proposition 1.1] there are exactly 58 numbers with less than 102

digits in decimal notation that have a non-trivial kratic representation; we collect
them in the following set

E2 = {a↑2 2 : 2 ≤ a ≤ 56} t {2↑2 3, 3↑2 3, 2↑2 4}.

Note also that some of them have more than one representation:

2↑2 2 = 4 = 2↑d 2 ∀d ≥ 2, 3↑2 3 = 327 = 3↑3 2, 2↑2 4 = 216 = 2↑3 3.

We look for the numbers we need to add to E2 to obtain the desired set

E :=
{
n ∈ IN : n < 1010 000 and n has a non-trivial kratic representation

}
.

We consider different cases depending on the depth d.
(i) “d = 2”. Since

Log(2889↑2 2) ≈ 9998.1 and Log(2890↑2 2) ≈ 10001.99,

we have to add to E2 the numbers from 57↑2 2 to 2889↑2 2. Then, since

Log(5↑2 3) ≈ 2184.28 and Log(6↑2 3) ≈ 36305.4,

the numbers 4↑2 3 and 5↑2 3 belong to E as well. Instead,

Log(3↑2 4) ≈ 3638334640024.1 and Log(2↑2 5) ≈ 19728.3 (13)

guarantee, by using Proposition 1, that there are no other elements with d = 2
in E.

(ii) “d = 3”. Note that 4↑3 2 = 4↑2 4 > 3↑2 4, and 3↑3 3 = 3↑2 3↑2 3 > 3↑2 4,
and 2↑3 4 = 2↑2 216, hence, by using (13), we have that E does not contain any
new element with d = 3.

(iii) “d = 4”. Since 3 ↑4 2 = 3 ↑3 3 and 2 ↑4 3 = 2 ↑3 4, part (ii) yields that
they do not belong to E. Therefore, it has no new elements with d = 4.

Now, only the (trivial) case “d ≥ 5” remains, but since 3 ↑d 2 > 3 ↑4 2, (iii)
yields that there are no new elements with d ≥ 5 in E. In conclusion, we have
proved that

E = E2 t {a↑2 2 : 57 ≤ a ≤ 2889} t {4↑2 3, 5↑2 3}

and its cardinality is 2893. From the proof, it is also clear that the only elements
of E having no representation of the type a ↑2 2 are 2 ↑2 3, 3 ↑2 3, 2 ↑2 4, 4 ↑2 3
and 5↑2 3.
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We conclude the paper with some observations about the frequency of num-
bers with non-trivial kratic representation. Let K denote the set of integers that
admit a non-trivial kratic representation. Define the kratic representation ratio
ρ(x) as:

ρ(x) :=
#(K ∩ {m ∈ IN : m < x}

)
x

.

(Note the differences with respect to (4).) We find the following values:

ρ(10) =
1

10
= 0.1 · 10−1,

ρ
(
102
)

=
3

102
= 0.3 · 10−1,

ρ
(
104
)

=
5

104
= 0.5 · 10−3,

ρ
(
1010

)
=

9

1010
= 0.9 · 10−9,

ρ
(

1010
2
)

=
58

10102
= 0.58 · 10−98,

ρ
(

1010
4
)

=
2893

10104
= 0.2893 · 10−9996.

These data seems to indicate that ρ(x) tends rapidly to zero for x → +∞.
However, it is not known, to our knowledge, an explicit formula for ρ(x) or,
equivalently, for the cardinality of the set K(x) = K ∩ {m ∈ IN : m < x} itself.
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