Skip to main content

Optimizing Rainwater Harvesting Systems for Non-potable Water Uses and Surface Runoff Mitigation

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

Rainwater harvesting systems represent sustainable solutions that meet the challenges of water saving and surface runoff mitigation. The collected rainwater can be re-used for several purposes such as irrigation of green roofs and garden, flushing toilets, etc. Optimizing the water usage in each such use is a significant goal. To achieve this goal, we have considered TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and Rough Set method as Multi-Objective Optimization approaches by analyzing different case studies. TOPSIS was used to compare algorithms and evaluate the performance of alternatives, while Rough Set method was applied as a machine learning method to optimize rainwater-harvesting systems. Results by Rough Set method provided a baseline for decision-making and the minimal decision algorithm were obtained as six rules. In addition, The TOPSIS method ranked all case studies, and because we used several correlated attributes, the findings are more accurate from other simple ranking method. Therefore, the numerical optimization of rainwater harvesting systems will improve the knowledge from previous studies in the field, and provide an additional tool to identify the optimal rainwater reuse in order to save water and reduce the surface runoff discharged into the sewer system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palermo, S.A., Zischg, J., Sitzenfrei, R., Rauch, W., Piro, P.: Parameter sensitivity of a microscale hydrodynamic model. In: Mannina, G. (ed.) UDM 2018. GET, pp. 982–987. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99867-1_169

    Chapter  Google Scholar 

  2. Maiolo, M., Pantusa, D.: Sustainable water management index, SWaM_Index. Cogent Eng. 6(1), 1603817 (2019). https://doi.org/10.1080/23311916.2019.1603817

    Article  Google Scholar 

  3. Christian Amos, C., Rahman, A., Mwangi Gathenya, J.: Economic analysis and feasibility of rainwater harvesting systems in urban and peri-urban environments: a review of the global situation with a special focus on Australia and Kenya. Water 8(4), 149 (2016). https://doi.org/10.3390/w8040149

    Article  Google Scholar 

  4. Campisano, A., et al.: Urban rainwater harvesting systems: research, implementation and future perspectives. Water Res. 115, 195–209 (2017). https://doi.org/10.1016/j.watres.2017.02.056

    Article  Google Scholar 

  5. Palla, A., Gnecco, I., La Barbera, P.: The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. J. Environ. Manag. 191, 297–305 (2017). https://doi.org/10.1016/j.jenvman.2017.01.025

    Article  Google Scholar 

  6. Petrucci, G., Deroubaix, J.F., De Gouvello, B., Deutsch, J.C., Bompard, P., Tassin, B.: Rainwater harvesting to control stormwater runoff in suburban areas. An experimental case-study. Urban Water J. 9(1), 45–55 (2012). https://doi.org/10.1080/1573062X.2011.633610

    Article  Google Scholar 

  7. Herrmann, T., Schmida, U.: Rainwater utilisation in Germany: efficiency, dimensioning, hydraulic and environmental aspects. Urban Water 1(4), 307–316 (2000). https://doi.org/10.1016/S1462-0758(00)00024-8

    Article  Google Scholar 

  8. GhaffarianHoseini, A., Tookey, J., GhaffarianHoseini, A., Yusoff, S.M., Hassan, N.B.: State of the art of rainwater harvesting systems towards promoting green built environments: a review. Desalin. Water Treat. 57(1), 95–104 (2016). https://doi.org/10.1080/19443994.2015.1021097

    Google Scholar 

  9. Oberascher, M., Zischg, J., Palermo, S.A., Kinzel, C., Rauch, W., Sitzenfrei, R.: Smart rain barrels: advanced LID management through measurement and control. In: Mannina, G. (ed.) UDM 2018. GET, pp. 777–782. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99867-1_134

    Chapter  Google Scholar 

  10. Li, Z., Boyle, F., Reynolds, A.: Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 260(1–3), 1–8 (2010). https://doi.org/10.1016/j.desal.2010.05.035

    Article  Google Scholar 

  11. Campisano, A., Modica, C.: Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems. J. Hydroinform. 18(1), 23–32 (2016). https://doi.org/10.2166/hydro.2015.133

    Article  Google Scholar 

  12. Jones, M.P., Hunt, W.F.: Performance of rainwater harvesting systems in the southeastern United States. Resour. Conserv. Recycl. 54(10), 623–629 (2010). https://doi.org/10.1016/j.resconrec.2009.11.002

    Article  Google Scholar 

  13. Domènech, L., Saurí, D.: A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the Metropolitan Area of Barcelona (Spain): social experience, drinking water savings and economic costs. J. Clean. Prod. 19(6–7), 598–608 (2011). https://doi.org/10.1016/j.jclepro.2010.11.010

    Article  Google Scholar 

  14. Cipolla, S.S., Altobelli, M., Maglionico, M.: Decentralized water management: rainwater harvesting, greywater reuse and green roofs within the GST4Water project. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, no. 11, p. 673 (2018). https://doi.org/10.3390/proceedings2110673

    Article  Google Scholar 

  15. Piro, P., Turco, M., Palermo, S.A., Principato, F., Brunetti, G.: A comprehensive approach to stormwater management problems in the next generation drainage networks. In: Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A. (eds.) The Internet of Things for Smart Urban Ecosystems. IT, pp. 275–304. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96550-5_12

    Chapter  Google Scholar 

  16. Becciu, G., Raimondi, A., Dresti, C.: Semi-probabilistic design of rainwater tanks: a case study in Northern Italy. Urban Water J. 15(3), 192–199 (2018). https://doi.org/10.1080/1573062X.2016.1148177

    Article  Google Scholar 

  17. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybern. Syst. 29(7), 661–688 (1998). https://doi.org/10.1080/019697298125470

    Article  Google Scholar 

  18. Arabani, M., Sasanian, S., Farmand, Y., Pirouz, M.: Rough-set theory in solving road pavement management problems (Case Study: Ahwaz-Shush Highway). Comput. Res. Prog. Appl. Sci. Eng. (CRPASE) 3(2), 62–70 (2017)

    Google Scholar 

  19. Arabani, M., Pirouz, M., Pirouz, B.: Optimization of geotechnical studies using basic set theory. In: 1st Conference of Civil and Development, Zibakenar, Iran (2012)

    Google Scholar 

  20. Hwang, C.L., Yoon, K.P.: Multiple Attributes Decision-Making Methods and Applications. Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-48318-9

    Book  MATH  Google Scholar 

  21. Balioti, V., Tzimopoulos, C., Evangelides, C.: Multi-criteria decision making using TOPSIS method under fuzzy environment. Appl. Spillway Sel. Proc. 2, 637 (2018). https://doi.org/10.3390/proceedings2110637

    Google Scholar 

  22. Krohling, R.A., Pacheco, A.G.: A-TOPSIS an approach based on TOPSIS for ranking evolutionary algorithms. Procedia Comput. Sci. 55, 308–317 (2015). https://doi.org/10.1016/j.procs.2015.07.054

    Article  Google Scholar 

  23. Haghshenas, S.S., Neshaei, M.A.L., Pourkazem, P., Haghshenas, S.S.: The risk assessment of dam construction projects using fuzzy TOPSIS (case study: Alavian Earth Dam). Civil Eng. J. 2(4), 158–167 (2016). https://doi.org/10.28991/cej-2016-00000022

    Article  Google Scholar 

  24. Haghshenas, S.S., Mikaeil, R., Haghshenas, S.S., Naghadehi, M.Z., Moghadam, P.S.: Fuzzy and classical MCDM techniques to rank the slope stabilization methods in a rock-fill reservoir dam. Civil Eng. J. 3(6), 382–394 (2017). https://doi.org/10.28991/cej-2017-00000099

    Article  Google Scholar 

  25. Campisano, A., Modica, C.: Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily. Resour. Conserv. Recycl. 63, 9–16 (2012). https://doi.org/10.1016/j.resconrec.2012.03.007

    Article  Google Scholar 

Download references

Acknowledgements

The study was co-funded by the “Innovative Building Envelope through Smart Technology (I-Best)” Project funded by the Italian National Operational Program “Enterprise and Competitiveness” 2014–2020 ERDF – I AXIS “Innovation” - Action 1.1.3 – “Support for the economic enhancement of innovation through experimentation and the adoption of innovative solutions in processes, products and organizational formulas, as well as through the financing of the industrialization of research results”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Anna Palermo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palermo, S.A., Talarico, V.C., Pirouz, B. (2020). Optimizing Rainwater Harvesting Systems for Non-potable Water Uses and Surface Runoff Mitigation. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics