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Abstract. We describe a practical situation in which the application
of forecasting models could lead to energy efficiency and decreased risk
in water level management. The practical challenge of forecasting water
levels in the next 24 h and the available data are provided by a dutch
regional water authority. We formalized the problem as conditional fore-
casting of hydrological time series: the resulting models can be used for
real-life scenario evaluation and decision support. We propose the novel
Encoder/Decoder with Ezogenous Variables RNN (ED-RNN) architec-
ture for conditional forecasting with RNNs, and contrast its performance
with various other time series forecasting models. We show that the per-
formance of the ED-RNN architecture is comparable to the best perform-
ing alternative model (a feedforward ANN for direct forecasting), and
more accurately captures short-term fluctuations in the water heights.

Keywords: Time series - Conditional forecasting - Encoder/Decoder -
Exogenous variables - Recurrent Neural Network

1 Introduction

In the Netherlands, water is all around us: knowing how to manage this water is
key to sustaining our way of life. New technologies and an exponential increase in
the amount of data available generate new possibilities in the field of hydrology.
Accurate forecasts of weather, water levels and flow rates allow water boards
(Waterschappen) to limit risk of flooding, drought damage and energy waste.
Water boards are regional government bodies responsible for water quality, water
levels and safety.

From this practice, the relevance of accurate conditional forecasts of time
series data becomes especially clear. Conditional forecasts are a useful means
of evaluating the impact of a hypothetical scenario. The goal is to predict the
variables of interest conditioned on an assumed future path of one or more other
variables in the system. These forecasts can be used to guide the decision making
process by comparing various scenarios.
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Artificial Neural Network (ANN) models have become very popular in fore-
casting water level time series. They provide a good alternative to the traditional
time series models (such as vector autoregressive (VAR) models) because ANNs
do not assume linear dependencies. Recurrent Neural Networks (RNNs) were
specifically designed to process sequential data, allowing for the model to retain
short-term and long-term memory of the input series, thereby improving the
performance of traditional feedforward ANNs on many machine learning tasks.
Despite their great potential, the application of RNNs to conditional time series
forecasting has not been extensively studied in the literature.

The method we propose in this paper is to use an Encoder/Decoder RNN
architecture to generate conditional forecasts of time series data. Our approach
distinguishes itself by considering the future path of the variables we conditioned
on in the decoding step. It can therefore be characterized as an Encoder/Decoder
RNN with Ezrogenous Variables. The resulting architecture is very flexible and
can be used to model many real-world time series. In our experiments, we com-
pare the performance of the ED-RNN with various other popular forecasting
models in a conditional forecasting scenario. This forecasting problem, as well
as the dataset of hydrological variables that is used for training and testing, is
provided by the Waterschap Zuiderzeeland.

The rest of this paper is structured as follows. First, we present relevant
literature regarding hydrological time series forecasting. We then provide a more
in-depth description of our forecasting challenge, its relevance, and the various
solutions to it. Lastly, we detail the results of our experiments and discuss their
implications for the field.

2 Related Work

Traditionally, most of the research in water resource systems was done using
hydrological models, which require significant amounts of domain knowledge.
Studies showed that levels [19,24], flow dynamics [18] and quality [9] of surface
water could be effectively modelled with this approach. However, a comparative
study of such models for ground water by Konikow et al. [15] showed that it was
impossible to scientifically verify and validate them, and argued that calibration
procedures generate non-unique solutions with limited predictive accuracy.

Research into our geographical region of interest (the Noordoostpolder in
Flevoland, The Netherlands) has been conducted in 2006 [5]. In this evalua-
tion study, the authors studied the historical influx of water to the region, and
contrasted it with its optimal value for different performance indicators using
various hydrological models.

Modelling hydrological variables can also be done by applying time series
models to a collection of historical data. Autoregressive (AR) models [16] fit a
linear equation of previous measurements to predict the next value. The AR
model is the special case of the Vector Auto Regressive (VAR) model [14], which
is suited for multivariate instead of univariate time series. These models can
be easily extended to include external regressors, moving averages, differencing,
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trends and seasonal components [16]. Limitation of VAR models include that
they assume linear dependence between the variables, as well as linear depen-
dence over time. Additionally, early studies [16,26] concluded that VAR models
are unable to learn both short- and long-term dependencies between variables
in a single model.

More recently, Artificial Neural Network (ANN) models have become very
popular in forecasting hydrological variables, especially for water levels. An
important advantage is that an ANN model creates a non-linear mapping from
input to output. The challenge in using feedforward ANNs for time series data
is finding a suitable way of incorporating past observations into the model, such
that the temporal correlation is utilized. A comparative study of ANN mod-
els for groundwater level forecasting was conducted by Yoon et al. [25]. Their
solution to modelling the time series data was to lag the variables, i.e., using
a time-delayed version of the data as additional input. Another approach to
modelling time series data is by applying a Fourier Transformation to the input
space, which was first proposed and applied by Wang et al. [23]. Tiwari et al.
[22] used a similar approach, using wavelet transforms, to develop an accurate
model for predicting floods in an Indian river basin up to 10 h ahead.

Recurrent Neural Networks (RNNs) were specifically designed to process
sequential data: their architecture allows them to consider network output of
previous time steps in later iterations [6], thus retaining memory. The diffi-
cult task of learning both short-term and long-term dependencies without losing
efficiency is a well-studied problem [3,13]. Various RNN architectures were com-
pared and successfully applied by Groenen [7] for seasonality extraction, residual
learning and accurate prediction of wastewater inflow at municipal wastewater
treatment plants.

There are generally two approaches to forecasting multiple subsequent obser-
vations of a time series. A recursive forecasting (sometimes also called iterative
forecasting) model repeatedly generates a prediction for a single period ahead,
using a fixed window of observations and previous predictions. A direct forecast-
ing model generates a prediction for variables multiple time steps ahead, and
this predictions is independent of the (predictions of) observations in between.
Various studies compared the performance of both approaches using ANNSs, but
the results are mixed and thus inconclusive [10,12,17].

3 Methodology

In this section, we first describe the conditional forecasting problem and the
time series data that is available. Then, we describe several time series modelling
approaches from literature, that we use to generate conditional forecasts for our
data. Lastly, we propose our own method for conditional forecasting called the
Encoder/Decoder RNN with Exogenous Variables.
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3.1 Problem Description

The water management system in the Noordoostpolder is governed by employees
of the Waterschap Zuiderzeeland. Their job is to manage the influx and efflux of
water into the region. The influx of water to the polder consists of surface water
from surrounding regions, groundwater seepage and precipitation. Water inside
the polder flows along channels to one of 3 large pumping stations responsible
for the eflux, which are operated manually.

Hydrologists at Waterschap Zuiderzeeland made an assessment of vital loca-
tions in the region based on connectivity, distance, flow directions and manage-
ment practice. Surface water level series at 3 different locations were pointed out
as target variables for the conditional forecast: predictions for these locations are
informative and useful for the water managers. Besides this, it was decided that
ground water level series for 2 locations, precipitation, and flow rates for the
3 large pumping stations would be the main descriptive variables for generat-
ing the prediction. Figure 1 shows a map of the Noordoostpolder, with the vital
water system locations. Table 1 contains identifiers for each of the measurement
series and a description of the location where these measurements were recorded.

-

Fig. 1. Vital locations in the water management system of the Noordoostpolder. Num-
bers indicate water level measurement locations, letters indicate pumping stations. See
Table 1 for a description of some of these points.

We derive using domain knowledge that ground and surface water measure-
ments should be considered endogenous variables, because they are dependent
upon each other and on other variables. Flow rates and precipitation can be
treated as exogenous variables. Precipitation is the influx of water to the Noor-
doostpolder and is therefore independent of the water levels. Flow rates measure
the amount of water that is displaced by the pumping stations and are defined
by the pumping protocol. The available data consists of measurements every
15 min for all time steps between 2015 and 2018.

The conditional forecasting problem is formalized as follows. Let us denote
the multivariate time series of length T with n endogenous variables as y; € R",
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Table 1. Names for important measurement locations in this work, along with their
official identifier defined by Waterschap Zuiderzeeland, type of measurement recorded
at the location, and an indication of its position in the map of the Noordoostpolder
shown in Fig. 1

Name | Identifier Type Unit Location

WH2 NOP.PM4810.LT1 | Surface water |cm NAP |2

WH3 MP6002 Surface water |cm NAP |3

WH5 NOP.ST4775.LT3 | Surface water | cm NAP |5

GW1 21BN.093.01 Ground water |cm NAP | Near C

GW2 15HN.018.01 Ground water |cm NAP | Between 1 and A

FR2000 | NOP.2000_-TOT | Flow rate m®/hour | A
FR2100 | NOP.2100_-TOT | Flow rate m?/hour |C
FR2200 | NOP.2200_.TOT | Flow rate m®/hour | B
MWSP | KNMI Marknesse | Precipitation | mm/hour | Near 4

and the time series with m exogenous variables x; € R™ for 0 < ¢t < T'. Given
a time step O called the forecasting origin and a parameter h > 0 called the
forecasting horizon, we want a prediction for observations yo41, ... Yyo+r. The
model generating these predictions should use y, ... yo, T4, ... o as well as o 41,
... Zo+4p as input, for some ¢t < O. This generates a forecast of y conditioned on
the future path of x.

In our experiments, we split the time series data in two parts. The training set
consist of all observations in 2015, 2016 and 2017, the test set of all observations
in 2018. The former is used to tune the model parameters, the latter is only used
to realistically evaluate the forecasting performance. For forecast evaluation, we
choose forecast origins O; = 12:00:00 (midday) for each day ¢ in out test set, and
we choose h = 96, which corresponds to forecasts up to 24 h ahead. The target
variables are series WH2, WH3 and WHS5, since the surface water levels provide
relevant insight for the Waterschap Zuiderzeeland.

The modelling choices described above, made in consultation with Water-
schap Zuiderzeeland, ensure that the forecasting models are useful and mean-
ingful for the hydrologists and managers. The selected measurement series can
be made accessible online, ensuring up-to-date forecasts. The choice of exogenous
variables ensures that future paths can be easily constructed, using an assump-
tion about actions of pumping station managers. By generating conditional fore-
casts for up to 24 h in the future, hydrologists can compare and evaluate various
scenario’s, and use these to adjust and improve their operations for the next day.

3.2 Forecasting Models

The first method we use to forecast the values in y; is using VAR and VECM
models [16], which are commonly used in time series analysis and are character-
ized by the assumption of linear dependencies. These models produce recursive
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forecasts, and their most important parameter is the lag parameter p for defining
the number of past observations of y; and x; that are taken into account.

As a generalization of these linear models, we consider the feedforward Artifi-
cial Neural Network (ANN) [11], also called Multilayer Perceptron (MLP). The
generic model architecture is used to learn a non-linear mapping from some
input vector I to output O. It consists of k layers L;, with ¢ = 1, ... , k, having
l; neurons in each layer. Neurons in the input layer are activated using input
data, simply using L; = I. Neurons in consecutive layers are activated through
weighted connections with the previous layer, as follows:

Li+1 :a(Wszer,) for i = 17 ,k*l (1)

where L; and L;y; are vectors of size [; x 1 and ;41 X 1 respectively, W is
an l;11 X l; matrix containing coefficients (weights) and b; is a vector of size
lit+1 X 1 containing coefficients. The function o : R — R is some non-linear
activation function that is applied element-wise. The above is called the feedfor-
ward step, producing the output Li: using a learning algorithm such as gradient
descent backpropagation [11], the error between Lj and the desired output O is
iteratively decreased.

We apply the generic feedforward ANN to time series forecasting in two
ways. Recursive forecasting can be done using I = {y;—p, ... ¥t—1,X¢—p, ... X¢} as
input, and O = {§:}. We thus have I; = p(n+m)+m and I = n. This network
can now be used recursively, using previous predictions as input, to generate
forecasts for time steps ¢ + 1, ... t + h — 1. Alternatively, we can implement an
ANN for direct forecasting by choosing L1 = {y—p, ... Yi—1,Xt—p; .. Xe4h—1} aS
input, and Ly = {J¢, ... Yt+n—1}. In this case, we have l; = p(n + m) + hm and
l;, = hn. This network is not used recursively, but instead generates predictions
for all desired time steps using a single feedforward operation.

Finally, we consider Recurrent Neural Networks (RNNs) and look at two
common ways in which we can use these to generate conditional forecasts. RNNs
provide an extension to feedforward ANNSs, in that they are specifically designed
to process sequences of observations. Instead of concatenating many observations
into a single input vector like the ANN, the RNN takes a multivariate time series
I; € R™ for 1 <t < T as input, mapping it to the output series O; € R"
by processing each time step t individually. What also distinguishes the RNN
architecture is that a layer of RNN neurons uses the layer’s activations at the
previous time step as additional input. A single RNN layer L;; thus computes:

Lij1, = Q(Wlo'(Li+17t_1) +Wsol;; + b) fort=1, ...,T (2)

where the function ¢ : R — R is an element-wise function and the other terms
are similar to the feedforward ANN case. The term o(L; ) is called the hidden
state of the ¢’th network layer: its initial state o(L; ) can be specified by the
user, set to 0 or be learned.

Learning the weights for an RNN could lead to several problems: since errors
must be propagated over many time steps, the gradients could either wvanish
or explode (i.e., extreme decrease or increase in the norm). To counteract this,
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specialized RNN neuron architectures have been developed, such as the Long
Short-Term Memory (LSTM) [6] and the Gated Recurrent Unit (GRU) [4].

Conditional time series forecasting using an RNN is not straightforward. The
most common solution is to define an RNN that generates 1-ahead predictions, as
seen in [8]. For this model, we choose I; = {y;—_1, x:} and O; = {y;}. However,
for multi-step ahead forecasting, this recursive approach is counter intuitive. The
RNN uses as input both its previous prediction and its previous hidden state:
this could distort the memory management of the RNN and lead to extreme
accumulation of errors for large h.

The second approach is to use Iy = {y;_pn, x¢} and O; = {y;}. This way,
the RNN is not applied recursively and its memory is efficiently used. However,
the input series is now composed of variables with substantial time shifts, which
could lead to problems. To prevent the extraction of misleading patterns, we are
required to use a moving average series of y; instead of the actual measurements,
resulting in a loss of information. Additionally, this approach forces us to use
input sequences of y and x of the same length and we can not use x; for t < T.

3.3 Encoder/Decoder RNN with Exogenous Variables

The above suggests that conditional forecasting using RNNs does not work very
well, so we propose our own architecture for this problem. Requirements are that
it allows us to use input sequences of y and x of varying length without time
shifts, and that the memory management of the RNN is used efficiently during
forecasting.

Our proposed approach to conditional forecasting with RNNs can be
described as an encoder/decoder approach with exogenous variables. It consist
of two steps: first, given origin O, horizon h and lag p, we encode the observa-
tions in x and y at times O — p <t < O using an RNN layer of size ;. This
can simply be done using I} = {y;, x;}, since all these observations are known.
We only keep the last output of this RNN layer, instead of the entire series. The
resulting output, which we call the encoding F, is a vector of values of size [ x 1.

The second step is to turn the output of the first RNN layer, E, into predic-

tions for yo41, ..., Yo+n- We do this by concatenating copies of the encoding
to each time step in Xp41, ..., X0+4: the result is a new time series zp41, ...,
Zo+h, With z; = {x¢, E}. We use this combined time series as input to the

second RNN layer, thus we write I7 = {x;, E}. This second RNN layer pro-
duces the predictions for yo41, ..., Yo+n, thus we write O, = {y;}. While the
architecture appears to consist of two separate models, the encoder can not be
trained without a decoder. In summary, our architecture generates predictions
Oo, ... Optr—1 using an encoding of I%),p, 11071 and using IQO, I%+h_1 as
additional information during decoding. Figure 2 contains a simplified, schematic
representation of this RNN architecture.

The procedure of encoding and decoding a time series using RNNs is also
called sequence to sequence (seq2seq) modelling, as proposed by Sutskever et
al. [21]. In that work, it was not applied to measurement time series, but to
words: translating sentences from one language to another, with good results.
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Fig. 2. Schematic representation of the Encoder/Decoder with Exogenous Variables
RNN structure, with input data before the forecast horizon (5), first RNN layer (4),
concatenation of exogenous variables after the forecast horizon and the copies of the
encoding (3), second RNN layer (2) and the generated forecasts (1).

The most important difference with our application, and therefore the novelty
of our approach, is that the initial seq2seq modelling was not conditional: there
was no notion of exogenous values Xo41, ..., Xo+r, but instead, only the copies
of the encoding E were used as input to the second RNN layer.

4 Experimental Setup

As mentioned before, we use two parts of the available data: observations in 2015,
2016 and 2017 for tuning the model parameters, observations in 2018 to evaluate
forecasts. The forecasting approach described, using O; = 12:00:00 (midday) for
each day 7 in 2018 and h = 96, results in a series of predictions ¥ for all the water
levels y in the testing set. We choose to evaluate the forecasts by determining
the Root Mean Squared Error (RMSE) and Mean Average Percentage Error
(MAPE) [2] of § and y. We also determine the squared Pearson correlation
coefficient of ¥ and y, sometimes referred to as the ‘pseudo-R?’, which we shall
simply reference as R2. We show the results for the surface water level series
WH2, WH3 and WHS5, since these are the target variables of this study.

Methods for estimating VAR and VECM models, as well as generating their
predictions on new data, are provided in the R package ‘tsDyn’[20]. The package
does not support the inclusion of lags of exogenous variables: the exogenous data
thus had to be temporally transformed, creating new columns with time-delayed
measurements.

All methods for defining and training ANN and RNN models are imple-
mented in the ‘Keras’ python package, which can be controlled from the R envi-
ronment using the R package called ‘Keras’ [1]. Implementing the feedforward
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ANN models required temporal transformation of the data. To speed up train-
ing, measurements were normalized to the interval [0,1] using min-max scaling.
Keras automatically uses the last 20% of observations in the training set as vali-
dation set: to prevent overfitting we defined an early stopping criterion based on
the performance on the validation set. No other regularization techniques were
used to generate the results in this paper.

To be able to efficiently reference the neural network model architectures,
we introduce the following notation. 1-NN; ;(p) is used to describe a neural
network generating 1-step ahead predictions, with two hidden layers of sizes
i and j, and lag order p for the endogenous variables. Neural networks with
only 1 hidden layer have no parameter j. D-NN; ;(p) is used to describe a direct
forecasting ANN, with the same parameters. We reference the RNN architectures
in a similar fashion. First, models are referenced by the types of neurons in
the layers, namely, "LSTM” or "GRU”. 1-LSTM; ; indicates an LSTM model
that is trained for 1-ahead predictions with two layers of sizes ¢ and j. XY-
LSTM, ; is used to reference an LSTM model that implements the second RNN
approach described: predicting y¢ using It = {Mean(y:—n—192, ... Y¢—n), Xt }. If
either of the two models above has only one layer, the variable j is omitted.
Lastly, ED-LSTM, ; is used to reference an LSTM model that implements the
encoder/decoder architecture with exogenous variables, which always requires
at least two RNN layers.

5 Results

We begin by determining a baseline performance. This naive forecast is defined
as follows: for each forecasting horizon T; = 12:00:00 (midday) for every day 1,
we predict that the water levels in the next 24 h are equal to the average water
level of the past 24h. In Table 2, we show this baseline performance, expressed
RMSE, MAPE and R2.

Also in Table2 are the RMSE, MAPE and R? of various VAR(p) and
VECM(p) models. We observe that increasing the lag order p, and thereby
increasing the model complexity, leads to a better performance. We also observe
that even with the simplest VAR model, we are able to greatly improve the naive
baseline performance.

Next, we evaluate the feedforward ANN architectures for both recursive and
direct forecasting. We chose to present the models with lag order p = 96: lower
values for p yielded worse results, and results for higher values of p were com-
parable or worse. The RMSE, MAPE and R? for the predictions on the test set
are shown in Table 3. These ANN models are non-linear and contain many more
parameters than the VAR models: the NN model complexity is therefore much
higher. We observe that generating the recursive forecasts using ANNs yields
bad results: it hardly improves the baseline model. This can likely be attributed
to the accumulation of errors when forecasting multiple time steps ahead: for NN
models, these negative effects are more extreme compared to the VAR/VECM
models, due to the increased model complexity.
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Table 2. Forecasting accuracy expressed as RMSE, MAPE and R? for the baseline
predictor and various VAR(p) and VECM(p) models evaluated on the test set. In bold:
for each target variable, its highest quality prediction with respect to RMSE, MAPE
or RZ.

Model WH2 WH3 WH5

RMSE | MAPE|R? RMSE|MAPE R? |RMSE|MAPE R?
Baseline 4.94 .0067 | .45 |5.17 .0064 |.78 | 5.45 .0069 | .37
VAR(8) 3.36 .0040 | .84 | 3.65 0043 |9 |35 .0038 | .77
VECM(8) 3.23 .0039 |.83 |3.51 .0040 |.91 |3.35 .0035 |.78
VECM(24) 3.15 .0037 |.84 |3.35 .0038 .92 |3.33 .0035 |.78
VECM(48) |2.85 .0032 | .86 | 3.26 .0035 |.923.33 .0034 |.79
VECM(96) |2.66 .0029 | .86 | 3.28 .0036 |.91 3.3 .0035 |.78
VAR(192) | 2.50 |.0028 |.87|3.22 .0037 |.92/3.13 |.0035 |.78
VECM(192) | 2.60 .0029 | .87|3.18 |.0035 .92|3.15 .0034 | .80

We conclude from the D-NN results that generating direct forecasts using
ANNs improves the performance of the VAR/VECM models, in particular for
WHS5. Nevertheless, the VAR/VECM model performance proves to be a reason-
able baseline for model comparison. We also generated visualizations of the D-
NNy (96) predictions for an informative subset of observations: these are shown
in Fig. 3. We observe that the minimal and maximal water levels are properly
predicted by the model, but the timing and steepness of the fluctuations is not
very accurate. The performance metrics and visualizations for the D-NN model
were presented to hydrologists at Waterschap Zuiderzeeland: they indicated that
the forecasts are accurate enough to be used for decision support if they are gen-
erated for up to 24 h ahead.

The forecasting performance metrics of several models of the 1-RNN and
XY-RNN architecture are shown in Table4. These models were evaluated to be
able to compare ANN and RNN architectures, to study the effect of using either
LSTM neurons or GRU neurons, and to get an idea of the optimal RNN model
size. We observe that recursive forecasting using RNNs (the 1-RNN models) yield
even worse results than the recursive ANN models. A possible reason for this is
that the error accumulation occurs both in the hidden states and in the input
data for recursive forecasting RNNs. It also becomes clear that models with GRU
neurons consistently yield better results than LSTM neurons. Lastly, we see that
the results of the XY-RNN are slightly worse than the D-NN results. Moreover,
the XY-RNN models are unable to yield better results than the VAR/VECM
models. This is remarkable, because both the D-NN and XY-RNN models gen-
erate forecasts that do not suffer from an accumulation of error in the input
data.

In Table 5 we show the forecasting performance of several RNN models with
the proposed Encoder/Decoder RNN architectre. We conclude that the perfor-
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Table 3. Forecasting performance expressed as RMSE, MAPE and R? for various
ANN models with lag order p = 96. Performance was evaluated by generating forecasts
on the test set. In bold: for each target variable, its highest quality prediction with
respect to RMSE, MAPE or R2.

Model WH2 WH3 WH5

RMSE | MAPE |R? | RMSE | MAPE | R? | RMSE | MAPE | R?
1-NN24(96) 7.22 |.0080 |.36 |16.17 |.0231 |.49 8.77 |.0096 | .24
1-NNyg(96)  [4.23 |.0051 |.71| 6.1 |.0074 |.78 |5.86 |.0076 |.58
1-NNys,16(96) |3.28 .0049 |.78 | 4.73 |.0059 |.87 [4.59 |.0060 |.70
1-NNys 45(96) [4.18 |.0052 |.64 | 5.41 |.0071 |.82 |5.2 .0069 | .57
D-NN24(96) |2.37 |.0030 |.89| 3.2 |.0040 |.92 |2.76 |.0038 |.84
D-NNys(96) |2.35 |.0029 |.89| 3.15 |.0037 |.92|2.85 |.0038 |.84
D-NNg6(96) |2.68 |.0036 |.89| 3.11 |.0038 |.92|2.49 |.0033 |.86
D-NN2o(96) |3.05 |.0040 |.84 | 3.45 |.0045 |.91 |3.64 |.0047 |.81
D-NNys,16(96) | 2.63  |.0039 |.86 | 4.23 |.0053 |.91|2.76 |.0039 |.85
D-NNys 45(96) |3.03  |.0043 |.85| 3.94 |.0044 |.92|3.35 |.0047 |.82
D-NNogg,16(96) | 2.46  |.0033 |.88 | 4.16 |.0049 |.9 |2.57 |.0033 |.85
D-NNgg,45(96) | 2.98  |.0040 |.82 | 3.46 |.0045 |.91 [3.39 |.0043 |.80
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Fig. 3. Exemplary selection of WH2, WH3 and WH5 water levels, and the direct

forecasts generated by the D-NNgg(96) model. Captions indicate the weather conditions
on the day for which the forecast was generated.
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Table 4. Forecasting performance expressed as RMSE, MAPE and R? of RNN models.
Performance was evaluated by generating forecasts on the test set. In bold: for each
target variable, its highest quality prediction with respect to either RMSE, MAPE or
R

Model WH2 WH3 WH5

RMSE | MAPE|R? RMSE|MAPE R? |RMSE|MAPE R?
1-LSTMas 7.00 .0091 |.48 | 2.84 |.0289 |.55| 6.65 |.0067 | .48
1-GRU3s 6.47 .0081 |.57 | 7.32 |.0121 |.72 | 5.01 |.0061 |.64
1-LSTMs0 12.66 |.0168 |.00 |24.83 |.0210 |.35 |17.21 |.0209 |.00
1-GRUsg 4.04 .0047 |.70 | 9.90 |.0115 |.41 | 3.97 |.0042 | .69
1-GRUj100 5.83 .0070 |.40 | 11.09 |.0163 |.64 | 7.22 |.0085 | .35

1-GRUs0,50 9.50 0122 | .58 | 7.56 |.0089 |.54 | 6.16 |.0075 | .46
1-GRU100,50 5.15 .0066 |.69 | 8.96 |.0113 |.67 | 6.20 |.0079 | .52
XY-GRU36 3.40 .0047 |.81| 3.79 |.0047 |.89 | 3.56 |.0044 | .71
XY-GRU32s 3.35 .0046 |.81| 3.47 |.0044 |.91| 2.83 .0037 .81
XY-GRUso 4.07 .0056 |.78 | 4.43 |.0057 |.86 | 3.71 |.0047 |.76
XY-GRU2s5,25 | 3.83 .0054 |.78 | 4.03 |.0051 |.87 | 3.47 |.0044 | .74
XY-GRUsp,16 | 3.68 .0053 |.81| 3.83 |.0051 |.90 | 3.21 |.0042 | .77
XY-GRUso,50 |4.45 .0062 |.74 | 4.17 |.0055 |.87 | 4.04 |.0052 |.70
XY-GRUigp,50 |3.01 |.0042 |.81| 3.94 |.0054 |.90 | 3.27 |.0045 |.78
XY-GRUj00,100 | 3.73 .0053 |.80 | 3.89 |.0049 |.88 | 3.40 |.0042 | .74

mance of the ED-RNN model is comparable to the best performing alternative
model (the D-NN) and better than the other results we have seen so far. Table 5
also contains the performance metrics for an ensemble model, containing the
models ED—GRU12,12, ED—GRU25,50, D—NN48(96) and D—NN96(96) The predic—
tions of the ensemble model are defined as the average of the 4 predictions from
the individual models at each time step. The ensemble model shows that there
is still room for improvement. Additionally, Fig.4 contains informative visual-
izations of the predictions generated by the ED-GRUjgs 50 model. From this, we
conclude that the timing and steepness of fluctuations are more accurately pre-
dicted by the ED-RNN model compared to the D-NN, except for situations with
heavy rainfall.

Lastly, we contrast the conditional forecasts generated by the D-NNgg(96)
and ED-GRUys 50 models in the case of an alternative path for the exogenous
variables. Figure5 contains, for a selected date in the test set, the original and
alternative future paths for the variables on which we condition the forecasts. The
alternative scenario has flow rates that are lower (less pumping) and with differ-
ent timing (FR2000 is activated later, FR2200 is de-activated earlier). Hydrolo-
gists at Waterschap Zuiderzeeland indicated that, based on their domain expe-
rience, this alternative pumping scenario should result in higher water levels
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Table 5. Forecasting performance expressed as RMSE, MAPE and R? of
Encoder/Decoder RNNs with exogenous variables. Additionally, the performance for
an ensemble model consisting of 2 ED-GRU models and 2 D-NN models. Performance
was evaluated by generating forecasts on the test set. In bold: for each target variable,
its highest quality prediction with respect to either RMSE, MAPE or R? by a single

model.

Model WH2 WH3 WH5

RMSE | MAPE |R? | RMSE | MAPE |R? | RMSE | MAPE | R?
ED-GRUgs [2.98 |.0039 |.84 [5.39 .0055 |.78 [3.01 |.0038 |.80
ED-GRUg 12 [2.51 |.0032 |.87/3.31 .0041 .92 |2.74 |.0036 | .83
ED-GRUj2,12 | 2.37 |.0029 | .87(3.24 .0040 .92 [2.79 |.0036 | .83
ED-GRUa2s,05 | 2.85 |.0036 | .85 [3.23 |.0041 |.92 |3 .0038 | .79
ED-GRUas.50 | 2.95 |.0038 |.86 |3.04 .0037 |.93|2.85 |.0036 |.84
ED-GRUsp,25 |3.28 |.0044 | .85 [3.31 .0040 .92 |2.84 |.0036 | .83
ED-GRUso50 |3.04 | .0039 | .84 [3.49 .0043 .91 |2.87 |.0036 | .82
Ensemble 229 |.0029 |.91 |2.71 |.0032 |.94 |2.25 |.0029 |.89
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with a delayed peak. Figures6 and 7 contain the conditional forecasts gener-
ated for both the original and alternative scenario, and the original water levels.
The alternative D-NN forecasts did not contain the expected delayed peaks,
and for WH3 it has mostly lower water levels, which is unrealistic. The alter-
native ED-RNN forecasts did contain the expected changes compared to the
original scenario. According to the knowledge and experience of the hydrologists
at Waterschap Zuiderzeeland, the alternative forecasts of the ED-RNN model
are therefore realistic and could be used for real-life scenario evaluation.
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Fig. 5. Visualization of the exogenous variables used to generate the original (old)
prediction above, and below for the alternative (new) prediction for February 2, 2018.
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Fig. 6. Actual water height, original forecast (old) and alternative conditional forecast
(new) on February 2, for target series WH2 and WH3. Predictions are generated by
the D-NNgg(96) model.
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Fig. 7. Actual water height, original forecast (old) and alternative conditional forecast
(new) on February 2, for target series WH2 and WH3. Predictions are generated by
the ED—RNN25‘50 model.

6 Conclusion

This paper describes a practical situation in which the application of forecasting
models could lead to energy efficiency and decreased risk in water level man-
agement. In consultation with the Waterschap Zuiderzeeland, we formalized the
problem as a conditional forecasting problem using time series measurements of
hydrological variables. Our modelling choices, e.g. the forecasting horizon and
the inclusion of future paths of exogenous variables, ensure that the resulting
forecasting problem imitates a real-life forecasting task.

We have proposed a novel architecture for conditional forecasting with RNNs.
Our approach, described as an Encoder/Decoder with Exogenous Variables RNN
(ED-RNN) model, is intuitive in its memory management, can be easily extended
and is flexible in the inclusion of past observations and future paths of exogenous
variables. It combines the ideas of sequence-to-sequence (Seq2Seq) RNN models
with the conditional forecasting literature, resulting in a model architecture that
can be used for modelling in all sorts of time series problems.

We showed that on this specific conditional forecasting problem, the results
of the ED-RNN are comparable to the best performing alternative model (the
D-NN), and better than the other alternatives considered. We observe that the
predictions generated by the ED-RNN more accurately capture short-term fluc-
tuations in the water heights than the predictions of the D-NN. Additionally,
the ED-RNN generates realistic alternative conditional forecasts. Therefore, the
model is applicable for real-life scenario evaluation and decision support by the
Waterschap Zuiderzeeland.

Our search for model parameters, such as the model size, lag parameter,
number of iterations and stopping criterion, was not exhaustive. Balancing the
data and inclusion of additional measurement series were also not investigated.
Hence, there is still room for improvement of our models. We conclude that
our ED-RNN model architecture is a very interesting option for conditional
forecasting with RNNs and that more empirical evaluation is needed to contrast
the performance with alternative modelling techniques.
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