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Abstract

Bounded treewidth is one of the most cited combinatorial invariants in the literature. It was also applied
for solving several counting problems efficiently. A canonical counting problem is #SAT, which asks to
count the satisfying assignments of a Boolean formula. Recent work shows that benchmarking instances
for #SAT often have reasonably small treewidth. This paper deals with counting problems for instances of
small treewidth. We introduce a general framework to solve counting questions based on state-of-the-art
database management systems (DBMSs). Our framework takes explicitly advantage of small treewidth by
solving instances using dynamic programming (DP) on tree decompositions (TD). Therefore, we implement
the concept of DP into a DBMS (PostgreSQL), since DP algorithms are already often given in terms of
table manipulations in theory. This allows for elegant specifications of DP algorithms and the use of SQL to
manipulate records and tables, which gives us a natural approach to bring DP algorithms into practice. To
the best of our knowledge, we present the first approach to employ a DBMS for algorithms on TDs. A key
advantage of our approach is that DBMSs naturally allow for dealing with huge tables with a limited amount
of main memory (RAM).

KEYWORDS: Dynamic Programming, Parameterized Algorithmics, Bounded Treewidth, Database Systems,
SQL, Relational Algebra, Counting

1 Introduction

Counting solutions is a well-known task in mathematics, computer science, and other areas
(Chakraborty et al. 2016; Domshlak and Hoffmann 2007; Gomes et al. 2009; Sang et al. 2005).

∗ This is an extended version of a paper (Fichte et al. 2020) that appeared in the Proceedings of the 22nd International
Symposium on Practical Aspects of Declarative Languages (PADL’20).
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2 Fichte et al.

In combinatorics, for instance, one characterizes the number of solutions to problems by means
of mathematical expressions, e.g., generating functions (Doubilet et al. 1972). One particular
counting problem, namely model counting (#SAT) asks to output the number of solutions of a
given Boolean formula. While we stay in the realm of model counting, the findings of this work are
also relevant for answer set programming. This is particularly true for tight programs (using, e.g.,
Clark’s completion (Clark 1977)), but also interesting for applications of quantitative reasoning,
solved by programs that are compiled to SAT with the help of tools like lp2sat (Janhunen 2006) or
lp2acyc (Bomanson et al. 2016).

Model counting and variants thereof have already been applied for solving a variety of real-
world applications and questions in modern society related to reasoning (Chakraborty et al. 2016;
Choi et al. 2015; Dueñas-Osorio et al. 2017; Xue et al. 2012). Such problems are typically
considered very hard, since #SAT is complete for the class #P (Bacchus et al. 2003; Roth
1996), i.e., one can simulate any problem of the polynomial hierarchy with polynomially many
calls (Toda 1991) to a #SAT solver. Taming this high complexity is possible with techniques
from parameterized complexity (Cygan et al. 2015). In fact, many of the publicly available #SAT

instances show good structural properties after using regular preprocessors like pmc (Lagniez
and Marquis 2014), see (Fichte et al. 2018b; Fichte et al. 2019). By good structural properties,
we mean that graph representations of these instances have reasonably small treewidth. The
measure treewidth is a structural parameter of graphs which models the closeness of the graph of
being a tree. Treewidth is one of the most cited combinatorial invariants studied in parameterized
complexity (Cygan et al. 2015) and was subject to algorithmics competitions (Dell et al. 2018).

The observation, stated above, that various recent problem instances for #SAT have small
treewidth, leads to the question whether a general framework that leverages treewidth is possible
for counting problems. The general idea to develop such frameworks is indeed not new, since there
are (a) specialized solvers such as dynQBF, gpuSAT, and fvs-pace (Charwat and Woltran 2019;
Fichte et al. 2019; Kiljan and Pilipczuk 2018) as well as (b) general systems that exploit treewidth
like D-FLAT (Bliem et al. 2016), Jatatosk (Bannach and Berndt 2019), and sequoia (Langer
et al. 2012). Some of these systems explicitly use dynamic programming (DP) to directly exploit
treewidth by means of so-called tree decompositions (TDs), whereas others provide some kind
of declarative layer to model the problem (and perform decomposition and DP internally). In
this work, we solve (counting) problems by means of explicitly specified DP algorithms, where
essential parts of the DP algorithm are specified in form of SQL SELECT queries. The actual run
of the DP algorithm is then delegated to our system dpdb, which employs database management
systems (DBMSs) (Ullman 1989). This has not only the advantage of naturally describing and
manipulating the tables that are obtained during DP, but also allows dpdb to benefit from decades
of database technology in form of the capability to deal with huge tables using a limited amount of
main memory (RAM), dedicated database joins, query optimization, and data-dependent execution
plans. Compared to other generic DP systems like D-FLAT (Bliem et al. 2016), our system dpdb

uses relational algebra (SQL) for specifying DP algorithms, which is even competitive with
specialized systems for model counting, and therefore applicable beyond rapid prototyping.

Contribution. We implement a system dpdb for solving counting problems based on dynamic
programming on tree decompositions, and present the following contributions. (i) Our system dpdb

uses database management systems to handle table operations needed for performing dynamic
programming efficiently. The system dpdb is written in Python and employs PostgreSQL as
DBMS, but can work with other DBMSs easily. (ii) The architecture of dpdb allows to solve
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general problems of bounded treewidth that can be solved by means of table operations (in
form of relational algebra and SQL) on tree decompositions. As a result, dpdb is a generalized
framework for dynamic programming on tree decompositions, where one only needs to specify
the essential and problem-specific parts of dynamic programming in order to solve (counting)
problems. (iii) Finally, we show how to solve the canonical problem #SAT with the help of dpdb,
where it seems that the architecture of dpdb is particularly well-suited. In more detail, we compare
the runtime of our system with state-of-the-art model counters. We observe a competitive behavior
and promising indications for future work.

Prior Work This is an extended version of a paper (Fichte et al. 2020) that appeared at the
22nd International Symposium on Practical Aspects of Declarative Languages. The new material
includes improved and extended examples as well as a detailed description of our DP algorithms
and how these algorithms can be implemented for the system dpdb. Further, we added two new DP
algorithms for the additional problems MAXSAT and MINIDS, to demonstrate how to use dpdb:
The problem MAXSAT is similar to SAT, but consists of hard clauses that need to be satisfied as
well as soft clauses. The goal of MAXSAT is to compute the maximum number of soft clauses
that can be satisfied using only assignments that also satisfy all the hard clauses. Further, problem
MINIDS is a popular graph problem that aims for computing for a given graph, a set of vertices
(called independent dominating set) such that there is no edge between these vertices and all the
other vertices of the graph have an edge to at least one of the vertices in this set. Both problems
can be easily extended to counting, where we require to compute the number of witnessing
solutions. Finally, we added new experimental results, where we used the most recent version 12
of PostgreSQL as the underlying database management system, which operated on a ramdisk
drive.

2 Preliminaries

We assume familiarity with the terminology of graphs and trees. For details, we refer to the
literature and standard textbooks (Diestel 2012).

2.1 Boolean Satisfiability

We define Boolean formulas and their evaluation in the usual way, cf., (Kleine Büning and
Lettman 1999). A literal is a Boolean variable x or its negation ¬x. A CNF formula ϕ is a set of
clauses interpreted as conjunction. A clause is a set of literals interpreted as disjunction. For a
formula or clause X , we abbreviate by var(X) the variables that occur in X . An assignment of ϕ is
a mapping I : var(ϕ)→ {0,1}. The formula ϕ(I) under assignment I is obtained by removing
every clause c from ϕ that contains a literal set to 1 by I, and removing from every remaining
clause of ϕ all literals set to 0 by I. An assignment I is satisfying if ϕ(I) = /0. Problem #SAT asks
to output the number of satisfying assignments of a formula.

We also allow equality formulas, which are Boolean formulas, where variables are expressions
using equality. In more detail: Let d be a fixed constant over domain dom(v), where we call
d term constant. Let v and v′ be variables over some domain dom(v) and dom(v′), where we
call v and v′ term variables. Then, an equality formula β is an expression of the form v=d
or v=v′. A term assignment J of equality formula β over term variables tvar(β ) assigns each
domain variable v ∈ tvar(β ) a value over domain dom(v). The Boolean formula β (J) under term
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Figure 1: Graph G (left) with a TD T of graph G (right).

assignment J is obtained as follows. First, we replace all expressions v=d in β by 1 if J(v) = d, all
expressions v=v′ by 1 if J(v) = J(v′), and by 0 otherwise. Second, we remove from the resulting
clauses in β (J) each clause c that contains a literal set to 1. Finally, we remove from every
remaining clause in β (J) every literal that is set to 0. We say a term assignment J is satisfying
if β (J) = /0.

2.2 Tree Decomposition and Treewidth

Treewidth is widely used for fine-grained complexity analyzes and to establish algorithms that pro-
vide tractability when bounding the treewidth. While it is only defined for graphs and hence widely
used in graph theory (Bodlaender and Koster 2008), one can define graph representations of input
instances for a variety of problems. Dedicated techniques then allow to solve problems from many
domains such as propositional satisfiability (Samer and Szeider 2010), artificial intelligence (Got-
tlob and Szeider 2007), knowledge representation (Gottlob et al. 2006), argumentation (Fichte
et al. 2019), non-monotonic reasoning (Fichte et al. 2018), abduction in Datalog (Gottlob et al.
2007), and databases (Grohe 2007), probabilistic inference (Dechter 1999) (under the name
bucket elimination) including constraint satisfaction, Fourier and Gaussian elimination for solving
linear equalities and inequalities, and combinatorial optimization. While theoretical conditional
lower bound results seem to discourage using algorithms that exploit bounded treewidth (Pan
and Vardi 2006; Fichte et al. 2020), dynamic programming along tree decompositions or related
decompositions has recently been used to establish practical algorithms (Fichte et al. 2019; Dudek
et al. 2020). An algorithm that exploits small treewidth takes a tree decomposition, which is an
arrangement of a graph into a tree, and evaluates the problem in parts, via dynamic program-
ming (DP) on the tree decomposition. Informally speaking, the tree decomposition provides an
evaluation ordering, which one employs by a problem specific algorithm where the runtime of
combinatorial hard part is bounded by a (potentially exponential) function of the treewidth w.
Then, the underlying idea of treewidth is that it provides a measure for the closeness of a potential
evaluation ordering which is simply a tree. Below, we provide the formal definitions of the notions
tree decomposition and treewidth.

A tree decomposition (TD) (Kloks 1994; Cygan et al. 2015) of a given graph G is a pair
T = (T,χ) where T is a rooted tree and χ is a mapping which assigns to each node t ∈ V (T )
a set χ(t) ⊆ V (G), called bag, such that (i) V (G) =

⋃
t∈V (T ) χ(t) and E(G) ⊆ {{u,v} | t ∈

V (T ),{u,v} ⊆ χ(t)}; and (ii) for each r,s, t ∈V (T ), such that s lies on the path from r to t, we
have χ(r)∩χ(t)⊆ χ(s). We let width(T ) := maxt∈V (T ) |χ(t)|−1. The treewidth tw(G) of G is
the minimum width(T ) over all TDs T of G. For k ∈N we can compute a tree decomposition
of width k or output that none exists in time 2Ok3 · |V | (Bodlaender and Koster 2008).

Example 1
Figure 1 depicts a graph G (left) and a TD T of G (right) of width 2. The treewidth of G is also 2
since G, contains a complete graph with 3 vertices (Kloks 1994). �
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Next, we give the definition of a standard restriction for TDs, so called nice TDs. A nice TD
ensures that one needs to consider only a small number of case distinctions in a DP algorithm later.
For a node t ∈ V (T ), we say that type(t) is leaf if t has no children and χ(t) = /0; join if t has
children t ′ and t ′′ with t ′ 6= t ′′ and χ(t) = χ(t ′) = χ(t ′′); intr (“introduce”) if t has a single child t ′,
χ(t ′)⊆ χ(t) and |χ(t)|= |χ(t ′)|+1; rem (“removal”) if t has a single child t ′, χ(t ′)⊇ χ(t) and
|χ(t ′)| = |χ(t)|+ 1. If for every node t ∈ V (T ), type(t) ∈ {leaf, join, intr,rem}, then the TD is
called nice. The conditions allow us to focus on each of the cases of our algorithms individually.

3 Dynamic Programming on Tree Decompositions

In the preliminaries, we gave definitions for tree decompositions and treewidth and stated a
variety of application areas. We mentioned that treewidth is widely used as a structural measure
to establish tractability results when we consider in addition to the input size of the instance
also the treewidth. If we want to exploit small treewidth of an input instance by an algorithm
in practice, one can design a so called-dynamic programming (DP) algorithm, which works as
follows: Sub-problems are evaluated along the tree decomposition. At each node of the tree,
information is gathered in tables. A table contains tuples of a fixed form that are designed to
ensure certain properties. Then, a table algorithm maintains these tables during a post-order
traversal. Thereby, it handles different cases according to the node contents of the TD and it
ensures that properties required to solve the problem in parts sustain. The size of a table depends
on the number of items in the bag, but is allowed to be exponential in the size of a bag. Hence,
the overall technique works in linear time in the size of the problem and exponential in the bag
size. Intuitively, the tree decomposition fixes an order in which we evaluate our problem. As a
result, evaluating a problem along a tree decomposition allows for solving the problem at interest
in parts, where the tree decomposition provides these parts and directs how solutions to the parts
are supposed to be merged.

More formally, a solver based on dynamic programming (DP) evaluates the input I in parts
along a given TD of a graph representation G of the input. Thereby, for each node t of the
TD, intermediate results are stored in a table τt . This is achieved by running a so-called table
algorithm A, which is designed for a certain graph representation, and stores in τt results of
problem parts of I , thereby considering tables τt ′ for child nodes t ′ of t. DP works for many
problems P as follows.

1. Construct a graph representation G of the given input instance I .
2. Heuristically compute a tree decomposition T = (T,χ) of G.
3. Traverse the nodes in V (T ) in post-order, i.e., perform a bottom-up traversal of T . At every

node t during post-order traversal, execute a table algorithm A that takes as input t, bag
χ(t), a local instance P(t,I ) = It depending on P , as well as previously computed
child tables of t and stores the result in τt .

4. Interpret table τn for the root n of T in order to output the solution of I .

When specifying a DP algorithm for a specific problem such as #SAT, it is often sufficient to
provide the data structures and the table algorithm for the specific problem as the general outline
of the DP works the same for most problems. Hence, we focus on table algorithms and their
description in the following.

Next, we state the graph representation and table algorithm that we need to solve the prob-
lem P = #SAT (Samer and Szeider 2010). First, we need the following graph representation. The
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Algorithm 1: Table algorithm Sat(t,χ(t),ϕt ,〈τ1, . . . ,τ`〉) for solving #SAT (Samer and Szeider 2010).

In: Node t, bag χ(t), clauses ϕt , and a sequence 〈τ1, . . .τ`〉 of child tables.
Out: Table τt .

1 if type(t) = leaf then τt := {〈 /0,1〉}
2 else if type(t) = intr, and a∈χ(t) is introduced then
3 τt := {〈I∪{a 7→ 0},c〉 | 〈I,c〉 ∈ τ1,ϕt(I∪{a 7→ 0}) = /0}∪
4 〈I∪{a 7→ 1},c〉 | 〈I,c〉 ∈ τ1,ϕt(I∪{a 7→ 1}) = /0}
5 else if type(t) = rem, and a 6∈ χ(t) is removed then
6 τt := {〈I \{a 7→ 0,a 7→ 1}, ∑c∈C(I) c〉} |〈I, ·〉 ∈ τ1}

/* C(I) is the set that contains all counters for which assignments J are

the same as I after we remove a from the assignment I */

7 C(I) := {c | 〈J,c〉 ∈ τ1,J \{a 7→ 0,a 7→ 1}= I \{a 7→ 0,a 7→ 1}}
8 else if type(t) = join then
9 τt := {〈I,c1 · c2〉 | 〈I,c1〉 ∈ τ1,〈I,c2〉 ∈ τ2}

10 return τt

primal graph Gϕ of a formula ϕ has as vertices its variables, where two variables are joined by an
edge if they occur together in a clause of ϕ . Given formula ϕ , a TD T = (T,χ) of Gϕ and a node t
of T . Sometimes, we refer to the treewidth of the primal graph of a given formula by the treewidth
of the formula. Then, we let local instance #SAT(t,ϕ) = ϕt be ϕt := {c | c ∈ ϕ,var(c)⊆ χ(t)},
which are the clauses entirely covered by χ(t).

Table algorithm Sat as presented in Algorithm 1 shows all the cases that are needed to
solve #SAT by means of DP over nice TDs. Each table τt consist of rows of the form 〈I,c〉,
where I is an assignment of ϕt and c is a counter. Nodes t with type(t) = leaf consist of the empty
assignment and counter 1, cf., Line 1. For a node t with introduced variable a ∈ χ(t), we guess in
Line 3 for each assignment β of the child table, whether a is set to true or to false, and ensure
that ϕt is satisfied. When an atom a is removed in node t, we project assignments of child tables
to χ(t), cf., Line 5, and sum up counters of the same assignments. For join nodes, counters of
common assignments are multiplied, cf., Line 7. In Example 2 below, we explain the algorithm
for a selected formula.

Example 2
Consider formula ϕ := {

c1︷ ︸︸ ︷
{¬a,b,c},

c2︷ ︸︸ ︷
{a,¬b,¬c},

c3︷ ︸︸ ︷
{a,d},

c4︷ ︸︸ ︷
{a,¬d}}. Satisfying assignments of for-

mula ϕ are, e.g., {a 7→ 1,b 7→ 1,c 7→ 0,d 7→ 0}, {a 7→ 1,b 7→ 0,c 7→ 1,d 7→ 0} or {a 7→ 1,b 7→
1,c 7→ 1,d 7→ 1}. In total, there are 6 satisfying assignments of ϕ . Observe that graph G of Figure 1
depicts the primal graph Gϕ of ϕ . Intuitively, T of Figure 1 allows to evaluate formula ϕ in parts.
Figure 2 illustrates a nice TD T ′ = (·,χ) of the primal graph Gϕ and tables τ1, . . ., τ12 that are
obtained during the execution of Sat on nodes t1, . . . , t12. We assume that each row in a table τt is
identified by a number, i.e., row i corresponds to ~ut.i = 〈It.i,ct.i〉.

Table τ1 = {〈 /0,1〉} has type(t1) = leaf. Since type(t2) = intr, we construct table τ2 from τ1

by taking I1.i ∪{a 7→ 0} and I1.i ∪{a 7→ 1} for each 〈I1.i,c1.i〉 ∈ τ1. Then, t3 introduces c and
t4 introduces b. ϕt1 = ϕt2 = ϕt3 = /0, but since χ(t4) ⊆ var(c1) we have ϕt4 = {c1,c2} for t4. In
consequence, for each I4.i of table τ4, we have {c1,c2}(I4.i) = /0 since Sat enforces satisfiability
of ϕt in node t. Since type(t5) = rem, we remove variable c from all elements in τ4 and sum up
counters accordingly to construct τ5. Note that we have already seen all rules where c occurs
and hence c can no longer affect interpretations during the remaining traversal. We similarly
create τ6 = {〈{a 7→ 0},3〉,〈{a 7→ 1},3〉} and τ10 = {〈{a 7→ 1},2〉}. Since type(t11) = join, we
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∅ t1

{a} t2

{a, c} t3

{a, b, c} t4

{a, b} t5

{a} t6

∅t7

{d}t8

{a, d}t9

{a}t10

{a} t11

∅ t12T ′:

〈I4.i, c4.i〉
〈{a 7→ 0, b 7→ 0, c 7→ 0}, 1〉
〈{a 7→ 0, b 7→ 1, c 7→ 0}, 1〉
〈{a 7→ 1, b 7→ 1, c 7→ 0}, 1〉
〈{a 7→ 0, b 7→ 0, c 7→ 1}, 1〉
〈{a 7→ 1, b 7→ 0, c 7→ 1}, 1〉
〈{a 7→ 1, b 7→ 1, c 7→ 1}, 1〉

τ4

i

1
2
3
4
5
6

〈I5.i, c5.i〉
〈{a 7→ 0, b 7→ 0}, 2〉
〈{a 7→ 1, b 7→ 0}, 1〉
〈{a 7→ 0, b 7→ 1}, 1〉
〈{a 7→ 1, b 7→ 1}, 2〉

τ5

i

1
2
3
4

i

1
2

〈I9.i, c9.i〉
〈{a 7→ 1, d 7→ 0}, 1〉
〈{a 7→ 1, d 7→ 1}, 1〉

τ9

〈I11.i, c11.i〉
〈{a 7→ 1}, 6〉

τ11

i

1

〈I12.i, c12.i〉
〈∅, 6〉

τ12

i

1

i

1

〈I1.i, c1.i〉
〈∅, 1〉

τ1

Figure 2: Selected tables obtained by DP on T ′ for ϕ of Example 2 using algorithm Sat.

build table τ11 by taking the intersection of τ6 and τ10. Intuitively, this combines assignments
agreeing on a, where counters are multiplied accordingly. By definition (primal graph and TDs),
for every c ∈ ϕ , variables var(c) occur together in at least one common bag. Hence, since τ12 =

{〈 /0,6〉}, we can reconstruct for example model {a 7→ 1,b 7→ 1,c 7→ 0,d 7→ 1}= I11.1∪ I5.4∪ I9.2

of ϕ using highlighted (yellow) rows in Figure 2. On the other hand, if ϕ was unsatisfiable, τ12

would contain no values, i.e., τ12 = /0. �

4 Dynamic Programming on Tree Decompositions Expressed in Relational Algebra

While algorithms that run dynamic programming on bounded treewidth can be quite useful for
efficient problem solving in practice, implementations turn out to be tedious already for problems
such as the propositional satisfiability problem. In the following of the paper, we aim for rapid
prototyping with dynamic programming by a declarative approach that ideally uses existing
systems, gets parallel execution for free, and remains fairly efficient.

In the previous section, we explained that the traversal of the tree decomposition and the
overall methodology of the procedure stays the same. But the core of dynamic programming on
tree decompositions for various problems is mostly the specification of the table algorithm that
modifies a table based on previously computed tables. Hence, one can often focus on the table
algorithms and their descriptions. When recalling basics from databases 101 from undergraduate
studies (Elmasri and Navathe 2016) and taking a closer look on Algorithm 1 above, we can
immediately spot that we are effectively describing a query on existing data that produces a new
table by Algorithm 1. This motivates our idea to use a database management system to execute
the query and specify the query in SQL. Before we can proceed with our idea to use databases for
executing DP algorithms, we take a step back and recall that the theory of SQL queries is based
on relational algebra.

Relational algebra allows us to describe our algorithms and later use SQL encodings for
specifying the table algorithm. The intermediate step of stating the algorithm in a relation algebra
description is twofold. First, we can immediately see the connection between the algorithms given
in the literature, which allows us to use the existing algorithms without reproving all properties.
Second, we obtain a compact mathematical description, which is not just a lengthy and technical
SQL query that might be hard to understand to researchers from the community who are usually
not very familiar with practical databases and the usage of query languages.



8 Fichte et al.

4.1 Relational Algebra

Before we start with details on our approach, we briefly recall basics in relational algebra. The
classical relational algebra was introduced by Codd (1970) as a mathematical framework for
manipulating relations (tables). Since then, relational algebra serves as the formal background
and theoretical basis in relational databases and their standard language SQL (Structured Query
Language) for querying tables (Ullman 1989). In fact, in the following, we need extended
constructs, which have not been defined in the original framework by Codd, but are standard
notions in databases nowadays (Elmasri and Navathe 2016). For the understanding later, we would
like to mention that the SQL table model and relational algebra model slightly differ. The SQL
table model is a bag (multiset) model, rather than a set (Garcia-Molina et al. 2009, Chapter 5).
Below we also use extended projection and aggregation by grouping. Sometimes these are defined
on bags. We avoid this in the definitions in order to keep the algorithms close to the formal set
based notation. Finally, we would like to emphasize that we are not using relation algebra here as
developed by Alfred Tarski for the field of abstract algebra, but really relational algebra as used in
database applications and theory.

A column a is of a certain finite domain dom(a). Then, a row r over set cols(r) of columns is a
set of pairs of the form (a,v) with a ∈ cols(r),v ∈ dom(a) such that for each a ∈ cols(r), there is
exactly one v ∈ dom(a) with (a,v) ∈ r. In order to access the value v of an attribute a in a row r,
we sometimes write r.a, which returns the unique value v with (a,v) ∈ r. A table τ is a finite set
of rows r over set cols(τ) := cols(r) of columns, using domain dom(τ) :=

⋃
a∈cols(τ) dom(a). We

define renaming of τ, given a set A of columns and a bijective mapping m : cols(τ)→ A with
dom(a) = dom(m(a)) for a ∈ cols(τ), by ρm(τ) := {(m(a),v) | (a,v) ∈ τ}. In SQL, renaming
can be achieved by means of the AS keyword.

Selection of rows in τ according to a given equality formula ϕ over term variables cols(τ) is
defined1 by σϕ(τ) := {r | r ∈ τ,ϕ(ass(r)) = /0}, where function ass provides the corresponding
term assignment of a given row r ∈ τ. Selection in SQL is specified using keyword WHERE. Given
a relation τ ′ with cols(τ ′)∩ cols(τ) = /0. Then, we refer to the cross-join by τ× τ ′ := {r∪ r′ | r ∈
τ,r′ ∈ τ ′}. Further, a θ -join (according to ϕ) corresponds to τ ./ϕ τ ′ := σϕ(τ× τ ′). Interestingly,
in SQL a θ -join can be achieved by specifying the two tables (cross-join) and adding the selection
according to ϕ by means of WHERE.

Assume in the following a set A⊆ cols(τ) of columns. Then, we let table τ projected to A be
given by ΠA(τ) := {rA | r ∈ τ}, where rA := {(a,v) | (a,v) ∈ r,a ∈ A}. This concept of projection
can be lifted to extended projection Π̇A,S, where we assume in addition to A, a set S of expressions
of the form a← f , such that a ∈ cols(τ)\A, f is an arithmetic function that takes a row r ∈ τ,
and there is at most one such expression for each a ∈ cols(τ) \A in S. Formally, we define
Π̇A,S(τ) := {rA ∪ rS | r ∈ τ} with rS := {(a, f (r)) | a ∈ cols(r),(a← f ) ∈ S}. SQL allows to
specify (extended) projection directly after initiating an SQL query with the keyword SELECT.

Later, we use aggregation by grouping AG(a←g), where we assume a ∈ cols(τ) \A and a so-
called aggregate function g : 2τ → dom(a), which intuitively takes a table of (grouped) rows.
Therefore, we let AG(a←g)(τ) := {r∪{(a,g(τ[r]))} | r ∈ΠA(τ)}, where τ[r] := {r′ | r′ ∈ τ,r⊆ r′}.
For this purpose, we use for a set S⊆ S of integers, the functions SUM for summing up values in S,
MIN for providing the smallest integer in S, as well as MAX for obtaining the largest integer in S,
which are often used for aggregation in this context. The SQL standard uses projection (SELECT)

1 We abbreviate for binary v ∈ cols(τ) with dom(v) = {0,1}, v=1 by v and v=0 by ¬v.
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to specify A as well as the aggregate function g, such that these two parts are distinguished by
means of the keyword GROUP BY.

Example 3
Assume a table τ1 := {r1,r2,r3} of 2 columns a,b over Boolean domain dom(a) = dom(b) =
{0,1}, where r1 := {(a,1),(b,1)}, r2 := {(a,0),(b,0)}, r3 := {(a,0),(b,1)}.

τ1 a b

r1 1 1
r2 0 0
r3 0 1

τ2 b a

r1 1 1
r2 0 0
r3 1 0

Then, r3.a = 0 and r3.b = 1. Rows can be swapped by renaming and we let τ2 := ρ{a7→b,b7→a}τ1.
Observe that, e.g., ρ{a7→b,b7→a}({r3}) corresponds to {{(a,1),(b,0)}}, i.e., considering r3 and
swapping a and b. We select rows by using the selection σ . For example, if we want to select
rows where b = 1 (colored in blue) we can use σb=1(τ1).

τ1 a b

r1 1 1
r2 0 0
r3 0 1

Hence, applying σb=1(τ1) results in {r1,r3}. Table τ1 can be θ -joined with τ2, but before, we
need to have disjoint columns, which we obtain by renaming each column c to a fresh column c′

as below by ρa7→a′,b7→b′τ2. Then, τ3 := τ1 ./a=a′∧b=b′ (ρa7→a′,b 7→b′τ2).

τ1 a b

r1 1 1
r2 0 0
r3 0 1

ρa7→a′,b 7→b′(τ2) b’ a’

r1 1 1
r2 0 0
r3 1 0

τ3 a b b’ a’

r1 1 1 1 1
r2 0 0 0 0

Consequently, we have τ3 = {{(a,0),(a′,0),(b,0),(b′,0)},{(a,1),(a′,1),(b,1),(b′,1)}}. Ex-
tended projection allows not only to filter certain columns, but also to add additional columns.
As a result, if we only select column a of each row of τ1, but add a fresh column c holding the
sum of the values for a and b, then Π̇{a},{c←a+b}τ1 corresponds to {{(a,1),(c,2)},{(a,0),(c,0)},
{(a,0),(c,1)}}.

Π̇{a},{c←a+b}τ1 a c

r1 1 2
r2 0 0
r3 0 1

Grouping τ1 according to the value of column a, where we aggregate each group by summing
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τ1 a b

r1 1 1
r2 0 0
r3 0 1

{a}Gd← τ 7→SUM({r.b|r∈τ})(τ1) a d

r1 1 1
r3 0 1

up the values of columns b in a fresh column d, results in {a}Gd←τ 7→SUM({r.b|r∈τ})(τ1), which
simplifies to {{(a,1),(d,1)},{(a,0),{d,1)}} as illustrated below.

�

4.2 Table Algorithms in Relational Algebra

Now, we are in the position to use relational algebra instead of set theory based notions to describe
how tables are obtained during dynamic programming. The step from set notation to relational
algebra is driven by the observation that in these table algorithms one can identify recurring
patterns and one mainly has to adjust problem-specific parts of it. We continue the description
with our problem #SAT. We picture tables τt for each TD node t as relations, where τt distinguishes
a unique column x for each x ∈ χ(t). In addition, we require a column cnt for counting in #SAT,
or a column for modeling costs or weights in case of optimization problems.

Algorithm 2 presents a table algorithm for problem #SAT that is equivalent to Algorithm 1, but
relies on relational algebra for computing tables. Since our description in relation algebra yields
the same results as the set based-notation above, we omit formal correctness proofs. Nonetheless,
we briefly explain below why both notations are identical. We highlight the crucial parts by
coloring Algorithm 1. In particular, one typically derives for nodes t with type(t) = leaf, a fresh
initial table τt , cf., Line 1 of Algorithm 2. Then, whenever a variable a is introduced, such
algorithms often use θ -joins with a fresh initial table for the introduced variable a. Hence, the
new column represents the potential values for variable a. In Line 3, the selection of the θ -join is
performed according to ϕt , i.e., corresponding to the local instance of #SAT. Further, for nodes t
with type(t) = rem, these table algorithms typically need projection. In case of Algorithm 2,
Line 5 also needs grouping to sum up the counters for those rows of τ1 that concur in τt . Thereby,
rows are grouped according to values of columns χ(t) and we keep only one row per group in
table τ, where the fresh counter cnt is the sum among all counters in τ. Finally, in Line 7 for a
node t with type(t) = join, we use extended projection and θ -joins, where we join on the same
truth assignments. This allows us later to leverage database technology for a usually expensive

Algorithm 2: Table algorithm Sat′(t,χ(t),ϕt ,〈τ1, . . . ,τ`〉) for solving #SAT.

In: Node t, bag χ(t), local formula ϕt , sequence 〈τ1, . . .τ`〉 of child tables.
Out: Table τt .

1 if type(t) = leaf then τt := {{(cnt,1)}}
2 else if type(t) = intr, and a∈χ(t) is introduced then
3 τt := τ1 ./ϕt {{(a,0)},{(a,1)}}
4 else if type(t) = rem, and a 6∈ χ(t) is removed then
5 τt := χ(t)Gcnt←τ 7→SUM({r.cnt|r∈τ})(Πcols(τ1)\{a}τ1)

6 else if type(t) = join then
7 τt := Π̇χ(t),{cnt←cnt·cnt′}(τ1 ./

∧
u∈χ(t) u=u′ ρ ⋃

u∈cols(τ2)
{u 7→u′}τ2)

8 return τt
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operation. Extended projection is needed for multiplying the counters of the two rows containing
the same assignment.

4.3 Table algorithms for selected problems

Dynamic programming algorithms are known for a variety of problems. Standard texts in the
area of parameterized algorithms and introductory lectures provide various specifications. For
formal properties and detailed algorithm descriptions, we refer to other works (Bodlaender 1988),
(Cygan et al. 2015, Chapter 7), (Dechter 1999), (Bannach and Berndt 2019). Below, we present
the table algorithms for a selection of combinatorial problems in relational algebra notation. In
order to simplify the presentation, we assume that the instance is given by I and that the used
tree decomposition is nice and given by T = (T,χ). If the problem is a graph problem T is a
TD of I , otherwise we implicitly assume that T is a TD of the primal graph of instance I . For
graph problems I and a given node t of T , we refer to the local instance of I = G = (V,E) by
local graph Gt and define it by Gt := (V ∩χ(t),E ∩ [χ(t)×χ(t)]).

Problem #o-COL

Algorithm 3: Table algorithm Col(t,χ(t),Gt ,〈τ1, . . . ,τ`〉) for solving #o-COL.

In: Node t, bag χ(t), local graph Gt , and a sequence 〈τ1, . . .τ`〉 of child tables.
Out: Table τt .

1 if type(t) = leaf then τt := {(cnt,1)}
2 else if type(t) = intr, and a∈χ(t) is introduced then
3 τt := τ1 ./

∧
{u,v}∈E(Gt ) u 6=v {{(a,0)},{(a,1)}, . . . ,{(a,o)}}

4 else if type(t) = rem, and a 6∈ χ(t) is removed then
5 τt := χ(t)Gcnt←τ 7→SUM({r.cnt|r∈τ})(Πcols(τ1)\{a}τ1)

6 else if type(t) = join then
7 τt := Π̇χ(t),{cnt←cnt·cnt′}(τ1 ./

∧
u∈χ(t) u=u′ ρ ⋃

u∈cols(τ2)
{u 7→u′}τ2)

8 return τt

For a given graph instance I = G = (V,E), an o-coloring is a mapping ι : V →{1, . . . ,o} such
that for each edge {u,v} ∈ E, we have ι(u) 6= ι(v). Then, the problem #o-COL asks to count the
number of o-colorings of G, whose local instance #o-COL(t,G) is the local graph Gt . The table
algorithm for this problem #o-COL is given in Algorithm 3. Similarly to Algorithm 2, for (empty)
leaf nodes, the counter cnt is set to 1 in Line 1. Whenever a vertex a is introduced, in Line 3, one
of the o many color values for a are guessed and θ -joined with the table τ1 for the child node
of t such that only colorings with different values for two adjacent vertices are kept. Similarly to
Algorithm 2, whenever a vertex a is removed, Line 5 ensures that the column for a is removed
and that counters cnt are summed up for rows that concur due to the removal of column a. Then,
the case for join nodes in Line 7 is again analogous to Algorithm 2, where only rows with the
same colorings in both child tables are kept and counters cnt are multiplied accordingly.

Problem MINVC

Given a graph instance I = G = (V,E), a vertex cover is a set of vertices C ⊆ V of G such
that for each edge {u,v} ∈ E, we have {u,v}∩C 6= /0. Then, MINVC asks to find the minimum
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Algorithm 4: Table algorithm VC(t,χ(t),Gt ,〈τ1, . . . ,τ`〉) for solving MINVC.

In: Node t, bag χ(t), local graph Gt , and a sequence 〈τ1, . . .τ`〉 of child tables.
Out: Table τt .

1 if type(t) = leaf then τt := {(card,0)}
2 else if type(t) = intr, and a∈χ(t) is introduced then
3 τt := τ1 ./

∧
{u,v}∈E(Gt ) u∨v {{(a,0)},{(a,1)}}

4 else if type(t) = rem, and a 6∈ χ(t) is removed then
5 τt := χ(t)Gcard←τ 7→MIN({r.card+r.a|r∈τ})(Πcols(τ1)\{a}τ1)

6 else if type(t) = join then
7 τt := Π̇χ(t),{card←card+card′}(τ1 ./

∧
u∈χ(t) u=u′ ρ ⋃

u∈cols(τ2)
{u 7→u′}τ2)

8 return τt

cardinality |C| among all vertex covers C, i.e., C is such that there is no vertex cover C′ with |C′|<
|C|. Local instance MINVC(t,G) := Gt , where the local graph Gt is defined above. We use
an additional column card for storing cardinalities. The table algorithm for solving MINVC
is provided in Algorithm 4, where, for leaf nodes the cardinality is 0, cf., Line 1. Then, when
introducing vertex a, we guess in Line 3 whether a shall be in the vertex cover or not, and enforce
that for each edge of the local instance at least one of the two endpoint vertices has to be in
the vertex cover. Note that the additional cardinality column only takes removed vertices into
account. More precisely, when a vertex a is removed, we group in Line 5 according to the bag
columns χ(t), where the fresh cardinality value is the minimum cardinality (plus 1 for a if a shall
be in the vertex cover), among those rows that concur due to the removal of a. The join node is
similar to before, but in Line 7 we additionally need to sum up the cardinalities of two adjoining
child table rows.

Problem MAXSAT

Algorithm 5: Table algorithm MSat(t,χ(t),It ,〈τ1, . . . ,τ`〉) for solving MAXSAT.

In: Node t, bag χ(t), local instance It = (ϕt ,ψt), and a sequence 〈τ1, . . .τ`〉 of child tables.
Out: Table τt .

1 if type(t) = leaf then τt := {(card,0)}
2 else if type(t) = intr, and a∈χ(t) is introduced then
3 τt := τ1 ./ϕt {{(a,0)},{(a,1)}}
4 else if type(t) = rem, a 6∈ χ(t) is removed, and ψ ′ are removed local soft-clauses then
5 τt := χ(t)Gcard←τ 7→MAX({r.card+Σc∈ψ ′,c(ass(r))= /01|r∈τ})(Πcols(τ1)\{a}τ1)

6 else if type(t) = join then
7 τt := Π̇χ(t),{card←card+card′}(τ1 ./

∧
u∈χ(t) u=u′ ρ ⋃

u∈cols(τ2)
{u 7→u′}τ2)

8 return τt

Given Boolean formulas ϕ and ψ , an instance of problem MAXSAT is of the form I = (ϕ,ψ)

and we assume that T is a TD of primal graph Gϕ∪ψ . A solution to MAXSAT is a satisfying
assignment I of hard-clauses ϕ such that |{c | c∈ψ,c(I) = /0}| is maximized, i.e., I is a satisfying
assignment of ϕ that satisfies the maximum number of soft-clauses ψ among all satisfying
assignments of ϕ . We define the local instance It := (ϕt ,ψt) consisting of local formula ϕt ,
referred to by local hard-clauses and local formula ψt , called local soft-clauses.

The table algorithm for problem MAXSAT is given in Algorithm 5, where we use column card
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for holding satisfied soft-clauses. Leaf tables only hold a cardinality value of 0 as in Line 1. Then,
similar to the table algorithm Sat′ (cf., Algorithm 2), when introducing a variable a, we guess
the truth value and keep those rows, where local formula ϕt is satisfied. Whenever a variable a
is removed in a node t, we remove column a and group rows that have common values over
columns χ(t). Thereby, the new cardinality card for each group is the maximum among the
values of card including the number of satisfied local soft-clauses ψ ′ of the child node of t that
are removed in ψt (due to removal of a). Finally, similar to Algorithm 4, a join node sums up
cardinalities of two child rows containing the same assignment.

Problem MINIDS

Algorithm 6: Table algorithm IDS(t,χ(t),Gt ,〈τ1, . . . ,τ`〉) for solving MINIDS.

In: Node t, bag χ(t), local graph Gt , and a sequence 〈τ1, . . .τ`〉 of child tables.
Out: Table τt .

1 if type(t) = leaf then τt := {(card,0)}
2 else if type(t) = intr, and a∈χ(t) is introduced then
3 τt := Π̇χ(t),

⋃
u∈χ(t){du←

∨
{u,v}∈E(Gt ) du∨v,card←card}(τ1 ./

∧
{u,v}∈E(Gt )¬u∨¬v {{(a,0),(da,0)},{(a,1),(da,1)}})

4 else if type(t) = rem, and a 6∈ χ(t) is removed then
5 τt := χ(t)∪{du|u∈χ(t)}Gcard←τ 7→MIN({r.card+r.a|r∈τ})(Πcols(τ1)\{a,da}σda τ1)

6 else if type(t) = join then
7 τt := Π̇χ(t),

⋃
u∈χ(t){du←du∨d′u,card←card+card′}(τ1 ./

∧
u∈χ(t) u=u′ ρ ⋃

u∈cols(τ2)
{u 7→u′}τ2)

8 return τt

Given a graph instance I = G = (V,E), a dominating set of G is a set of vertices D ⊆ V
of G, where each vertex v ∈ V is either in D or is adjacent some vertex in D, i.e., there is a
vertex d ∈ D with {d,v} ∈ E. A dominating set D is an independent dominating set of G, if there
is no edge in E between vertices of D. Then, the problem MINIDS asks to find the minimum
cardinality |D| among all independent dominating sets D of G (if exists). We define local instance
by MINIDS(t,G) := Gt .

The table algorithm for solving MINIDS is given in Algorithm 6, where a table τt of a node t
uses column card for cardinalities of potential dominating sets, and an additional Boolean col-
umn du per bag vertex u ∈ χ(t). Intuitively, du indicates whether vertex u is already “dominated”,
i.e., either u is in the dominating set or u has an adjacent vertex to the dominating set. Similar to
before, leaf nodes set cardinality card to 0, cf., Line 1. For a node t with an introduced vertex a, we
guess in Line 3 whether a shall be in the dominating set or not (and set da to 0 or 1, respectively).
Then, we only keep rows that are independent, i.e., a can not be in the dominating set and adjacent
to u in edges E(Gt) of local graph Gt at the same time. Finally, values du (dominance status) for a
and for neighbors of a are updated accordingly. When a vertex a is removed in a node t, Line 5
only keeps rows, where da is true, i.e., a is indeed dominated, and removes columns a,da. Further,
we group rows according to their values to χ(t)∪{du | u ∈ χ(t)} and for each group we set the
cardinality to the minimum among the cardinalities of the group rows (including a if a is in the
set). For join nodes t, Line 7 sums up cardinalities of rows holding the same dominating set and
treats a vertex u ∈ χ(t) as dominated if it is dominated in at least one of the two rows.

Similar to MINVC and #o-COL one can model several other (graph) problems. One could
also think of counting the number of solutions to problem MINVC, where both a column for
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Algorithm 7: Template table algorithm A(t,χ(t),It ,〈τ1, . . . ,τ`〉) for solving problem P .

In: Node t, bag χ(t), local instance It , and a sequence 〈τ1, . . .τ`〉 of child tables.
Out: Table τt .

1 if type(t) = leaf then τt := #leafTab#
2 else if type(t) = intr, and a∈χ(t) is introduced then
3 τt := Π̇χ(t),#intrAddCols#(τ1 ./#intrFilter# #intrTab#)
4 else if type(t) = rem, and a 6∈ χ(t) is removed then
5 τt := χ(t)∪#remGroupCols#G

#remAggr#
(Πcols(τ1)\{a,#remCols#}σ#remFilter#τ1)

6 else if type(t) = join then
7 τt := Π̇χ(t),#joinAddCols#(τ1 ./

∧
u∈χ(t) u=u′∧#joinAddFilter# ρ ⋃

u∈cols(τ2)
{u 7→u′}τ2)

8 return τt

cardinalities and one for counting is used. There, in addition to grouping, we additionally could
use conditions over groups where only rows are kept whose column values for card form the
minimum within the group.

4.4 Generalizing the Patterns of Table Algorithms

In the previous sections, we presented the table algorithms for solving a selection of combinatorial
problems, namely, #SAT, #o-COL, MINVC, MAXSAT, and MINIDS, by dynamic programming.
As mentioned in Section 2.2, there are a variety of application areas where such algorithms
allow for solving problems efficiently. When specifying most algorithms, we focus on the table
algorithm A, which is executed for each node t of T of the considered tree decomposition T =

(T,χ) and computes a new table depending on the previously computed tables at the children
of t. From the descriptions above, it is easy to see that the algorithms effectively follow standard
patterns. Therefore, we present a general template in Algorithm 7, where parts of table algorithms
for problems that are typically problem-specific are replaced by colored placeholders of the
form #placeHolder#, cf., Algorithm 2. The general template of table algorithms works for many
problems, including decision problems, counting problems as well as optimization problems.

The intuition behind these placeholders is as follows: For leaf nodes, the initial table (typ-
ically empty) can be specified using #leafTab#. For introduce nodes, the potential cases for
the introduced vertex a are given with the help of #intrTab#. Then, according to the local in-
stance, we only keep those rows that satisfy #intrFilter#. The placeholder #intrAddCols# allows
to add additional columns, which we often need when solving problems that involve counting
or optimizing a value. In other words, placeholder #intrAddCols# in Line 3 of Algorithm 7 uses
extended projection, which is needed for problems requiring changes on vertex introduction.
Nodes, where an atom a is removed sometimes require to filter rows, which do not lead to a
solution using #remFilter#, and to remove columns concerning a by #remCols#. Further, one of-
tentimes needs to aggregate rows according to the values of the columns of the bag and additional
columns (given by #remGroupCols#), where the aggregation is specified by #remAggr#. Finally,
for join nodes, one can specify an additional filter #joinAddFilter# that goes beyond checking
equivalence of row values in the θ -join operation. Further, depending on the problem one might
need to add and update the values of additional columns by using extended projection in form of
placeholder #joinAddCols#.

Note that while the algorithms presented here assume for simplicity nice tree decompositions,
the whole architecture does not depend on certain restrictions of TDs, or whether it is nice
or not. Instead, a table algorithm of any TD is simply specified by handling problem-specific
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1. Build graph G of I Store results
in table τt E

Apply A to local
prob. P(t,I )

E2. Create TD T of G

2b. Create DB Tables done?
no

yes

Visit next node t
of T in post-order

4. Specify Output
E E

3. Dynamic Programming for P

Figure 3: Architecture of Dynamic Programming with Databases. Steps highlighted in red are
provided by the system depending on the specification of yellow and blue parts, which is given by
the user for specific problems P . The yellow “E”s represent events that can be intercepted and
handled by the user. The blue part concentrates on table algorithm A, where the user specifies how
SQL code is generated in a modular way.

implementations of the placeholders of Algorithm 7, where the system following this architecture
is responsible for interleaving and overlapping these cases within a node t. In fact, we discuss an
implementation of a system according to this architecture next, where it is crucial to implement
non-nice TDs to obtain higher efficiency.

5 System dpdb: Dynamic Programming with Databases & SQL

In this section, we present a general architecture to model table algorithms by means of database
management systems. We move from relational algebra definitions to specifications of the table
algorithms in terms of SQL queries. The overall architecture is follows the DP approach as
presented in Section 3. It works as depicted in Figure 3 where the steps highlighted in yellow and
blue need to be specified depending on the problem P . Steps outside Step 3 are mainly setup
tasks, the yellow “E”s indicate events that might be needed to solve more complex problems on the
polynomial hierarchy. For example, one could create and drop auxiliary sub-tables for each node
during Step 3 within such events. Observe that after the generation of a TD T = (T,χ), Step 2b
automatically creates tables τt for each node t of T , where the corresponding table columns
of τt are specified in the blue part, i.e., within A. The default columns of such a table τt that are
assumed in this section foresee one column for each element of the bag χ(t), where additional
columns that are needed for solving the problem can be added. This includes additional auxiliary
columns, which can be also counters or costs for counting or optimization, respectively. Besides
the definition of table schemes, the blue part concerns the specification of the table algorithm by
means of a procedural generator template that describes how to obtain SQL code for each node t,
thereby depending on χ(t) and on the tables for child nodes of t. This generated SQL code is then
used internally for manipulation of tables τt during the tree decomposition traversal in Step 3 of
dynamic programming.

We implemented the proposed architecture of the previous section in the prototypical system
dpdb. The system is open-source2, written in Python 3, and uses PostgreSQL as DBMS. We are
certain that one can easily replace PostgreSQL by any other state-of-the-art relational database that
uses SQL. In the following, we discuss implementation specifics that are crucial for a performant
system that is still extendable and flexible.

2 Our system dpdb is available under GPL3 license at github.com/hmarkus/dp on dbs.

https://github.com/hmarkus/dp_on_dbs/releases/tag/1.1


16 Fichte et al.

Computing TDs. TDs are computed mainly with the library htd version 1.2 with default set-
tings (Abseher et al. 2017), which finds TDs extremely quick also for interesting instances (Fichte
et al. 2019) due to heuristics. Note that dpdb directly supports the TD format of recent com-
petitions (Dell et al. 2018), i.e., one could easily replace the TD library. It is important not to
enforce htd to compute nice TDs, as this would cause a lot of overhead later in dpdb for copying
tables. However, in order to benefit from the implementation of θ -joins, query optimization, and
state-of-the-art database technology in general, we observed that it is crucial to limit the number
of child nodes of every TD node. In result, when huge tables are involved, θ -joins among child
node tables cover at most a limited number of child node tables. Hence, the query optimizer of the
database system can still come up with meaningful execution plans depending on the contents
of the table. Nonetheless we prefer θ -joins with more than just two tables, since binary θ -joins
already fix in which order these tables shall be combined, which already limits the query optimizer.
Apart from this trade-off, we tried to outsource the task of joining tables to the DBMS, since the
performance of database systems highly depends on query optimization. The actual limit, which
is a restriction from experience and practice only, highly depends on the DBMS that is used. For
PostgreSQL, we set a limit of at most 5 child nodes for each node of the TD, i.e., each θ -join
covers at most 5 child tables.

Towards non-nice TDs. Although this paper presents the algorithms for nice TDs (mainly due to
simplicity), the system dpdb interleaves these cases as presented in Algorithm 7. More precisely,
the system executes one query per table τt for each node t during the traversal of TD T . This
query consists of several parts and we briefly explain its parts from outside to inside in accordance
with Algorithm 7. First of all, the inner-most part concerns the row candidates for τt consisting
of the θ -join among all child tables of τt as in Line 7 of Algorithm 7. If there is no child node
of t, table #leafTab# of Line 1 is used instead. Next, the result is cross-joined with #intrTab#
for each introduced variable as in Line 3, but without using the filter #intrFilter# yet. Then, the
result is projected by using extended projection involving χ(t) as well as both #joinAddCols#
and #intrAddCols#. Actually, there are different configurations of how dpdb can deal with the
resulting row candidates. For debugging (see below) one could (1) actually materialize the result in
a table, whereas for performance reasons, one should use (2) common table expressions (CTEs or
WITH-queries) or (3) sub-queries (nested queries), which both result in one nested SQL query per
table τt . On top of these row candidates, selection according to #intrFilter#, cf., Line 3, is executed.
Finally, the resulting table is plugged as table τ1 into Line 5, where in particular the result is
grouped by using both χ(t)3 and #remGroupCols# and each group is aggregated by #remAggr#
accordingly. It turns out that PostgreSQL can do better with sub-queries than CTEs, since we
observed that the query optimizer oftentimes pushes (parts of) outer selections and projections
into the sub-query if needed, which is not the case for CTEs, as discussed in the PostgreSQL
manual (PostgreSQL Global Development Group 2020, Sec. 7.8.1). On different DBMSs or other
vendors, e.g., Oracle, it might be better to use CTEs instead.

Example 4
Consider again Example 2 and Figure 1 and let us use table algorithm Sat′ with dpdb on formula ϕ
of TD T and Option (3): sub-queries, where the row candidates are expressed via a sub-queries.
Then, for each node ti of T , dpdb generates a view vi as well as a table τi containing in the end

3 Actually, dpdb keeps only columns relevant for the table of the parent node of t.
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the content of vi. Observe that each view only has one column a for each variable a of ϕ since the
truth assignments of the other variables are not needed later. This keeps the tables compact, only
τ1 has two rows, τ2, and τ3 have only one row. We obtain the following views.

CREATE VIEW v1 AS SELECT a, sum(cnt) AS cnt FROM

(WITH intrTab AS (SELECT 0 AS val UNION ALL SELECT 1)

SELECT i1.val AS a, i2.val AS b, i3.val AS c, 1 AS cnt

FROM intrTab i1, intrTab i2, intrTab i3)

WHERE (NOT a OR b OR c) AND (a OR NOT b OR NOT c) GROUP BY a

CREATE VIEW v2 AS SELECT a, sum(cnt) AS cnt FROM

(WITH intrTab AS (SELECT 0 AS val UNION ALL SELECT 1)

SELECT i1.val AS a, i2.val AS d, 1 AS cnt FROM intrTab i1, intrTab i2)

WHERE (a OR d) AND (a OR NOT d) GROUP BY a

CREATE VIEW v3 AS SELECT a, sum(cnt) AS cnt FROM

(SELECT τ1.a, τ1.cnt * τ2.cnt AS cnt FROM τ1, τ2 WHERE τ1.a = τ2.a)

GROUP BY a

�

Parallelization. A further reason to not over-restrict the number of child nodes within the TD, lies
in parallelization. In dpdb, we compute tables in parallel along the TD, where multiple tables can
be computed at the same time, as long as the child tables are computed. Therefore, we tried to keep
the number of child nodes in the TD as high as possible. In our system dpdb, we currently allow
for at most 24 worker threads for table computations and 24 database connections at the same
time (both pooled and configurable). On top of that we have 2 additional threads and database
connections for job assignments to workers, as well as one dedicated watcher thread for clean-up
and connection termination, respectively.

Logging, Debugging and Extensions. Currently, we have two versions of the dpdb system im-
plemented. One version aims for performance and the other one tries to achieve comprehensive
logging and easy debugging of problem (instances), thereby increasing explainability. The former
does neither keep intermediate results nor create database tables in advance (Step 2b), as depicted
in Figure 3, but creates tables according to an SQL SELECT statement. In the latter, we keep
all intermediate results, we record database timestamps before and after certain nodes, provide
statistics as, e.g., width and number of rows. Further, since for each table τt , exactly one SQL
statement is executed for filling this table, we also have a dedicated view of the SQL SELECT

statement, whose result is then inserted in τt . Together with the power and flexibility of SQL
queries, we observed that this helps in finding errors in the table algorithm specifications.

Besides convient debugging, system dpdb immediately contains an extension for approximation.
There, we restrict the table contents to a maximum number of rows. This allows for certain
approximations on counting problems or optimization problems, where it is infeasible to compute
the full tables. Further, dpdb foresees a dedicated randomization on these restricted number of
rows such that we obtain different approximate results on different random seeds.

Note that dpdb can be easily extended. Each problem can overwrite existing default behavior
and dpdb also supports problem-specific argument parsers for each problem individually. Out-of-
the-box, we support the formats DIMACS SAT and DIMACS graph (Liu et al. 2006) as well as
the common format for TDs (Dell et al. 2018).
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Implementing table algorithms with dpdb for selected problems

The system dpdb allows for easy prototyping of DP algorithms on TDs. In the following, we present
the relevant parts of table algorithm implementations according to the template in Algorithm 7
for our selection of problems below4. More precisely, we give the SQL implementations of the
table algorithms of the previous section in form of specifying the corresponding placeholders as
given by the template algorithm A. Thereby, we only specify the placeholders needed for solving
the problems, i.e., placeholders of template algorithm A that are not used (empty) are left out. To
this end, we assume in this section for each problem a not necessarily nice TD T = (T,χ) of the
corresponding graph representation of our given instance I , as well as any node t of T and its
child nodes t1, . . . , t`.

Problem #SAT. Given instance formula I = ϕ . Then, the specific placeholders of the template
for #SAT for a node t with ϕt = {{l1,1, . . . , l1,k1}, . . . ,{ln,1, . . . , ln,kn}} that are required for dpdb to
solve the problem are as follows.

• #leafTab#: SELECT 1 AS cnt

• #intrTab#: SELECT 0 AS val UNION ALL SELECT 1

• #intrFilter#: (l1,1 OR . . . OR l1,k1) AND . . . AND (ln,1 OR . . . OR ln,kn)

• #remAggr#: SUM(cnt) AS cnt

• #joinAddCols#: τ1.cnt * . . . * τ`.cnt AS cnt

If one compares this specification to Algorithm 2, one sees that conceptually the same idea is given
above. However, for efficiency dpdb does not rely on nice TDs. Observe that for the plain decision
problem SAT, where the goal is to decide only the existence of a satisfying assignment for given
formula ϕ , placeholder #leafTab# would need to return the empty table and parts #remAggr# and
#joinAddCols# are just empty since no counter cnt is needed.

Problem #o-COL. Recall the problem #o-COL and Algorithm 3. Let I = G = (V,E) be a
given input graph. Then, specific implementation parts for #o-COL for a node t with E(Gt) =

{{u1,v1}, . . . , {un,vn}} is given as follows.

• #leafTab#: SELECT 1 AS cnt

• #intrTab#: SELECT 0 AS val UNION ALL . . . UNION ALL SELECT o
• #intrFilter#: NOT (u1 = v1) AND . . . AND NOT (un = vn)

• #remAggr#: SUM(cnt) AS cnt

• #joinAddCols#: τ1.cnt * . . . * τ`.cnt AS cnt

Problem MINVC. Given any input graph I =G= (V,E) of MINVC. Then, problem MINVC for
a node t with E(Gt) = {{u1,v1}, . . . ,{un,vn}} and removed vertices χ(t)\ (χ(t1)∪ . . .∪χ(t`)) =
{r1, . . . ,rm} is specified by the following placeholders (cf., Algorithm 4).

• #leafTab#: SELECT 0 AS card

• #intrTab#: SELECT 0 AS val UNION ALL SELECT 1

• #intrFilter#: (u1 OR v1) AND . . . AND (un OR vn)

• #remAggr#: MIN(card + r1 + . . . + rm) AS card

• #joinAddCols#: τ1.card + . . . + τ`.card AS card

4 Prototypical implementations for problems #SAT as well as MINVC are readily available in dpdb.
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Problem MAXSAT. Given an instance I = (ϕ,ψ) of problem MAXSAT. Then, the problem
for a node t with local hard clauses ϕt = {{l1,1, . . . , l1,k1}, . . . ,{ln,1, . . . , ln,kn}} and local soft
clauses ψt = {{l′1,1, . . . , l′1,k′1}, . . . ,{l

′
p,1, . . . , lp,k′p}} is specified by the following placeholders (cf.,

Algorithm 5).

• #leafTab#: SELECT 0 AS card

• #intrTab#: SELECT 0 AS val UNION ALL SELECT 1

• #intrFilter#: (l1,1 OR . . . OR l1,k1) AND . . . AND (ln,1 OR . . . OR ln,kn)

• #remAggr#: MIN(card + (l′1,1 OR . . . OR l′1,k′1
) + . . . +

(l′p,1 OR . . . OR l′p,k′p)) AS card

• #joinAddCols#: τ1.card + . . . + τ`.card AS card

Problem MINIDS. Recall an instance I = G = (V,E) of problem MINIDS and table algo-
rithm IDS as given in Algorithm 6. The implementation of table algorithm IDS for MINIDS for
a node t assumes that E(Gt) = {{u1,v1}, . . . , {un,vn}}. Further, we let bag χ(t) = {a1, . . . ,ak},
removed vertices χ(t)\ (χ(t1)∪ . . .∪χ(t`)) = {r1, . . . ,rm}, and we let the wi many neighbors Ni

of each vertex ai in G (with 1≤ i≤ k) be given by Ni = {eai,1, . . . ,eai,wi}. Then, the SQL imple-
mentation can be specified as follows.

• #leafTab#: SELECT 0 AS card

• #intrTab#: SELECT 0 AS val, 0 AS d UNION ALL SELECT 1, 1

• #intrFilter#: (NOT u1 OR NOT v1) AND . . . AND (NOT un OR NOT vn)

• #intrAddCols#: card, da1 OR ea1,1 OR . . . OR ea1,w1 AS da1, . . .

dak OR eak,1 OR . . . OR eak,wk AS dak

• #remFilter#: da1 AND . . . AND dak

• #remAggr#: MIN(card + r1 + . . . + rm) AS card

• #remGroupCols#: da1, . . ., dak

• #joinAddCols#: τ1.card + . . . + τ`.card AS card,

τ1.da1 OR . . . OR τ`.da1 AS da1, . . .

τ1.dak OR . . . OR τ`.dak AS dak

Note that implementations could generate and apply parts of this specification, as for example
in #intrFilter# only edges that have not been checked so far in any descending node, need to be
checked.

Similar to MINVC, #o-COL, and MINIDS one can model several related (graph) problems.
One could also think of counting the number of solutions to problem MAXSAT, where both, a
column for cardinalities and one for counting is used. There, in addition to grouping with GROUP

BY in dpdb, we additionally use the HAVING construct of SQL, where only rows are kept, whose
column card is minimal.

6 Experiments

We conducted a series of experiments using publicly available benchmark sets for #SAT. Our
tested benchmarks (Fichte et al. 2018a) are publicly available and our results are also on github at
github.com/hmarkus/dp on dbs/tplp.

https://github.com/hmarkus/dp_on_dbs/tree/tplp
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6.1 Setup

Measure & Resources. We mainly compare wall clock time and number of timeouts. In the time
we include preprocessing time as well as decomposition time for computing a TD with a fixed
random seed. For parallel solvers we allowed access to 24 physical cores on machines. We set a
timeout of 900 seconds and limited available RAM to 14 GB per instance and solver. However,
since our solver dpdb is a solver using multiple threads, we restricted the results of dpdb to a total
of 900 seconds of CPU time. While allowing for all the other (parallel) solvers more than 900
seconds of CPU time. For dpdb, we only allowed 900 seconds of CPU time, but at the same time
restricted to 900 seconds wall clock time.

Benchmark Instances. We considered a selection of overall 1494 instances from various pub-
licly available benchmark sets #SAT consisting of fre/meel benchmarks5(1480 instances),
and c2d benchmarks6 (14 instances). We preprocessed the instances by the #SAT preproces-
sor pmc (Lagniez and Marquis 2014), similar to results of recent work on #SAT (Fichte et al.
2019), where it was also shown that more than 80% of the #SAT instances have primal treewidth
below 19 after preprocessing. For preprocessing with pmc we used the recommended options
-vivification -eliminateLit -litImplied -iterate=10 -equiv -orGate -affine,
which ensures that model counts are preserved.

Benchmarked system dpdb. We used PostgreSQL 12 for our system dpdb on a tmpfs-ramdisk
(/tmp) that could grow up to at most 1 GB per run. To ensure comparability with previous
results (Fichte et al. 2020), where we had employed PostgreSQL 9.5 for our system dpdb, we also
considered the configuration dpdb pg9 that uses the preinstalled database system PostgreSQL 9.5
without any ramdisk at all (plain hard disk). However, we observed major performance increases
of dpdb compared to dpdb pg9. We allow parallel execution for the database management system
PostgreSQL with access to all cores of the benchmarking system. However, we restrict the total
CPU time to ensure that we do not bias system resources towards dpdb.

Other benchmarked systems. In our experimental work, we present results for the most recent
versions of publicly available #SAT solvers, namely, c2d 2.20 (Darwiche 2004), d4 1.0 (Lagniez
and Marquis 2017), DSHARP 1.0 (Muise et al. 2012), miniC2D 1.0.0 (Oztok and Darwiche 2015),
cnf2eadt 1.0 (Koriche et al. 2013), bdd minisat 1.0.2 (Toda and Soh 2015), and sdd 2.0 (Darwiche
2011), which are all based on knowledge compilation techniques. We also considered rather recent
approximate solvers ApproxMC2, ApproxMC3 (Chakraborty et al. 2014), ganak (Sharma et al.
2019), and sts 1.0 (Ermon et al. 2012), as well as CDCL-based solvers Cachet 1.21 (Sang et al.
2004), sharpCDCL7, and sharpSAT 13.02 (Thurley 2006). Finally, we also included multi-core
solvers gpusat 1.0 and gpusat 2.0 (Fichte et al. 2018b; Fichte et al. 2019), which both are based on
dynamic programming, as well as countAntom 1.0 (Burchard et al. 2015) on 12 physical CPU cores,
which performed better than on 24 cores. Experiments were conducted with default solver options.
Note that we excluded distributed solvers such as dCountAntom (Burchard et al. 2016) and
DMC (Lagniez et al. 2018) from our experimental setup. Both solvers require a cluster with
access to the Open-MPI framework (Gabriel et al. 2004) and fast physical interconnections.

5 See: tinyurl.com/countingbenchmarks
6 See: reasoning.cs.ucla.edu/c2d
7 See: tools.computational-logic.org

http://reasoning.cs.ucla.edu/c2d/download.php
http://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp
http://reasoning.cs.ucla.edu/minic2d/
http://www.cril.univ-artois.fr/KC/eadt.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://reasoning.cs.ucla.edu/sdd/
https://bitbucket.org/kuldeepmeel/approxmc
https://github.com/meelgroup/ganak
http://cs.stanford.edu/~ermon/code/STS.zip
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://tools.computational-logic.org/content/sharpCDCL.php
https://sites.google.com/site/marcthurley/sharpsat
https://github.com/daajoe/GPUSAT/releases/tag/v0.815-pre
http://tinyurl.com/countingbenchmarks
http://reasoning.cs.ucla.edu/c2d/results.html
http://tools.computational-logic. org/content/sharpCDCL.php
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Figure 4: Runtime for the top 15 solvers over all #SAT instances. The x-axis refers to the number of
instances and the y-axis depicts the runtime sorted in ascending order for each solver individually.

Unfortunately, we do not have access to OpenMPI on our cluster. Nonetheless, our focus are
shared-memory systems and since dpdb might well be used in a distributed setting, it leaves an
experimental comparison between distributed solvers that also include dpdb as subsolver to future
work.

Benchmark Hardware. Almost all solvers were executed on a cluster of 12 nodes. Each node is
equipped with two Intel Xeon E5-2650 CPUs consisting of 12 physical cores each at 2.2 GHz
clock speed, 256 GB RAM and 1 TB hard disc drives (not an SSD) Seagate ST1000NM0033.
The results were gathered on Ubuntu 16.04.1 LTS machines with disabled hyperthreading on
kernel 4.4.0-139. As we also took into account solvers using a GPU, for gpusat1 and gpusat2 we
used a machine equipped with a consumer GPU: Intel Core i3-3245 CPU operating at 3.4 GHz,
16 GB RAM, and one Sapphire Pulse ITX Radeon RX 570 GPU running at 1.24 GHz with 32
compute units, 2048 shader units, and 4GB VRAM using driver amdgpu-pro-18.30-641594 and
OpenCL 1.2. The system operated on Ubuntu 18.04.1 LTS with kernel 4.15.0-34.

6.2 Results

Figure 4 illustrates the top 15 solvers, where instances are preprocessed by pmc, in a cactus-
like plot, which provides an overview over all the benchmarked #SAT instances. The x-axis
of these plots refers to the number of instances and the y-axis depicts the runtime sorted in
ascending order for each solver individually. Overall, dpdb seems to be quite competitive and
beats most of the solvers, as for example d4, countAntom, c2d, ganak, sharpSAT, dsharp, and
approxmc. Interestingly, dpdb solves also instances, whose treewidth upper bounds are larger
than 41. Surprisingly, dpdb pg9 shows a different runtime behavior than the other solvers. We
believe that the reason lies in an initial overhead caused by the creation of the tables that seems
to depend on the number of nodes of the used TD. There, I/O operations of writing from main
memory to hard disk seem to kick in. This disadvantage is resolved if benchmarking dpdb on
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solver 0-20 21-30 31-40 41-50 51-60 >60 best unique
∑

time[h]

p
re
p
ro
ce
ss
ed

b
y
p
m
c

1. miniC2D 1193 29 10 2 1 7 11 0 1242 68.77
2. dpdb 1193 31 7 2 0 0 2 1 1233 70.44
3. gpusat2 1196 32 1 0 0 0 154 1 1229 71.27
4. d4 1163 20 10 2 4 28 33 1 1227 76.86
5. countAntom 1141 18 10 5 4 13 102 0 1191 84.39
6. dpdb pg9 1159 19 5 2 0 0 0 0 1184 100.99
7. c2d 1124 31 10 3 3 10 24 0 1181 84.41
8. ganak 1031 16 10 2 4 29 633 0 1092 107.25
9. sharpSAT 1029 16 10 2 4 30 80 0 1091 106.88
10. sdd 1014 4 7 1 0 2 0 0 1028 124.23
11. sts 927 4 8 7 5 52 35 21 1003 128.43
12. dsharp 853 3 7 2 0 0 29 0 865 157.87
13. cnf2eadt 799 3 7 2 0 7 157 0 818 170.17
14. approxmc 3 794 3 7 2 0 6 1 0 812 173.35
15. bdd minisat 791 4 1 0 0 0 46 0 796 175.09

Table 1: Number of solved #SAT instances, preprocessed by pmc and grouped by intervals of
upper bounds of the treewidth. time[h] is the cumulated wall clock time in hours, where unsolved
instances are counted as 900 seconds.

recent versions of PostgreSQL (version 12) and using tmpfs-ramdisks instead of plain hard disks.
Table 1 presents more detailed runtime results, showing a solid second place for dpdb as our
system solves the vast majority of the instances. Notably, it seems that the ganak solver is among
the fastest on a lot of instances. We observed that ganak has the fastest runtime on 633 instances,
when considering results of all 15 presented solvers. Assume we only have instances up to an
upper bound8 of treewidth 35. Then, if only instances with TDs up to width 50 are considered,
dpdb solves about the same number of instances than miniC2D solves.

7 Final Discussion & Conclusions

We presented a generic system dpdb for explicitly exploiting treewidth by means of dynamic
programming on databases. The idea of dpdb is to use database management systems (DBMSs) for
table manipulation, which makes it (i) easy and elegant to perform rapid prototyping for problems
with DP algorithms and (ii) allows to leverage decades of database theory and database system
tuning. It turned out that all the cases that occur in dynamic programming can be handled quite
elegantly with plain SQL queries. Our system dpdb can be used for both decision and counting
problems, thereby also considering optimization. We see our system particularly well-suited for
counting problems, especially, since it was shown that for model counting (#SAT) instances of
practical relevance typically have small treewidth (Fichte et al. 2019). In consequence, we carried
out preliminary experiments on publicly available instances for #SAT, where we see competitive
behavior compared to most recent solvers.

Future Work

Our results give rise to several research questions. We want to push towards other database systems
and vendors. For example, we expect major improvements in commercial database management
systems due to the availability of efficient enterprise features. In particular, we expect in the

8 These upper bounds were obtained via decomposer htd in at most two seconds.
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DBMS Oracle that the behavior when we use different strategies on how to write and evaluate
our SQL queries, e.g., sub-queries compared to common table expressions. Currently, we do not
create or use any indices, as preliminary tests showed that meaningful B*tree indices are hard
to create and creation is oftentimes too expensive. Further, the exploration of bitmap indices, as
available in Oracle enterprise DBMS would be worth trying in our case (and for #SAT), since one
can efficiently combine database columns by using extremely efficient bit operations. It would
also be interesting to investigate whether operating system features to handle memory access can
be helpful (Fichte et al. 2020). In addition, one might consider dpdb in the setting of distributed
algorithms such as dCountAntom (Burchard et al. 2016) and DMC (Lagniez et al. 2018).

It might be worth to rigorously test and explore our extensions on limiting the number of
rows per table for approximating #SAT or other counting problems, cf., (Chakraborty et al. 2016;
Dueñas-Osorio et al. 2017; Sharma et al. 2019) and compare to the recent winners of the newly
established model counting competition (Fichte et al. 2020). Recent results (Hecher et al. 2020)
indicate that by using hybrid solving and abstractions our results can also be extended to projected
model counting (Fichte et al. 2018).

Another interesting research direction is to study whether efficient data representation tech-
niques on DBMSs can be combined with dynamic programming in order to lift our solver to
quantified Boolean formulas.

It would also be interested to consider other measures such as (fractional) hypertree width (Fichte
et al. 2020; Dzulfikar et al. 2019) and investigate whether tree decompositions with additional
properties (Jégou and Terrioux 2014) or other heuristics to compute tree decompositions im-
prove solving (Strasser 2017). Furthermore, interesting directions for future research would be to
implement counting various problems in our framework, such as in constraint satisfaction (Du-
rand and Mengel 2015; Khamis et al. 2016), constraint networks (Jégou and Terrioux 2014),
argumentation (Fichte et al. 2019), description logics (Fichte et al. 2021), or epistemic logic
programming (Hecher et al. 2020).

System and License

Our system dpdb is available under GPL3 license at github.com/hmarkus/dp on dbs.
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