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Abstract

In this paper, we study the Cartesian product of signed graphs as defined by Germina,
Hameed and Zaslavsky (2011). Here we focus on its algebraic properties and look at the
chromatic number of some Cartesian products. One of our main results is the unicity of
the prime factor decomposition of signed graphs. This leads us to present an algorithm
to compute this decomposition in linear time based on a decomposition algorithm for
oriented graphs by Imrich and Peterin (2018). We also study the chromatic number of
a signed graph, that is the minimum order of a signed graph to which the input signed
graph admits a homomorphism, of graphs with underlying graph of the form Pn � Pm,
of Cartesian products of signed paths, of Cartesian products of signed complete graphs
and of Cartesian products of signed cycles.

1. Introduction

Signed graphs were introduced by Harary in [8]. In 2005, Guenin introduced the
notion of homomorphism of signed graphs, which was later studied by Naserasr, Rollová
and Sopena [13]. This gave rise to a notion of chromatic number χs(G, σ) of a signed
graph (G, σ) defined as the smallest order of a signed graph (H, π) to which (G, σ) admits
a homomorphism.

In this paper, we are interested in the study of Cartesian products of signed graphs,
defined by Germina, Hameed and Zaslavsky in [7]. They mainly study the spectral
properties of the Cartesian product. In this paper, we present algebraic properties of
the Cartesian product and study the chromatic number of some Cartesian products of
signed graphs.

The Cartesian product of two ordinary graphs G and H , noted G � H , has been
extensively studied. In 1957, Sabidussi [14] showed that χ(G � H) = max(χ(G), χ(H))
where χ(G) is the chromatic number of the graph G. Another notable article on the
subject by Sabidussi [15] shows that every connected graph G admits a unique prime
decomposition, i.e. there is a unique way to write a graph G as a product of some
graphs up to isomorphism of the factors. This result was also independently discovered
by Vizing in [16]. Another algebraic property, the cancellation property, which states
that if A � B = A � C, then B = C, was proved by Imrich and Klavžar [10] using a
technique of Fernández, Leighton and López-Presa [6]. On the complexity side, the main
question associated with the Cartesian product is to decompose a graph with the best
possible complexity. The complexity of this problem has been improved successively in
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[5, 17, 4, 1] to finally reach an optimal complexity of O(m) in [11] where m is the number
of edges of the graph.

Our study of the Cartesian product of signed graphs is divided in several sections.
First in section 2, we present general definitions of graph theory and set our notation. In
section 3, we present some useful results on signed graphs and on the Cartesian product
of ordinary graphs. In section 4, we present the definition of the Cartesian product of
signed graphs and give some first properties and easy consequences of the definition. We
also prove the prime decomposition theorem for signed graphs and give an algorithm to
decompose a Cartesian product of signed graphs into its factors. We study the chromatic
number of Cartesian products of signed complete graphs in section 5 and products of
cycles in section 6. Finally we present some concluding remarks in section 7.

2. Definitions and notation

All graphs we consider are undirected, simple and loopless. For classical graph defi-
nitions, we refer the reader to the book Graph Theory by Bondy and Murty [2].

Two vertices u and v of a graph G are said to be adjacent when uv is an edge of G.
An edge uv is incident with a vertex w if and only if w is one of u or v. The neighborhood
NG(u) of a vertex u in the graph G is the set of vertices adjacent to u in G. When the
context is clear, we note N(u) for the neighborhood of u in G. The order of G is |V (G)|
and its size is |E(G)| where |X | is the cardinal of a set X . A proper k-vertex-coloring
of a graph G is a function from V (G) to the set of colors JkK = {1, . . . , k}, such that no
two adjacent vertices receive the same color. The chromatic number χ(G) of a graph G
is the smallest k such that G admits a proper k-vertex-coloring.

A homomorphism of G to H is a function ϕ from V (G) to V (H) such that for all
x, y ∈ V (G), xy ∈ E(G) implies ϕ(x)ϕ(y) ∈ E(H). When there is a homomorphism of G
to H , we note G→ H . Note that the chromatic number of G, χ(G), can also be defined
as the smallest order of a graph H such that G → H . An isomorphism of G to H is a
bijection ϕ from V (G) to V (H) such that for all x, y ∈ V (G), xy ∈ E(G) if and only if
ϕ(x)ϕ(y) ∈ E(H). In this case, we note G = H .

A walk in a graph G is a sequence s0, . . . , sn of vertices of G such that sisi+1 ∈ E(G).
Its starting vertex is s0 and its end vertex is sn. A closed walk is a walk where s0 = sn. If
all elements of a walk are pairwise distinct, then the walk is a path. A closed walk where
all elements are pairwise distinct, except s0 and sn, is a cycle. The length (number of
edges, counted with multiplicity) of a walk W = s0, . . . , sn is n, and its order (number
of vertices, counted with multiplicity) is n if W is a closed walk, or n+ 1 otherwise.

A graph is connected if for all pairs of vertices u, v ∈ V (G), there is a path between u
and v. If X ⊆ V (G), then the graph G[X ] is the subgraph of G induced by X . We say
that G[X ] is an induced subgraph of G. The complete graph Kp is the graph of order p
such that for all pair of distinct vertices of G, u and v, uv is an edge of Kp.

A signed graph (G, σ) is a graph G along with a function σ : E(G) → {+1,−1}
called the signature of (G, σ), where σ(e) is the sign of the edge e ∈ E(G). The edges
in σ−1(+1) are the positive edges and the edges in σ−1(−1) are the negative edges of
(G, σ). We often write a signed graph (G, σ) as (G,Σ) where Σ is the set of negative
edges, that is Σ = σ−1(−1). These two ways to represent a signed graph are equivalent
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and will be used interchangeably. We note K+
p (resp. K−

p ) for the complete signed graph
(Kp,∅) (resp. (Kp, E(Kp))) of order p with only positive (resp. negative) edges.

Let (G, σ) be a signed graph and v be a vertex of G. To switch v is to create the signed
graph (G, σ′) where σ′(e) = −σ(e) when e is incident to v and σ′(e) = σ(e) otherwise.
To switch a set X of vertices of (G, σ) is to create the signed graph (G, σ′) where σ′

is obtained by switching every vertex of X , in any order. This led Zaslavsky in [18] to
define the notion of equivalent signed graphs. Two signed graphs (G, σ1) and (G, σ2)
on the same underlying graph are equivalent if there exists a set X ⊆ V (G) such that
(G, σ2) is obtained from (G, σ1) by switching X . In this case we note (G, σ1) ≡ (G, σ2).
We also say that the two signatures σ1 and σ2 (resp. Σ1 and Σ2) are equivalent and we
note σ1 ≡ σ2 (resp. Σ1 ≡ Σ2).

Suppose that (G, σ) is a signed graph and W is a walk s0, . . . , sn in G. We say that
W is a balanced walk if σ(W ) = σ(s0s1)σ(s1s2) . . . σ(sisi+1) . . . σ(sn−1sn) = 1 and an
unbalanced walk otherwise. Similarly, this notion can be extended to closed walks, paths
and cycles. We note an unbalanced path (resp. balanced path) of order k by UPk (resp.
BPk) and an unbalanced cycle (resp. balanced cycle) of order k by UCk (resp. BCk). A
signed graph where all closed walks are balanced is said to be balanced while a signed
graph where all closed walks are unbalanced is said to be antibalanced. Generally, for
the same ordinary graph G, there are several signatures σ for which (G, σ) is balanced.
They are precisely the signatures σX which can be obtained from (G,∅) by switching X ,
where X ⊆ V (G). In particular it is the case for all signatures of a forest. These notions
of balanced and antibalanced graphs where introduced by Harary in [8].

One can check that the switch operation does not modify the set of balanced closed
walks as switching at a vertex of a closed walk does not change the sign of this walk.
Hence, signed graphs (G, σ1) and (G, σ2) on the same underlying graph are equivalent
if and only if they have the same set of balanced closed walks [18]. Note that this is
equivalent to having the same set of balanced cycles, or the same set of unbalanced
closed walks (resp. cycles). This means that we can work with the balance of closed
walks or with switches depending on which notion is the easiest to use when treating
equivalence of signed graphs.

A homomorphism of a signed graph (G, σ) to a signed graph (H, π) is a homomorphism
ϕ of G to H which maps balanced (resp. unbalanced) closed walks of (G, σ) to balanced
(resp. unbalanced) closed walks of (H, π). Alternatively, a homomorphism of (G, σ)
to (H, π) is a homomorphism of G to H such that there exists a signature σ′ of G
with σ′ ≡ σ, such that if e is an edge of G, then π(ϕ(e)) = σ′(e). When there is a
homomorphism of (G, σ) to (H, π), we note (G, σ) −→s (H, π) and say that (G, σ) maps
to (H, π). Here (H, π) is the target graph of the homomorphism. When constructing a
homomorphism, we can always fix a given signature of the target graph [13].

The chromatic number χs(G, σ) of a signed graph (G, σ) is the smallest k for which
(G, σ) admits a homomorphism to a signed graph (H, π) of order k. Alternatively, a
signed graph (G, σ) admits a k-(vertex)-coloring if there exists σ′ ≡ σ such that (G, σ′)
admits a proper vertex coloring θ : V (G) → JkK verifying that for every i, j ∈ JkK, all
edges uv with θ(u) = i and θ(v) = j have the same sign in (G, σ′). Here χs(G, σ)
is the smallest k such that (G, σ) admits a k-vertex-coloring. The two definitions are
equivalent, as with any coloring of a signed graph, we can associate a homomorphism of
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signed graphs which identifies the vertices with the same color. The homomorphism is
well defined as long as the target graph is simple, which is the case here by definition of
a k-vertex-coloring.

The Cartesian product of two ordinary graphs G and H is the graph G � H whose
vertex set is V (G)×V (H) and where (x, y) and (x′, y′) are adjacent if and only if x = x′

and y is adjacent to y′ in H , or y = y′ and x is adjacent to x′ in G.
A graph G is prime if there are no graphs A and B on at least two vertices for which

G = A � B. A decompositionD of a graphG is a multiset {G1, . . . , Gk}, k ≥ 1, such that
the Gi’s are graphs containing at least one edge and G = G1 � · · · � Gk. A decomposi-
tion is prime if all the Gi’s are prime. The Gi’s are called factors of G. A decomposition
D′ is finer than a decomposition D = {G1, . . . , Gk}, if for all i ∈ JkK, there is a decom-

position D′
i =

{

G′
i,1, . . . , G

′
i,pi

}

of Gi such that D′ =
{

G′
1,1, . . . , G

′
1,p1

, G′
2,1, . . . , G

′
k,pk

}

.

Note that by definition, every decomposition is finer than itself.
Suppose that G is a graph and D = {G1, . . . , Gk} is a decomposition of G such that

G = G1 � . . . � Gk. A coordinate system for G under the decomposition D is a bijection
θ : V (G) →

∏k
i=1 V (Gi) verifying that for each vertex v of G, the set of vertices which

differ from v by the ith coordinate induces a graph, noted Gv
i and called a Gi-layer,

which is isomorphic to Gi by the projection on the ith coordinate. An edge uv of G is a
copy of an edge ab of Gi if θ(u) and θ(v) differ only in their ith coordinate with ui = a
and vi = b. For a vertex u of G and a Gi-layer G

v
i , the projection of u on the Gi-layer

Gv
i is the vertex w of V (Gv

i ) which is the closest to u.
Suppose D = {G1, . . . , Gk} is a decomposition of an ordinary graph G. We say that

two Gi-layers X1 and X2 are adjacent by Gj if and only if there exists an edge ab of a
Gj -layer such that a ∈ X1 and b ∈ X2. In other words, the subgraph induced by the
vertices of X1 and X2 is isomorphic to Gi � K2 where K2 corresponds to the edge ab.

Let A and B be two ordinary graphs. The greatest common divisor of A and B is
the graph X such that, for every three graphs W , Y , and Z with A = W � Y and
B = W � Z, X is a factor of W .

3. Preliminary results

The goal of this section is to present useful results on signed graphs and on the
Cartesian product of ordinary graphs.

In [18], Zaslavsky gave a way to determine if two signed graphs are equivalent in linear
time. In particular, all signed forests with the same underlying graph are equivalent. This
theorem comes from the following observation.

Observation 1 (Zaslavsky [18]). If C is a cycle of a graph G, then switching any number
of vertices of G does not change the parity of the number of negative edges of C.

This implies that we can separate the set of all cycles into four families BCeven,
BCodd, UCeven and UCodd, depending on the parity of the number of negative edges
(even for BCeven and BCodd and odd for UCeven and UCodd) and the parity of the
length of the cycle (even for BCeven and UCeven and odd for BCodd and UCodd).

Theorem 2. Let (C, σ) be a signed cycle. We then have:

4



1. χs(C, σ) = 2 if (C, σ) ∈ BCeven,

2. χs(C, σ) = 3 if (C, σ) ∈ BCodd ∪ UCodd,

3. χs(C, σ) = 4 if (C, σ) ∈ UCeven.

Proof. By [3], we already have the upper bounds. A homomorphism of signed graphs is
also a homomorphism of graphs thus χ(C) ≤ χs(C, σ). This proves the lowers bounds
for the first two cases. Let (C, σ) ≡ UC2q and suppose χs(C, σ) ≤ 3. Then (C, σ) −→s

(K3, π). In each case, (K3, π) can be switched either to be all positive or to be all
negative. This means that (C, σ) can be switched either to be all positive or to be all
negative, which is not the case as UC2q has an odd number of negatives edges and an
odd number of positive edges, a contradiction. We get the desired lower bounds in each
case.

One of the first results on the chromatic number of Cartesian products of ordinary
graphs is due to Sabidussi:

Theorem 3 (Sabidussi [14]). For every two graphs G and H, χ(G � H) =
max(χ(G), χ(H)).

Following this paper, Sabidussi proved one of the most important results on the
Cartesian product: the unicity of the prime decomposition of connected graphs. This
result was independently proved by Vizing.

Theorem 4 (Sabidussi [15] and Vizing [16]). Every connected ordinary graph G admits
a unique prime decomposition up to the order and isomorphisms of the factors.

Using some arguments of [6] and the previous theorem, Imrich and Klavžar proved
the following theorem.

Theorem 5 (Imrich and Klavžar [9, 10]). If A, B and C are three ordinary graphs such
that A � B = A � C, then B = C.

The unicity of the prime decomposition raises the question of the complexity of finding
such a decomposition. The complexity of decomposition algorithms has been extensively
studied. The first algorithm, by Feigenbaum et al. [5], had a complexity of O(n4.5) where
n is the order of the graph (its size is denoted bym). In [17], Winkler proposed a different
algorithm improving the complexity to O(n4). Then Feder [4] gave an algorithm in
O(mn) time and O(m) space. The same year, Aurenhammer et al. [1] gave an algorithm
in O(m log n) time and O(m) space. The latest result is an optimal algorithm.

Theorem 6 (Imrich and Peterin [11]). The prime factorization of connected ordinary
graphs can be found in O(m) time and space. Additionally a coordinate system can be
computed in O(m) time and space.

4. Cartesian products of signed graphs

4.1. Definition

We recall the definition of the Cartesian product of signed graphs due to Germina,
Hameed K. and Zaslavsky:
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Definition 7 ([7]). Let (G, σ) and (H, π) be two signed graphs. The Cartesian product
of (G, σ) and (H, π), denoted by (G, σ) � (H, π), is the signed graph defined as follows:

• V ((G, σ) � (H, π)) = V (G)× V (H),

• the positive (resp. negative) edges are the pairs {(u1, v1), (u2, v2)} such that:

– u1 = u2 and v1v2 is a positive (resp. negative) edge of (H, π), or

– v1 = v2 and u1u2 is a positive (resp. negative) edge of (G, σ).

Note that the underlying graph of (G, σ) � (H, π) is the ordinary graph G � H . From
this definition, we can derive that the Cartesian product is associative and commutative.

The following result shows that Cartesian products are compatible with homomor-
phisms of signed graphs and in particular with the switching operation.

Theorem 8. If (G, σ), (G′, σ′), (H, π), (H ′, π′) are four signed graphs such that
(G, σ) −→s (G

′, σ′) and (H, π) −→s (H
′, π′), then:

(G, σ) � (H, π) −→s (G
′, σ′) � (H ′, π′).

Proof. By commutativity of the Cartesian product and composition of homomorphisms,
it suffices to show that (G, σ) � (H, π) −→s (G′, σ′) � (H, π). Since (G, σ) −→s

(G′, σ′), there exists a set S of vertices and a homomorphism ϕ of G to G′ such
that if (G, σS) is the signed graph obtained from (G, σ) by switching the vertices of
S, then σ′(ϕ(e)) = σS(e) for every edge e of G. We note P = (G, σ) � (H, π) and
X = {(g, h) ∈ V (G � H) | g ∈ S}. Let P ′ be the signed graph obtained from P by
switching the vertices in X .

If (g, h)(g, h′) is an edge of P , then in P ′ this edge was either switched twice if g ∈ S
or not switched if g /∈ S. In both cases its sign did not change. If (g, h)(g′, h) is an edge
of P , then in P ′ this edge was switched twice if g, g′ ∈ S, switched once if g ∈ S, g′ /∈ S
or g /∈ S, g′ ∈ S, and not switched if g, g′ /∈ S. In each case its new sign is σS(gg

′). Thus
P ′ = (G, σS) � (H, π). Now define ϕP (g, h) = (ϕ(g), h). It is a homomorphism of G � H
to G′

� H by definition. By construction, the target graph of ϕP is (G′, σ′) � (H, π) as
the edges of H do not change and the target graph of ϕ is (G′, σ′).

As mentioned before, we can derive the following corollary from Theorem 8.

Corollary 9. If (G, σ), (G, σ′), (H, π), (H, π′) are four signed graphs such that σ ≡ σ′

and π ≡ π′, then:
(G, σ) � (H, π) ≡ (G, σ′) � (H, π′).

From Theorem 8, and the fact that (F, σ) −→s K
+
2 for every signed forest (F, σ), we

also get the following corollary:

Corollary 10. If (G, σ) is a signed graph and (F, π) is a signed forest with at least one
edge, then:

χs((G, σ) � (F, π)) = χs((G, σ) � K+
2 ).

In particular, for n,m ≥ 2, χs((Pn, σ1) � (Pm, σ2)) = 2.
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(a) The graph SPal∗5.

0

1

2

3 4

(b) The graph SPal5. (c) A grid G with
χs(G) = 5.

Figure 1: The signed graphs used in the proof of Theorem 11.

4.2. Signed grids

Note that there is a difference between considering the chromatic number of the Carte-
sian product of two signed graphs and the chromatic number of a signed graph whose un-
derlying graph is a Cartesian product. For example, C4 = K2 � K2 but 4 = χs(UC4) 6=
χs(BC4) = 2. Another example comes from grid graphs: χs((Pn, σ1) � (Pm, σ2)) = 2, for
any n,m ∈ N, but the following theorem shows that not all signed grids have chromatic
number 2.

Theorem 11. If n and m are two integers with 1 ≤ n ≤ m and (G, σ) is a signed grid
with G = Pn � Pm, then χs(G) ≤ 6. If n ≤ 4, then χs(G) ≤ 5. Moreover there exist
signed grids with chromatic number 5.

On our figures, we use dashed red edges to represent negative edges and solid blue
edges for positive edges.

Proof. We will prove a more precise statement: every signed grid (G, σ) verifies
(G, σ) −→s SPal∗5 where SPal∗5 is the graph of Figure 1a. This graph has the following
(easy to check) property:

(P) for every three vertices x,y,z of SPal∗5, and every sign ǫ ∈ {+1,−1}, if x 6= z or
ǫ = +1 then there exists u and v in SPal∗5, u 6= v, such that the cycles xyzu and
xyzv have sign ǫ.

To map (G, σ) to SPal∗5, we will construct the homomorphism ϕ by induction. The
vertex of G in line i ∈ {1, . . . , n} and column j ∈ {1, . . . ,m} will be called xi,j . Let Hi,j

be the subgraph of G induced by the vertices xk,ℓ where k < i, or k = i and ℓ ≤ j. We
prove that for all i, j, 0 ≤ i ≤ n and 0 ≤ j ≤ m, Hi,j −→s Spal∗5. It is easy to see that
H0,m −→s SPal∗5.

If Hi,m −→s Spal∗5 and i < n, then xi+1,0 has only one neighbor in Hi+1,0 and we
can extend the previous homomorphism to Hi+1,0.

Suppose that ϕ is a homomorphism of Hi,j to Spal∗5 and j < m. Let C =
xi,j+1xi,jxi−1,jxi−1,j+1. If C = BC4 or if C = UC4 and ϕ(xi,j) 6= ϕ(xi−1,j+1), then
we have two choices for xi,j+1 by P (we might need to switch xi,j) and we can extend
the homomorphism to Hi,j+1. If C = UC4 and ϕ(xi,j) = ϕ(xi−1,j+1), then these two
vertices must be different. There were two possibilities for the choice of ϕ(xi,j−1) in the
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previous step by P thus if we take the other one, we are back to the previous case where
ϕ(xi,j−1) 6= ϕ(xi−1,j). Thus we can extend ϕ to Hi,j+1.

Hence, Hn,m = (G, σ) −→s SPal∗5 which gives χs(G, σ) ≤ 6.

Suppose now that n ≤ 4. We construct a homomorphism ϕ : (G, σ) −→s SPal5,
column by column, where SPal5 is the graph of Figure 1b. The first column is a path and
thus, we can map it arbitrarily to SPal5. For a column with vertices x1,j , x2,j , x3,j , x4,j ,
there are at least three possibilities to map x1,j (the three colors different from ϕ(x1,j−1)
and ϕ(x2,j−1)). Up to symmetry, we can suppose that x1,j−1 has color 0 and x1,j−1 has
color 1. These three possibilities (2, 3, 4) give at least three possibilities for x2,j where
we need to remove one of them to account for the possibility of a UC4 forcing x2,j and
x3,j−1 to have different images. Indeed, let C = x1,jx2,jx2,j−1x1,j−1, if C = BC4 then
x2,j can have colors 1, 2 or 3. If C = UC4, then x2,j can have colors 2, 3 or 4.

Again for x3,j there are at least two possibilities by the same kind of arguments. We
need to remove one of them to account for the possibility of a UC4 forcing x3,j and x4,j−1

to have different colors. Finally there is at least one possibility for x4,j . Thus we can
extend our homomorphism to this column. This implies that G −→s SPal5.

It is tedious but not difficult to check that the signed grid of Figure 1c cannot be
mapped to a signed graph of order 4, thus its chromatic number if at least 5. In fact it
is exactly 5. This concludes the proof.

The arguments for the existence of a homomorphism to SPal5 cannot be extended
to bigger grids as we could end up in the case where x4,j has no possible image. We do
not know if the upper bound for grids is 5 or 6.

Question 12. What is the maximal value of χs(G, σ) when (G, σ) is a signed grid? Is
it 5 or 6?

4.3. Prime factor decomposition

Our goal now is to prove that each connected signed graph has a unique prime s-
decomposition. Let us start with some definitions.

Definition 13. A signed graph (G, σ) is said to be s-prime if and only if there do not
exist two signed graphs (A, πA) and (B, πB) such that (G, σ) ≡ (A, πA) � (B, πB).
An s-decomposition of a signed connected graph (G, σ) is a multiset of signed graphs
D = {(G1, π1), . . . , (Gk, πk)} such that:

1. the (Gi, πi)’s are signed graphs containing at least one edge and

2. (G, π) ≡ (G1, π1) � · · · � (Gk, πk).

An s-decomposition D is prime if all the (Gi, πi)’s are s-prime. The (Gi, πi)’s are called
factors of D.

Note that if G = A � B, then it is not always true that (G, σ) is the Cartesian product
of two signed graphs. For example, UC4 is s-prime but C4 is not a prime graph as
C4 = K2 � K2. The following lemma tells us in which cases (G, σ) ≡ (A, πA) � (B, πB),
and will be a useful tool for decomposing signed graphs.

Lemma 14. If (G, σ), (A, πA) and (B, πB) are three connected signed graphs with G =
A � B, then (G, σ) ≡ (A, πA) � (B, πB) if and only if:
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1. all A-layers are equivalent to (A, πA),

2. at least one B-layer is equivalent to (B, πB), and

3. for each edge e of A and each pair of distinct copies e1,e2 of e, if e1 and e2 belong
to the same 4-cycle, then this cycle is a BC4.

Note that, in the previous lemma, all B-layers are equivalent to (B, πB) but we only
need to verify that for one of them to conclude.

Proof. (⇒) This follows from the definition of the Cartesian product.
(⇐) We will do the following independent switches: switch all A-layers to have the

same signature πA.
Now we claim that all B-layers have the same signature π′

B equivalent to πB. Indeed
take one edge xy of B and two copies of this edge x1y1 and x2y2 in G. Take a shortest
path P from x1 to x2 in the Ax1 -layer. Now if u1,u2 are two consecutive vertices along
P and v1 and v2 are their projections on Ay1 , then u1u2v2v1 is a BC4 by the third
hypothesis as u1v1 and u2v2 are copies of the edge xy.

As u1u2 and v1v2 have the same sign by the previous switches, it must be that u1v1
and u2v2 have the same sign. Thus all copies of an edge of B have the same sign.

Hence, (G, σ) ≡ (A, πA) � (B, π′
B) ≡ (A, πA) � (B, πB) by Theorem 8.

One of our main results is the following Prime Decomposition Theorem.

Theorem 15 (Prime Decomposition Theorem). If (G, σ) is a connected signed graph
and D is the prime decomposition of G, then (G, σ) admits a unique (up to isomor-
phism and order of the factors) prime s-decomposition Ds. Moreover, if we see Ds as a
decomposition of G, then D is finer than Ds.

For proving this theorem, we need the following lemma.

Lemma 16. If (G, σ) is a connected signed graph that admits two prime s-decompositions
D1 and D2, then there are two signed graphs (X, πX) and (Y, πY ) such that (G, σ) ≡
(X, πX) � (Y, πY ) with D1 = {(X, πX)} ∪D′

1 and D2 = {(X, πX)} ∪D′
2, where D′

1 and
D′

2 are two s-decompositions of (Y, πY ).

Proof. Suppose there exists a signed graph (G, σ) that admits two s-decompositions
D1 and D2. Fix an edge e of (G, σ) which belongs to some Z-layer Ze of the prime
decomposition of G. The edge e belongs to some (A, πA)-layer in D1 and to some
(B, πB)-layer in D2. The graph Z is a factor of A and B by unicity of the prime
factor decomposition of G. Let X be the greatest common divisor of A and B. Since
e ∈ E(Ze), e is in some X-layer Xe. Now G = X � Y for some graph Y . Let us show
that (G, σ) ≡ (X, πX) � (Y, πY ) for some signatures πX and πY of X and Y , respectively.
We can suppose that Y 6= K1 and A 6= B, as otherwise the result is immediate.

First we want to show that all X-layers have equivalent signatures. Take two adjacent
X-layers. If they are in different A-layers, then they are equivalent since they represent
the same part of (A, πA). If they are in the same A-layer, then they are in different B-
layers since X is the greatest common divisor of A and B. The same argument works in
this case. Thus two adjacent X-layers are isomorphic to the same signed graph (X, πX),
and since there is only one connected component in Y , all X-layers have equivalent
signatures.
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Let πY be the signature of one Y -layer. Fix e′ an edge of X , and X1, X2 two X-
layers. Now consider the 4-cycle (if it exists) containing the copies of this edge in each
of the two layers. If X1 and X2 are in different A-layers, then this cycle is a BC4 by
Lemma 14, otherwise this cycle is a BC4 as X1 and X2 are in different B-layers by the
same argument.

By Lemma 14, we can conclude that (G, σ) ≡ (X, πX) � (Y, πY ).
Now suppose that A = X � W . Using Lemma 14, we can show that (A, πX) ≡

(X, πX) � (W,πW ). Indeed all X-layers have equivalent signatures since (G, σ) ≡
(X, πX) � (Y, πY ) and all 4-cycles between two copies of an edge of X are BC4 by
the same argument. As (A, πA) is s-prime, this implies (X, πX) ≡ (A, πA). Thus
(X, πX) ≡ (A, πA) ≡ (B, πB) and this proves the lemma.

Proof of Theorem 15. Any signed graph (G, σ) has a prime s-decomposition by taking
an s-decomposition that cannot be refined. Every prime s-decomposition of (G, σ) can
be considered as a decomposition of G, and the prime decomposition of G is finer than
every such decomposition. We still have to show that the prime s-decomposition of
(G, σ) is unique. Suppose, to the contrary, that (G, σ) is a minimal counterexample to
the unicity. Thus (G, σ) has two prime s-decompositions D1 and D2 and, by Lemma 16,
(G, σ) ≡ (X, πX) � (Y, πY ) with D1 = {(X, πX)}∪D′

1 and D2 = {(X, πX)}∪D′
2, where

D′
1 and D′

2 are two s-decompositions of (Y, πY ). By minimality of (G, σ), (Y, πY ) has a
unique prime s-decomposition, hence D′

1 = D′
2. Thus D1 = D2, a contradiction.

Note that Theorem 15 implies the following result.

Theorem 17. If (A, πA), (B, πB) and (C, πC) are three signed graphs verifying
(A, πA) � (B, πB) ≡ (A, πA) � (C, πC), then (B, πB) ≡ (C, πC).

The proof of this result is exactly the same as the proof for ordinary graphs presented
in [10]. Indeed, we have all the necessary tools used in the proof. The first one is
Theorem 15, the other one is the semi-ring structure of signed graphs (quotiented by the
equivalence relation) with the disjoint union and the Cartesian product which follows
from the definition. See [10] for more details on the proof.

4.4. Recognising Cartesian products of signed graphs

In the last part of this section, we propose an algorithm to decompose connected
signed graphs. Decomposing a graph can be interpreted in multiple ways: finding a
decomposition, identifying which edge of G belongs to which factor, or even better getting
a coordinate system that is compatible with the decomposition. In [11], Imrich and
Peterin gave an O(m) time and space (m is the number of edges of G) algorithm for
these three questions for ordinary graphs. More recently, in [12], they gave another
algorithm in O(m) time and space to decompose directed graphs.

Our goal is to give a similar algorithm for signed graphs based on their algorithm for
directed graphs.

Theorem 18. Let (G, σ) be a connected signed graph of order n and size m. We can
find in time O(m) and space O(m) the prime s-decomposition of (G, σ) and a coordinate
system for this decomposition.
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Input : A signed graph (G, σ)
Output: the prime factor s-decomposition of (G, σ)

1 Compute the prime factor decomposition D of G;
2 Set the temporary decomposition of (G, σ) to be J = D;
3 Done← ∅;
4 S ← ∅;
5 Treated← ∅;
6 forall vertices x taken according to a BFS ordering do
7 Add x to S;
8 forall edges xy /∈ Treated do
9 Determine the temporary color i of xy and Ji the current factor to which

it belongs in the current decomposition;
10 Let x′y′ be the projection of xy onto Jv

i ;
11 if xy and x′y′ do not have the same sign and y /∈ S then
12 Switch the vertex y;
13 Add y to S;

14 else if xy and x′y′ have the same sign and y /∈ S then
15 Add y to S;
16 else if xy and x′y′ do not have the same sign and y ∈ S then
17 Merge the temporary colors of all up-edges of y (and the temporary

color of xy) and update the decomposition;

18 end
19 Add xy to Treated;

20 end
21 Add x to Done;

22 end

Algorithm 1: A decomposition algorithm for signed graphs.

We take a coordinate system for a graph G corresponding to its prime decomposition
D which can be computed in O(m) time [11]. Let v be the vertex of G with coordinates
all equal to zero. We order the vertices using a BFS traversal of the graph starting at
v. If xy is an edge, then it is a down-edge (resp. up-edge, resp. cross-edge) of x when
d(v, x) < d(v, y) (resp. d(v, x) > d(v, y), resp. d(v, x) = d(v, y)) where d denotes the
distance in G. We proceed as described in Algorithm 1. We color the edges of G using
the prime decomposition D of G: we associate to each factor X of D a color, which is
then assigned to every edge belonging to an X-layer of G. We maintain a temporary
decomposition J of G for which we merge some factors, by means of recoloring the edges,
during the algorithm. Our goal, at the end of the algorithm, is that J = P where P is the
prime s-decomposition of (G, σ). We note pi(e) the projection of an edge e = xy ∈ Jx

i

to the temporary Ji-layer J
v
i .

First note that in Algorithm 1, the set Done is not used. Therefore, it can be omitted.
Its only purpose is to ease the correctness analysis of the algorithm. Let us make a few
more remarks. The set Done (resp. Treated) is used to record which vertex (resp. edge)
has been processed by the algorithm. The set S corresponds to the set of vertices for
which we have decided whether they need to be switched or not. If x ∈ Done at some
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point of the algorithm then all its incident edges belong to the set Treated. Moreover, by
construction of the BFS ordering, if xy is a down-edge of x in Jx

i then, for every vertex
z, the projection x′y′ of xy on Jz

i is a down-edge of x′.

Claim 19. After the merging in line 17 of the algorithm, v, y and x belong to the same
layer.

Proof. We just need to prove that y and v belong to the same layer after merging. Note
that a layer Ja

i corresponds to all the vertices b which differ from a only by the ith
coordinate (in the current decomposition). Note also that the coordinate vector of a
neighbor of y and the coordinate vector of y differ by only one coordinate. For any
non-zero coordinate of y, there is an up-edge yz of y to a neighbor z of y which differs
only on this non-zero coordinate (as the ordering is a BFS ordering and by the Cartesian
product structure), therefore all factors Jℓ corresponding to non-zero coordinates of y are
merged. Hence, in this new coordinate system, y has at most one non-zero coordinate
and thus y and v are in the same layer.

Claim 20. Let ab and a′b′ be two edges of the set Treated at any moment of the algo-
rithm. If a′b′ ∈ Ja′

i for some i and pi(a
′b′) = pi(ab) (i.e. they represent the same edge of

Ji), then ab and a′b′ have the same sign.

Proof. By contradiction, suppose that a′b′ is the first edge such that, when added to
Treated, there exists some edge ab ∈ Treated such that pi(a

′b′) = pi(ab) and a′b′ and ab
do not have the same sign. Let a′′b′′ be the edge pi(a

′b′). Note that no edge in Treated
can change sign once it is into the set as both its endpoints are in S. By definition of
a′b′, ab and a′′b′′ have the same sign since they both project to a′′b′′. Hence, it must be
that a′b′ and a′′b′′ do not have the same sign.

Note that, a′b′ cannot be treated in the third if statement at line 16, as otherwise it
would belong to some layer Jv

i after merging by Claim 19 and thus a′b′ would project to
itself. Since a′b′ went through one of the first two if statements (lines 11 and 14), a′b′

and a′′b′′ have the same sign, a contradiction.

Proof of Theorem 18.
Correctness: First, let us show that J is finer than P , the prime s-decomposition of
(G, σ), at each step of the algorithm. It is true at the beginning of the algorithm by
Theorem 15 as J = D. Suppose that J is finer than P at the beginning of step 8. In
the if statement, if we enter the first two cases then we do not change J . Hence it is still
finer than P at the end of the loop.

Suppose xy and x′y′ are not of the same sign and y ∈ S (i.e. we enter line 17). As
y ∈ S and xy /∈ Treated, there is some neighbor z of y for which z ∈ Done. We consider
two cases depending on whether z ∈ Jx

i or z /∈ Jx
i .

Suppose first that z ∈ Jx
i .

Take a shortest path Pz in Jx
i from z to the projection pv of v on Jx

i . All vertices of
the path appear before z in the BFS ordering, thus all the edges of the path belong to the
set Treated. The same holds for a shortest path Px from pv to x. In particular the walk
W obtained by concatenating yz, Pz and Px has all its edges in Treated. This implies
that W and W ′, its projection on Jv

i , have the same sign by Claim 20. Hence the closed
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Figure 2: The second case of the correctness analysis. For simplicity, all edges which are in Treated are
positive. The orientation of the edges represents the BFS order. The neighbors of v are labelled with
the temporary color of their edge with v.

walk C obtained by concatenating W with xy and its projection (W ′ concatenated with
x′y′) have different signs and Jv

i and Jx
i do not have the same signature.

Let u be a neighbor of y such that uy is an up-edge of y and u /∈ Jx
i . Every edge e′ of

the projection C′ of C on Ju
i is in Treated as d(v, e′) < d(v, e) where e is the counterpart

of e′ in C (all vertices of C have an up-edge to their projection on Ju
i ). In particular C

and C′ do not have the same sign and Jx
i and Ju

i do not have the same signature.
This implies that both layers are in the same factor of P . Indeed suppose that this

is not the case. Then all cycles abb′a′, such that ab ∈ Jx
i and a′b′ is its projection on

Ju
i , must be BC4. For all edges ab of W , ab and a′b′ have the same sign by Claim 20,

hence aa′ and bb′ also have the same sign (since the cycle is balanced). Now let x′′y′′

be the projection of xy on Ju
i . By going around W and by the previous observation,

xx′′ and yy′′ have the same sign. Note that xy and x′′y′′ do not have the same sign as
x′′y′′ ∈ Treated (x′′y′′ has the same sign as x′y′). This implies that xyy′′x′′ is a UC4, a
contradiction.

Hence we need to merge all temporary colors of all up-edges of y (including color i).
Thus after this step J is still finer than P .

Suppose now that z /∈ Jx
i (see Figure 2).

In this case, z is the projection of y on Jz
i . Let xz be the projection of x on Jz

i . Since
yz is an up-egde of y, xxz is an up-edge of x and xz ∈ Done. Note that xxz and yz have
the same sign since both are in Treated. Also note that xzz and x′y′ have the same sign
since xzz ∈ Treated. Hence xyzxw is a UC4. By the same arguments as before, these
four vertices belong to the same signed factor of (G, σ), hence we must merge i and, say
j, the temporary colors of xy and yz respectively.

Let u be a neighbor of y such that uy is an up-edge of y of temporary color k /∈ {i, j}.
Let xu be the projection of x on Ju

i . Note that xuu and x′y′ have the same sign as
d(xu, v) < d(x, v) (i.e. xu ∈ Done). If xxu and yu have the same sign, we have a UC4

and must merge the temporary colors i and k. Suppose they have different signs. Note
that y and z (resp. u) differ only by their jth coordinate (resp. kth coordinate). Let a
be the vertex with the same coordinate as u except for its kth coordinate which is equal
to the kth coordinate of z (see Figure 2). Note that a appears before z and u in the
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BFS ordering. Since the vertex a is a neighbor of z and u, both edges za and ua are
down-edges of a. Hence za ∈ Treated and za has the same sign as xxu which is different
from the sign of uy, and yz and ua also have the same sign since both are in Treated. In
particular yuaz is a UC4 and these four vertices must be in the same factor of P . This
implies that we must merge the temporary colors j and k which implies merging i and
k.

At the end J is finer than P and J is an s-decomposition by Claim 20. Hence J = P .

Complexity: Due to the similarity of our algorithm with the one in [12], most of the
complexity arguments given in [12] are still valid for our algorithm. The only differences
between the two algorithms are the presence of the three sets Done, S and Treated, two
more if blocks and the need to switch at some vertices. Let us address these three points.
Each set can be encoded by a boolean in the data structure of vertices/edges. The second
for loop checks each edge xy twice, once for each endpoint, but this still amounts to a
O(m) iteration of the loop. The two additional if blocks are a O(1) overhead for each
iteration of the loop. The switch operation is another O(m) total overhead as each edge
can be switched at most once thanks to the presence of the set S. Hence the algorithm
runs in time O(m). The reader can find more details in [12], and in particular, how to
compute the projections in constant time.

Note that this algorithm not only computes the prime s-decomposition of (G, σ) but
finds a signature σ′ ≡ σ for which all layers of the Cartesian products have the same
signature as their corresponding factors.

5. Chromatic number of Cartesian products of complete signed graphs and
upper bounds

In this section, we show a simple upper bound on the chromatic number of a Carte-
sian product of two signed graphs and compute the chromatic number of some special
complete signed graphs. We start by defining a useful tool on signed graphs.

5.1. s-redundant sets

In what follows we define the notion of an s-redundant set in a signed graph. In-
tuitively, if S is an s-redundant set of (G, σ) and x and y are two vertices cannot be
mapped to a same vertex by any homomorphism of (G, σ), then they cannot be mapped
to a same vertex by a homomorphism of (G, σ) − S.

Definition 21. Let (G, σ) be a signed graph and S ⊆ V (G). We say that the set S
is s-redundant if and only if, for every x, y ∈ V (G) − S such that xy /∈ E(G), every
z ∈ S and every signature σ′ with σ′ ≡ σ, if xzy = UP3 in (G, σ′) then there exists
w ∈ V (G) − S such that xwy = UP3 in (G, σ′).

The following proposition provides an alternative formulation of the definition which
is useful in order to prove that a set is an s-redundant set.

Proposition 22. If (G, σ) is a signed graph and S ⊆ V (G), then S is s-redundant if
and only if for every z ∈ S, and every x, y ∈ N(z) \ S with xy /∈ E(G), there exists
w ∈ V (G) \ S such that xwyz is a BC4.
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Proof. Take x, y ∈ V (G)−S such that xy /∈ E(G) and z ∈ S. If xzy = UP3 in a signature
σ′ ≡ σ, then x, y ∈ N(z). Now if S is an s-redundant set, then with the notation of the
definition xzyw is a BC4 in (G, σ′) and thus in (G, σ). If xzyw is a BC4 and xzy is a
UP3 in a given signature σ′, then xwy is also a UP3 as xzyw is balanced. This proves
the equivalence between the two statements.

The next theorem is the reason why we defined this notion. It allows us to compute
an upper bound on the chromatic number of a signed graph as a function of the chromatic
number of one of its subgraphs. One example of utilisation of this notion is given by the
proof of Theorem 25.

Theorem 23. If (G, σ) is a signed graph and S is an s-redundant set of (G, σ), then

χs(G, σ) ≤ |S|+ χs((G, σ) − S).

Proof. Let c be a coloring of a signed graph (G, σ′)−S with χs((G, σ)−S) colors where
(G, σ′) ≡ (G, σ). We define the coloring c′ of (G, σ′) as follows: c′(v) = c(v) when v /∈ S
and c′(v) is a new color when v ∈ S. Hence c′ uses at most |S|+ χs((G, σ) − S) colors.

It is left to show that it is indeed a coloring of (G, σ′). As c is a coloring, c′ does
not assign the same color to two adjacent vertices. Suppose, by contradiction, that there
exists two edges xy and x′y′ of opposite sign such that c′(x) = c′(x′) and c′(y) = c′(y′).
As c is a coloring, all four vertices cannot be in G− S. W.l.o.g. suppose that x ∈ S. By
definition of c′, x′ = x, y, y′ /∈ S and yxy′ is a UP3 in (G, σ′). As S is an s-redundant
set, there exists w /∈ S such that ywy′ is a UP3 in (G, σ′)− S. This contradicts the fact
that c is a coloring of (G, σ′)− S.

This result does not hold for any set S. For example, if (G, σ) = UC4 and S = {v}
is a single vertex of G, then χs(G, σ) = 4 and χs((G, σ) − v) = 2.

5.2. Back to Cartesian products of complete signed graphs

As a direct corollary of Theorem 8, we get the following upper bound on the chromatic
number of a Cartesian product of signed graphs.

Corollary 24. If (G1, σ1), . . . , (Gk, σk) are k signed graphs, then:

χs((G1, σ1) � · · · � (Gk, σk)) ≤
∏

1≤i≤k

χs(Gi, σi).

We consider the Cartesian product of balanced and antibalanced complete graphs in
our next result. Recall that K+

p (resp. K−
q ) is the complete graph with only positive

edges (resp. negative edges).

Theorem 25. For every two integers p, q with p, q ≥ 2, we have

χs(K
+
p � K−

q ) =
⌈pq

2

⌉

.
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Figure 3: The signed graph (H, σ) = K+
3

� K−

3
of Theorem 25. The big squared vertices have been

switched.

v(0,0)

v(3,0)

v(0,2)

v(3,2)

(a) The signed graph (P, π).

v(0,0)

v(3,0)

v(0,2)

v(3,2)

(b) The signed graph (P, π′) where the
big squared vertices have been switched.

S

(c) The signed graph
(P ′′, π′′) with the set S.

Figure 4: The signed graphs (P, π), (P, π′) and (P ′′, π′′) of Theorem 25 when (P, π) = K+

4
� K−

3
.

Proof. Let us note (P, π) = K+
p � K−

q . By symmetry between the sets of positive and

negative edges, we can suppose p ≥ q. First let us show that χs(P, π) ≥
⌈

pq
2

⌉

.
Suppose it is not the case. Let ϕ be an optimal homomorphism of (P, π). By the

pigeon hole principle, there exist x, y and z three vertices of the Cartesian product with
the same image by ϕ. They belong to three distinct K+

p -layers and three distinct K−
q -

layer as these are complete graphs. Consider the subgraph (H,σ) of (P, π) composed of
vertices which are in the same K+

p -layers as one of x, y, z and in the same K+
q -layers as

one of x, y and z. We have (H,σ) = K+
3 � K−

3 (see Figure 3).
By assumption x, y and z of (H,σ) are identified by ϕ (possibly after switching some

of them). By the pigeon hole principle, two of x, y and z are both switched or both
non-switched. Without loss of generality suppose they are x and y. Then if a is one of
their common neighbors in H , the edges xa and ya are of different signs, thus x and y
cannot be identified. This is a contradiction.
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We now prove that χs(P, π) ≤
⌈

pq
2

⌉

by induction. If p = 2, then (P, π) ≡ BC4 and
χs(P, π) = 2 ≤ 2. If p = 3 and q = 2, then (P, π) ≡ BC3 � K2 whose chromatic number
is 3. If p = 3 and q = 3, then (P, π) ≡ K+

3 � K−
3 . In this case, we have χs(P, π) = 5, as

Figure 3 gives a 5-coloring of (P, π).
Now we can assume p ≥ 4. Let V (P ) =

{

v(i,j), 0 ≤ i < p, 0 ≤ j < q
}

such that for

every i, the set
{

v(i,j)
}

0≤j<q
induces a negative complete graph and for every j, the set

{

v(i,j)
}

0≤i<p
induces a positive complete graph (see Figure 4a). Now switch all vertices

in
{

v(i,j)
∣

∣ i = 0
}

to obtain the signed graph (P, π′) (see Figure 4b) and then identify
v(0,j) with v(1,j+1) (which are non adjacent) for every j ∈ J0, q − 1K, where indices are
taken modulo q, to obtain the graph (P ′′, π′′) (see Figure 4c). Let S be the set of
identified vertices in (P ′, π′). We want to show that S is s-redundant in order to use the
induction hypothesis. Take z ∈ S and x, y ∈ N(z) \ S such that xy /∈ E(P ′′). If xzy is
an unbalanced path of length 2, then x is some v(i,j) and y is some v(k,j+1) with i, k ≥ 2.
For a = v(i,j+1), xayz is a BC4.

By Proposition 22, S is s-redundant and thus

χs(P, π) ≤ χs(P
′′, π′′) ≤ |S|+ χs((P

′, π′)− S)

by Theorem 23. By induction hypothesis, as (P ′′, π′′) − S = K+
p−2 � K−

q , we get

χs((P
′′, π′′)− S) ≤

⌈

(p−2)q
2

⌉

. Thus χs(P, π) ≤ q +
⌈

pq
2

⌉

− q ≤
⌈

pq
2

⌉

.

Note that χs(K
+
p � K−

p ) = O(∆2) where ∆ is the maximum degree of K+
p � K−

p (i.e.
∆ = 2p−1). Indeed, the chromatic number is O(p2) while ∆2 = (2p−1)2 = 4p2−4p+1.
Also, for this Cartesian product, the upper bound of Corollary 24 is p2 while we proved

in Theorem 25 that the chromatic number is
⌈

p2

2

⌉

. We thus have an example where the

chromatic number is greater than half the simple upper bound.

Question 26. What is the supremum of the set of real numbers λ ∈ [ 12 , 1] such that there
exist signed graphs (G1, σ1), . . . , (Gk, σk), each with at least one edge, such that:

χs((G1, σ1) � · · · � (Gk, σk)) ≤ λ
∏

1≤i≤k

χs(Gi, σi)?

In Figure 5, we have an example of a graph K such that K � K2 has chromatic
number 25 (checked by computer). The ratio between the chromatic number and the
upper bound is 25

36 = 0.69444. It is the largest ratio we have found by randomly sampling
bigger and bigger complete signed graphs. This leads us to believe that the following
conjecture holds.

Conjecture 27. For every fixed ε > 0, there exist signed graphs (G1, σ1), . . . , (Gk, σk),
with each at least one edge, such that:

χs((G1, σ1) � · · · � (Gk, σk)) ≥ (1− ε) ·
∏

1≤i≤k

χs(Gi, σi).
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Figure 5: A signed graph K of order 18 such that χs(K � K2) = 25.

6. Chromatic number of Cartesian products of signed cycles

The goal of this section is to determine the chromatic number of the Cartesian product
of two signed cycles. As there are four kind of cycles (balanced/unbalanced and even/odd
length), we have a number of cases to analyse. In most cases some simple observations
are sufficient to conclude. For the other cases, we need the following lemma whose proof
is given in subsections 6.1 to 6.6, due to its length.

Lemma 28. For every two integers p,q ∈ N:

χs(UCq � BC2p+1) > 4.

With this lemma, we can state the main result of this section.

Theorem 29. If (C1, σ) and (C2, σ2) are two signed cycles, then the chromatic number
of (P, π) = (C1, σ1) � (C2, σ2) is given by Table 1, depending on the types of (C1, σ1)
and (C2, σ2).

18



1

2

2

1

(a) χs(K2 � K2) ≤ 2

1

2

3

2

3

1

(b) χs(BC3 � K2) ≤ 3

1

2

3

4

2

3

4

1

(c) χs(UC4 � K2) ≤ 4

1

2

3

2

3

1

3

1

2

(d) χs(BC3 � BC3) ≤
3

1

4

2

2

1

3

3

2

1

4

3

5
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(f) χs(UC3 � BC3) ≤ 5
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(g) χs(UC4 � UC4) ≤ 4

Figure 6: Coloring of Cartesian products of signed cycles. The large squared vertices have been switched
in the Cartesian product.

(C1, σ1) � (C2, σ2) BCeven BCodd UCeven UCodd

BCeven 2 3 4 3
BCodd 3 3 5 5
UCeven 4 5 4 5
UCodd 3 5 5 3

Table 1: The chromatic number of Cartesian products of signed cycles.

Proof. If G is a cycle of type BCeven (resp. BCodd, UCeven, UCodd), then G −→s BC2 =
K2 (resp. BC3, UC4, UC3). By computing the chromatic numbers of the Cartesian
products of (G, σ) and (H, π) when they belong to {K2, BC3, UC4, UC3}, we get an
upper bound for each of the Cartesian product type equal to the corresponding value
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Figure 7: The three complete signed graphs of order 4

in the table. These cases, up to symmetry between the sets of positives and negatives
edges, are represented in Figure 6. Note that to color some graphs, we switched some
vertices.

For the lower bound, note that χs((C1, σ1) � (C2, σ2)) ≥ max(χs(C1, σ1), χs(C2, σ2)).
Theorem 2 concludes for the cases where the chromatic number is at most 4. Lemma 28
allows us to conclude for the remaining cases as χs(UCq �BC2p+1) = χs(UCq � UC2p+1)
by symmetry between the two edge types.

One further question would be to compute the chromatic number of the Cartesian
product of an arbitrary number of signed cycles. Note that BC3 � BC3 −→s BC3, and
that the same holds for K2, UC3 and UC4. This implies that, for these four graphs, it
is only interesting to look at Cartesian products of the form Ka

2 � BCb
3 � UCc

4 � UCd
3

where a, b, c, d ∈ {0, 1}. Moreover, we can suppose that a = 0 if one of b, c or d is non
zero. Thus the only interesting case left to solve is χs(BC3 � UC3 � UC4).

To extend this to any length, using the same argument as in Theorem 29, would
require that we obtain a lower bound for χs(BC2p+1 � UC2q+1 � UC2r) equal to
χs(BC3 � UC3 � UC4).

6.1. Definitions and preliminary results

We start by recalling some more definitions.
A graph G is bipartite if we can partition V (G) into A ⊎ B (where ⊎ is the disjoint

union) such that every edge xy of G has one endpoint in A and one endpoint in B.

For a group (H,+, 0), noted simply H , and a subgroup Q of H , the quotient H�Q
is the group ({x | x ∈ H} ,+, 0) where x = {y ∈ H | y = x+ q, q ∈ Q} is the equivalence
class of x and where the + operation verifies x+ y = x+ y. If G is a graph with vertex

set a group H and Q is a subgroup of H , then the quotient graph G�Q over the vertices

H�Q is defined by identifying the vertices in the same equivalence class. Similarly, if

W = s0, . . . , sn is a walk on G, then the quotient walk W ′ on G�Q is the sequence
s0, . . . , sn.

Now, we count the number of signed complete graphs on four vertices. This result
will be useful in the proof of Lemma 28.

Theorem 30. There are three complete signed graphs of order 4 (see Figure 7). They
are the signed graph K+

4 = (K4,∅) with only positive edges, the signed graph K−
4 =
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(K4, E(K4)) with only negative edges and the signed graph Kmixed
4 = (K4, {ab}) where a

and b are two vertices of K4.

Proof. Let (K4, σ) be a complete signed graph on four vertices. Arbitrarily choose u to be
one of the vertices of (K4, σ). By switching the neighbors of u if needed, we can suppose
that u is only incident to positive edges. Let x, y, z be the other three vertices of (K4, σ).
If the triangle xyz is all positive, then (K4, σ) = K+

4 , if the triangle is all negative, then
by switching u, we get (K4, σ) = K−

4 . If the triangle has only one negative edge, then
(K4, σ) = Kmixed

4 . Otherwise, the triangle has two negative edges, by switching the
vertex with the two negative edges, we get (K4, σ) = Kmixed

4 .

6.2. Beginning of the proof of Lemma 28

Our goal is to prove Lemma 28. For that, take some integers p and q, let (P, π) =
UCq � BC2p+1, and suppose that, by absurd, χs(P, π) ≤ 4.

Claim 31. We have (P, π) −→s K
mixed
4 .

Proof. Since χs(P, π) ≤ 4, (P, π) −→s (K4, ρ) for some signature ρ of K4.
Every equivalent signature of BC2p+1 has at least one positive edge. Similarly, every

equivalent signature of UCq has at least one negative edge. Thus, in every equivalent
signature of (P, π), there is at least one positive edge and one negative edge. So (H, ρ)
cannot be (K4,∅) nor (K4, E(K4)). By Theorem 30, since there are only three complete
signed graphs of order 4, (H, ρ) is Kmixed

4 .

From now on, we suppose that we fixed a homomorphism ϕ of (P, π) to Kmixed
4 .

We label the vertices of Kmixed
4 as in Figure 7b. Therefore, there exists a signed graph

(P, π′) ≡ (P, π) for which v 7→ ϕ(v) is a coloring.
The proof of Lemma 28 is divided into four parts. First, by considering the graph P

as a toroidal grid, we define what we mean for a walk to make a “turn” around the torus
in subsection 6.3. Then, by considering the coloring of (P, π′) corresponding to ϕ and
the connected components of (P, π′) induced by colors a and b, we link the number of
“crossings” of some boundaries of the components with a vertical (or horizontal) cycle and
the number of ab edges of this cycle in subsection 6.4. In subsection 6.5, we connect this
number of ‘crossings” to the number of turns and we conclude the proof in subsection 6.6.

6.3. Number of turns in P

The goal of this subsection is twofold. First, we want to establish another definition
of P as a toroidal grid i.e. the quotient of some infinite grid. Secondly, we want to define
the quantities τx(W ) and τy(W ) for each closed walkW of T . They represent the number
of turns in each direction of the torus made by the closed walk W .

Definition 32. We can associate with Z2 an infinite graph G∞ whose vertex set V (G∞)
is the set

{

vx,y
∣

∣ (x, y) ∈ Z2
}

and whose edge set is the set of pairs {vx,yvx′,y′}, where
either x = x′ and |y − y′| = 1, or y = y′ and |x− x′| = 1. We can then redefine the

graph P as the quotient G
∞
�Q where Q = Z2p+1 × Zq. In other words take the graph

G∞ where we identify each vertex vx,y with vx′,y′ when x−x′ is a multiple of 2p+1 and
y − y′ is a multiple of q. The graph G∞ can be seen as an unfolding of the toroidal grid
P . Figure 8 represents a subgraph of G∞ when q = 4 and 2p+ 1 = 3. An edge of G∞
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Figure 8: A subgraph of the graph G. Vertices with the same label are identified in P . Here q = 4 and
2p + 1 = 3.

of the form vu,wvu+i,w (resp. vu,wvu,w+i) for i ∈ {−1, 1}, is an horizontal (resp. vertical)
edge of G∞. An edge e of P is an horizontal (resp. vertical) edge if it is the quotient of
horizontal (resp. vertical) edges of G∞.

Definition 33. Let WG∞ be a walk in G∞ and WP a walk in P . We say that WG∞ is

a representation of WP if and only if WG∞�Q = WP . We also say that WG∞ represents

WP .

By definition, all representations of WP have the same number of vertices as WP . Let
us make the following observation on the representations of a walk WP .

Observation 34. If W 1
G∞ = (s1i )0≤i≤n and W 2

G∞ = (s2i )0≤i≤n are two walks (of the same
length) in G∞ representing WP , then there exist α, β ∈ Z such that for all i ∈ {0, . . . , n},
if s1i = vx,y, then s2i = vx+α(2p+1),y+βq. In particular, if they have the same starting
vertices, then W 1

G∞ = W 2
G∞ .

We are now ready to define what is a turn of a walk around the torus.

Definition 35. Let WG∞ be a walk in G∞ starting with vx,y and ending with vz,t. We
define the number of horizontal turns τx and the number of vertical turns τy of WG∞ by:

τx(WG∞) =

∣

∣

∣

∣

z − x

2p+ 1

∣

∣

∣

∣

, τy(WG∞) =

∣

∣

∣

∣

t− y

q

∣

∣

∣

∣

.

For a closed walk WP in P , let τx(WP ) = τx(WG∞) (resp. τy(WP ) = τy(WG∞))
be the number of horizontal (resp. vertical) turns of Wp where WG∞ is an arbitrary
representation of WP .

Claim 36. The two quantities τx(WP ) and τy(WP ) are integers and do not depend on
the choice of the representation WG∞ of WP .
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Proof. First if WP is a closed walk in P and WG∞ represents WP , then vx,y = vz,t thus
z = x + n(2p + 1) and t = y + mq for some integers n,m ∈ Z. Hence τx(WG∞) and
τy(WG∞) are integers.

Now take two representations W 1
G∞ and W 2

G∞ of WP . By Observation 34, if W 1
G∞

starts at vx1,y1
and ends at vz1,t1 while W 2

G∞ starts at vx2,y2
and ends at vz2,t2 , then

x2 = x1 + α(2p + 1), y2 = y1 + βq, z2 = z1 + α(2p + 1) and t2 = t1 + βq. Thus
τx(W

1
G∞) = τx(W

2
G∞) and τy(W

1
G∞) = τy(W

2
G∞). Hence this quantity is well defined for

WP .

The main result of this subsection is the following proposition.

Proposition 37. If WP is a closed walk in P of even length, then:

qτy(WP ) + τx(WP ) ≡ 0 (mod 2).

Proof. Let WG∞ be a representation of WP in G∞ starting at vx,y and ending at vz,t.
For each horizontal (resp. vertical) edge e of the form vu,wvu+i,w (resp. vu,wvu,w+i) for
i ∈ {−1, 1}, let ℓ(e) = i. Let Eh(WG∞) be the set of horizontal edges of WG∞ and
Ev(WG∞) the set of vertical edges of WG∞ . We then have:

∑

e∈Eh(WG∞ )

ℓ(e) ≡ z − x ≡ (2p+ 1)τx(WP ) ≡ τx(WP ) (mod 2),

and
∑

e∈Eh(WG∞ )

ℓ(e) ≡
∑

e∈Eh(WG∞ )

1 ≡ |Eh(WG∞)| (mod 2).

Similarly,
|Ev(WG∞)| ≡ t− y ≡ qτy(WP ) (mod 2).

As WP and WG∞ are of even length, we get:

0 ≡ |E(WG∞)| ≡ qτy(WP ) + τx(WP ) (mod 2).

6.4. Regions induced by a coloring of (P, π)

The aim of this section is to define a suitable set of walks in order to apply Proposi-
tion 37. For this, we will introduce several topological notions.

Definition 38. Let PAB = P [ϕ−1{a, b}] and PCD = P [ϕ−1{c, d}], the subgraphs of P
induced by the vertices colored a and b and by the vertices colored c and d, respectively.
A region X of P is a connected component of PAB or PCD. We say that X is of type
ab in the first case and of type cd in the latter. The boundary ∂X of a region X is the
subset of vertices of X that are adjacent to a vertex not in X :

∂X = {x ∈ X | N(x) * X} .

Claim 39. The configuration of Figure 9 cannot appear in the coloring of (P, π′). That is
to say, for a region X there do not exist two vertices x, y ∈ X and w, z /∈ X such that xy,
xz, yw and wz belong to E(P ). We call this configuration the flat border configuration.
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x

w y

z

∈ X/∈ X

Figure 9: The flat border configuration when x, y ∈ X and z,w /∈ X, where X is a region.

x

y w

z

∈ X/∈ X

Figure 10: The vertices x and y of the region X are border neighbors.

Proof. Suppose to the contrary that the configuration appears. Then, the cycle xywz of
length 4 is unbalanced. Thus, before switching, xywz was already an unbalanced cycle
of length 4 in (P, π) since balance is preserved by switching. By definition of (P, π) as
a Cartesian product of cycles, the signs of xy and wz are the same. It is also the case
for zx and wy. Thus this cycle is balanced (it has an even number of negative edges), a
contradiction.

Definition 40. Two vertices x and y on the boundary of the region X are border neigh-
bors if x and y have a common neighbor in X and a common neighbor in P \ X (see
Figure 10). We note BN(x) the set of border neighbors of x.

A border B of a region X is a subset of ∂X corresponding to an equivalence class
for the transitive closure of the border neighborhood relation (see Figure 11). That is to
say, two vertices x and y of ∂X are in the same border B of X if and only if there exists
a sequence u0, u1, . . . , uk of vertices of B such that u0 = x, uk = y and for all 0 ≤ i < k,
ui and ui+1 are border neighbors.

Claim 41. All vertices of a border B of a region X have the same color called the color
of B.

Proof. By definition of B it suffices to show that any two border neighbors x and y
have the same color. Let z be their common neighbor in X . Without loss of generality,
suppose X is of type ab and z has color b. Since the coloring is proper, x and y have
color a.

Claim 42. A vertex x of a border B has an even number of border neighbors. Moreover
if BN(x) = ∅, then X = {x}.

24



c a c a c d

a b a b a c

d a b a b a

b c a b a c

a b d a c d

Figure 11: A region X delimited by the bold line and the only border B of X is represented by the
square vertices. The dotted line represents the only walk in WB .
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(a) Case 1:
|BN(x)| = 1.
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i 1

23
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ℓ
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(b) Case 2:
|BN(x)| = 3.

x

i 1

23

j

k

ℓ

4

(c) Case: |BN(x)| = 0.

Figure 12: The two cases up to symmetry where |BN(x)| has an odd number of vertices and the case
where BN(x) = ∅. The square vertices represent vertices not in the region of x, the circular ones are in
the region while the triangular ones are undecided.

Proof. If |BN(x)| is odd, then we are in one of the first two cases of Figure 12. We will
use the notation of the figure.

If |BN(x)| = 1, then up to rotation and symmetry, we can suppose that the vertex 1
is the border neighbor of x and that j is their common neighbor in X . Thus i /∈ X . Now
ℓ /∈ X , as otherwise the vertices i, ℓ, 4 and x would be in the flat border configuration,
which cannot be by Claim 39. The same argument implies k ∈ X by considering x, k, j
and 2. Thus x, ℓ, k and 3 are in the flat border configuration. A contradiction.

If |BN(x)| = 3, then up to rotation and symmetry, we can suppose that the vertex 4
is not a border neighbor of x. As 2 is a border neighbor of x, one of k and j is in X and
the other is not. Without loss of generality, suppose k /∈ X and j ∈ X . As 3 is a border
neighbor of x, we have ℓ ∈ X . As 1 is a border neighbor of x, we have i /∈ X . Thus 4, i,
ℓ and x are in the flat border configuration, a contradiction.

Now if BN(x) = ∅, we can suppose that i /∈ X as x is in ∂X . Now to avoid the flat
border configuration, j, k and ℓ must not be in X . This proves that X = {x}.

We can now define the set of walks associated with the border.

Definition 43. We associate with a border B of X , a set of closed walks WB in (P, π′)
included in X (see Figure 11). This set of walks delimits the border of X . We use vi,j
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(a) The order of the
vertices to choose.
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(b) Case 1.
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2y
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(d) Case 3.

Figure 13: The first step in constructing the walk. The square vertices represent vertices not in the
region of x, the circular ones are in the region while the triangular ones are undecided. The dashed
edges are the edges of G∞ while the bold edges are the edges of the walk.

to refer to the vertex vi,j of P for concision.
We will define the walks piece by piece. In the particular case that X has only one

vertex, then WB = ∅. Now we can suppose that for each x ∈ B, we have BN(x) 6= ∅
by Claim 42.

First pick an arbitrary vertex x of B. The vertex x is a border vertex thus there exists
at least one vertex w adjacent to x which is not in X . In case there are more than one
such vertex, we choose one of them arbitrarily. Up to rotation of the coordinate system,
we can suppose x = vi,j and w = vi,j+1. We will choose y ∈ BN(x) according to the
order in Figure 13a. Meaning the first vertex among vi+1,j+1, vi+1,j−1 and vi−1,j−1 that
belongs to BN(x). The three cases are depicted in Figure 13b, 13c and 13d. Note that as
BN(x) is non-empty, BN(x) has at least two vertices by Claim 42, thus we are in at least
one of the three cases above. Through the construction, the “turn left” property, which
implies that the vectors −−−−−→s2is2i+1 and −−−−−−−→s2i+1s2i+2 form a direct base, will be conserved.

Now that we have x and y we can start to construct our walk W , by taking s0 = x,
s1 = z and s2 = y where z is the common neighbor of x and y which is in X .

Suppose now that we have constructed the walk up to s0, . . . , sℓ−2, sℓ−1, sℓ with ℓ
even. If sℓ−2 = s0, sℓ−1 = s1 and sℓ = s2, then we stop and close this walk by removing
the last two vertices. Otherwise we will construct sℓ+1 and sℓ+2. Suppose that sl = vi,j .
Up to rotation of the coordinate system, we can suppose that sℓ−2 = vi−1,j+1 and
sℓ−1 = vi−1,j . The vertex sℓ−1 could in principle be vi,j+1 but this would contradict
the “turn left” property. We construct sℓ+2 as the first vertex among vi+1,j+1, vi+1,j−1

and vi−1,j−1 that belong to BN(x) (see Figure 14a). The three cases are depicted in
Figure 14b, 14c and 14d. As before, since BN(x) is non empty and of even cardinality,
we are in one of those three cases. As in the first step, the vertex sℓ+1 is the common
neighbor of sℓ and sℓ+2 in X .

If we stop and there are pairs of border neighbors that are not in the same walk, we
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Figure 14: The next step in constructing the walk. We use the same notation as in Figure 13. We
constructed sl−2 = u, sl−1 = v, sl = x. We then construct sl+1 = z and sl+2 = y.

can start the process again with this pair of vertices as the first and third vertices of
the walk. To keep the assumption of the construction true, we must carefully choose the
start vertex among these two in such a way that the “turn left” property is conserved.

Claim 44. The construction of Definition 43 has the following properties:

1. the construction terminates and all walks are closed,

2. the walks are of even length,

3. all vertices with even indices have the same color,

4. all vertices with odd indices have the same color which is different from the color
of the vertices with even indices,

5. all vertices of the border B are vertices of some walk with even index,

6. the number of occurrences of a vertex x of the border B in all the walks of WB is
given by |BN(x)| /2.

Proof. Suppose we do not terminate. As the number of possible edges is finite, the
sequence we construct is ultimately periodic. Since s0, s1, s2 do not appear consec-
utively in this order in the rest of the sequence, as we did not stop, the sequence is
not periodic. Thus there exists a first moment at which there exist i and j such that
si−2, si−1, si, si+1, si+2 and sj−2, sj−1, sj , sj+1, sj+2 are subsequences of the sequence we
constructed, verifying si−2 6= sj−2, si−1 6= sj−1, si = sj , si+1 = sj+1 and si+2 = sj+2.
Note that knowing si−2, si and si+2 imposes the choices of si−1 and si+1 by the “turn
left” property, this is why these two indices exist. Without loss of generality, up to ro-
tating the grid, we can assume that si = vx,y and si+2 = vx+1,y+1. By reversing the
construction, we can observe that si−2 is the first border neighbor of si among vx−1,y+1,
vx−1,y−1 and vx+1,y−1 in this order. In this case, sj+2 and si−2 are uniquely determined
by construction and are equal, a contradiction. Now the process terminates, thus the
walks are closed by definition of the terminating condition. This proves 1.
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Since the walks are included in X which is bipartite, they have even length which
proves 2. In a similar way, all vertices with even indices are on the border B of X thus
they have the same color by Claim 41, thus 3 is true. Thus all vertices with odd indices
have the other color of X which proves 4.

We already saw that the vertices of even indices are on B. Suppose that x is not part
of a walk. We removed the case |BN(x)| = ∅ by not considering those B’s thus there
exists y ∈ |BN(x)|. Then x and y are not in the same walk, thus we create a new one
with these two vertices, a contradiction. This proves 5.

Similarly, if the number of occurrences is strictly smaller than |BN(x)| /2, we would
have restarted the process in x. Now suppose that this number is strictly greater than
|BN(x)| /2. Then there exists a pair of border neighbors x and y that belong to two
walks (and there is a vertex z in between them in those two walks) by the pigeon hole
principle. Since the construction of the walks only use the position of three consecutive
vertices to decide the next two ones, the two walks are identical after passing through
xzy. By construction, we can choose the start of the walks arbitrarily among the vertices
of even indices by shifting the indices, thus we can consider that the two walks start by
xzy. Thus the two walks are identical which cannot be the case as we would not have
restarted to create the second walk.

We define the set of closed walks Wa as the union of all closed walks WB where B is
a border with color a.

Take C to be a vertical or horizontal cycle of P . For the sake of simplicity, we will
take C to be the vertical cycle {vx,y | x = x0 + nℓ, n ∈ N} where ℓ = 2p + 1 (i.e. a
UC2q-layer). All the following definitions can be stated in the other case by symmetry.

Let W be a closed walk in P (resp. a representation of a closed walk of P in G∞).
We define a positive crossing of C by W in P (resp. G∞) as a sub-walk t0, t1, . . . , tk−1, tk
of W (possibly going through the end of W and going back at the beginning) such that
t0 = vx0−1,y (resp. t0 = vx0−1+nℓ,y for n ∈ N) for some y, ti ∈ C for i ∈ {1, . . . , k − 1}
and tk = vx0+1,y′ (resp. tj = vx0+1+nℓ,y′ for n ∈ N) for some y′. The set of positive
crossings Cross+P (W,C) (resp. Cross+G∞(W,C)) is the set of all positive crossings of C
by W in P (resp. G∞).

We can similarly define a negative crossing of C by W in P (resp. G∞) by a sub-walk
t0, t1, . . . , tk−1, tk of W (possibly going through the end of W and going back at the
beginning) such that t0 = vx0+1,y (resp. t0 = vx0+1+nℓ,y for n ∈ N) for some y, ti ∈ C
for i ∈ {1, . . . , k − 1} and tk = vx0−1,y′ (resp. tj = vx0−1+nℓ,y′ for n ∈ N) for some y′.
We note the corresponding set Cross−P (W,C) (resp. Cross−G∞(W,C)).

Claim 45. If WG∞ represents WP , then

∣

∣Cross+P (WP , C)
∣

∣ =
∣

∣Cross+G∞(WG∞ , C)
∣

∣ and
∣

∣Cross−P (WP , C)
∣

∣ =
∣

∣Cross−G∞(WG∞ , C)
∣

∣ .

Proof. We will only consider positive crossings, the proof for negative crossings is similar.
By taking the quotient of a sub-walk of WG∞ , we see that each crossing in G∞ is also
present in P . Thus

∣

∣Cross+P (WP , C)
∣

∣ ⊇
∣

∣Cross+G∞(WG∞ , C)
∣

∣. Now take a crossing of
C by WP in P , it is a sub-walk of WP . Thus if we take the corresponding sub-walk in
WG∞ , we get a crossing in G∞. Thus the two sets are equal.

One of our main results is the following proposition.
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Proposition 46.

∑

W∈Wa

∣

∣Cross+P (W,C)
∣

∣+
∣

∣Cross−P (W,C)
∣

∣ ≡ {uv ∈ C | uv has color ac or ad} (mod 2).

Proof. Take a vertex x of C in (P, π′) colored a. If the region of x is {x}, then x has
two incident edges colored ac or ad and x is not contained in any crossing as it does not
belong to a walk in Wa by definition. Thus we can ignore them.

If x has at least one incident edge colored ac or ad, then it belongs to some border
colored a.

Now take a vertex x of color a in some walk W ∈ Wa. Depending on the size of
BN(x) there are one or two occurrences of x in Wa by Claim 44. Up to rotation we
can suppose that we have vi−1,j+1, vi−1,j , vi,j = x as a sub-walk of W . Depending on
the orientation of C (vertical or horizontal), for each sub-case, we must consider the two
orientations. For one orientation there are four sub-cases: |BN(x)| = 4, |BN(x)| = 2 and
we chose vi+1,j+1 during the construction, |BN(x)| = 2 and we chose vi+1,j−1 during
the construction or |BN(x)| = 2 and we chose vi−1,j−1 during the construction. All
the sub-cases are depicted in Figure 15. In each case the number of crossings for the
sub-walks considered is equal, modulo 2, to the number of edges colored ab of x in C.

Now note that no vertices of color b in W ∈ Wa has both neighbors in the same layer.
Thus a crossing of C by W always contains a vertex colored a of C. Thus all crossings
are counted in the above case analysis.

Since for each edge colored ac or ad, the vertex colored a has a neighbor not in its
region, it is on some border and thus we counted those edges in the case analysis or when
we treated the case of the region of size one.

Thus the number of edges colored ac or ad in C is equal to the sum of the number of
crossings of C by walks in Wa modulo 2.

Claim 47. The number of edges colored ac or ad in C is equal to the number of edges
of C colored ab modulo 2.

Proof. Let us call Eac (resp. Ead, resp. Eab) the set of edges colored ac (resp. ad, resp.
ab). Since a vertex of color a has two incident edges in C, we have:

|(Eac ∪ Ead) ∩ C| ≡
∑

x∈C of color a

|(Eac ∪ Ead) ∩N(x) ∩C| (mod 2)

≡
∑

x∈C of color a

degC(x)− |Eab ∩N(x) ∩ C| (mod 2)

≡
∑

x∈C of color a

2− |Eab ∩N(x) ∩ C| (mod 2)

≡
∑

x∈C of color a

|Eab ∩N(x) ∩ C| (mod 2)

≡ |Eab ∩ C| (mod 2).
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a

a

bb

a

C

(a) Case 1.a: 2 cross-
ings and 2 edges ac or
ad.

a

a

bb

a

C

(b) Case 2.a: 1 cross-
ing and 1 edge ac or
ad.

a

ab

b

a

C

(c) Case 3.a: 1 cross-
ing and 1 edge ac or
ad.

a

a

b

a

C

(d) Case 4.a: 0 cross-
ing and 2 edges ac or
ad.

a

a

bb

a

C

(e) Case 1.b: 0 crossing and 0 edge
ac or ad.

a

a

bb

a

C

(f) Case 2.b: 0 crossing and 0 edge
ac or ad.

a

ab

b

a

C

(g) Case 3.b: 1 crossing and 1 edge
ac or ad.

a

a

b

a

C

(h) Case 4.b: 1 crossing and 1 edge
ac or ad.

Figure 15: All cases for the central vertex to belong to a closed walk W ∈ Wa. We use the same notation
as in Figure 13. The dotted lines in sub-figures 15a and 15e are a second passage in the central vertex by
a walk in Wa (possibly the same as the bold line). The edges ac or ad are the edges between a circular
vertex and a square vertex. For each case we count the number of crossings of the drawn walks and the
number of edges of color ac or ad incident to the central vertex and belonging to the cycle C.
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6.5. Crossings and turns

In this section, we will suppose that C is the vertical cycle of (P, π′) equal to
{vx,y | x = x0 + nℓ, n ∈ N} for ℓ = 2p + 1. We identify C on (P, π′) and the set
{vx,y | vx,y ∈ C} of vertices of G∞. All what is defined below also works for a hori-
zontal cycle with ℓ = q. Here we want to connect the number of crossings of the previous
section with the number of turns of Section 6.3.

Definition 48. Let vx,y be a vertex of G∞. We define the function gC as follows:

gC(vx,y) =

⌊

x− x0

ℓ

⌋

.

For a walk WG∞ in G∞ starting at s0 and finishing at sn, we define fC as follows:

fC(WG∞) = gC(sn)− gC(s0).

Claim 49. For a walk WG∞ of G∞ representing a closed walk WP of P with starting
point vx,y /∈ C:

fC(WG∞) ≡
∣

∣Cross+G∞(WG∞ , C)
∣

∣−
∣

∣Cross−G∞(WG∞ , C)
∣

∣ (mod 2).

Proof. Suppose WG∞ = (si)i∈{0,...,n}, by assumption s0 /∈ C. This ensures that all
crossings of C by WG∞ are sub-walks that do not go through the end of WG∞ and go
back at the beginning. Take a crossing t0, . . . , tk. We have gC(tk) − gC(t0) = 1 if the
crossing is positive and gC(tk)− gC(t0) = −1 if it is negative.

Now we just have to show that the other sub-walks of WG∞ do not contribute to
fC(WG∞). We can write WG∞ = W0,W

cross
0 ,W1, . . . ,W

cross
k−1 ,Wk for some integer k

where each W cross
i is a crossing and the other sub-walks are not. Note that:

fC(WG∞) =
∑

i∈{0,...,k}

fC(Wi) +
∑

i∈{0,...,k−1}

fC(W
cross
i ).

If for all i ∈ {0, . . . , k}, fC(Wi) = 0, we have our result. Since the endpoints of
the Wi’s are the same as the starting points of the crossings, we know that they do not
belong to C. The same is true for the starting points. Then, for the starting point vx,y
and the endpoint vz,t, we have x, z ∈ {x0 + nℓ+ 1, . . . , x0 + nℓ+ l − 1} for some n. But
in all cases the value of gC is n. Thus fC(Wi) = 0. This concludes the proof.

Claim 50. For a closed walk WP in P and WG∞ a representation of WP on G∞:

fC(WG∞) ≡ τx(WP ) (mod 2).

Proof. Suppose that WG∞ starts at vx,y and ends at vz,t. Note that z = x+nℓ for some
n ∈ Z. We have:

τx(WP ) ≡

∣

∣

∣

∣

z − x

ℓ

∣

∣

∣

∣

(mod 2)

≡ n (mod 2),
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while:

fC(WG∞) ≡

⌊

z − x0

ℓ

⌋

−

⌊

x− x0

ℓ

⌋

(mod 2)

≡ n+

⌊

x− x0

ℓ

⌋

−

⌊

x− x0

ℓ

⌋

(mod 2)

≡ n (mod 2).

6.6. End of the proof

We can now prove Lemma 28.

Proof. Note that by shifting the indices, we can suppose that the starting vertex of each
WP ∈ Wa does not belong to C. By using Claim 47, Proposition 46, Claim 45, Claim 49
and Claim 50, in this order, we get:

|Eab ∩ C| ≡
∑

WP∈Wa

∣

∣Cross+P (WP , C)
∣

∣+
∣

∣Cross−P (WP , C)
∣

∣ (mod 2)

≡
∑

WP∈Wa

WG∞ represents WP and
its starting point /∈ C

∣

∣Cross+G∞(WG∞ , C)
∣

∣−
∣

∣Cross−G∞(WG∞ , C)
∣

∣ (mod 2)

≡
∑

WP∈Wa

WG∞ represents WP and
its starting point /∈ C

fC(WG∞) (mod 2)

≡
∑

WP∈Wa

τx(WP ) (mod 2).

By the choice of C in the previous subsection, C = UCq and thus |Eab ∩ C| ≡ 1
(mod 2). Therefore:

1 ≡
∑

WP∈Wa

τx(WP ) (mod 2).

By taking C = BC2p+1, a horizontal cycle, we obtain:

0 ≡ |Eab ∩ C| ≡
∑

W∈Wa

τy(W ) (mod 2).

Recall that Proposition 37 states that:

0 ≡ qτy(W ) + τx(W ) (mod 2).

Thus:
0 ≡ q × 0 + 1 (mod 2).

This is a contradiction.

This concludes the proof of Lemma 28.
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7. Conclusion

To conclude, in this paper, we showed a number of results on Cartesian products
of signed graphs. We proved some algebraic properties: Theorem 8, Theorem 15 and
Theorem 17. We also presented an optimal algorithm to decompose a signed graph into
its factors in time O(m).

Finally, we computed the chromatic number of Cartesian products: Cartesian prod-
ucts of any graph by a signed forest, Cartesian products of signed paths, signed graphs
with underlying graph Pn � Pm, Cartesian products of some signed complete graphs and
Cartesian products of signed cycles. We also presented a tool called an s-redundant set
that helped to compute chromatic numbers of signed graphs. It would be interesting to
determine the exact chromatic number of a signed grid. In this paper, we only presented
an upper bound and the question whether 5 or 6 is the best upper bound is still open. It
would also be interesting to compute the chromatic number of more Cartesian products.
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