Skip to main content

0-1 Timed Matching in Bipartite Temporal Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Abstract

Temporal graphs are introduced to model dynamic networks where the set of edges and/or nodes can change with time. In this paper, we define 0-1 timed matching for temporal graphs, and address the problem of finding the maximum 0-1 timed matching for bipartite temporal graphs. We show that the problem is NP-Complete for bipartite temporal graphs even when each edge is associated with exactly one time interval. We also show that the problem is NP-Complete for rooted temporal trees even when each edge is associated with at most three time intervals. Finally, we propose an \(O(n^3)\) time algorithm for the problem on a rooted temporal tree with n nodes when each edge is associated with exactly one time interval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This step is not shown explicitly in Algorithm 1.

References

  1. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times. Discrete Appl. Math. 18(1), 1–8 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baste, J., Bui-Xuan, B.M., Roux, A.: Temporal matching. Theor. Comput. Sci. (2019)

    Google Scholar 

  3. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O (log n) update time. In: Symposium on Foundations of Computer Science FOCS, pp. 383–392 (2011)

    Google Scholar 

  4. Berman, P., Fujito, T.: On approximation properties of the independent set problem for low degree graphs. Theor. Comput. Syst. 32(2), 115–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein, A., Stein, C.: Fully dynamic matching in bipartite graphs. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 167–179. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_14

    Chapter  Google Scholar 

  6. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data structures for vertex cover and matching. In: ACM-SIAM Symposium on Discrete Algorithms SODA, pp. 785–804 (2015)

    Google Scholar 

  7. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheriyan, J.: Randomized õ(m(\(\vert \)v\(\vert \))) algorithms for problems in matching theory. SIAM J. Comput. 26(6), 1635–1669 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Even, S., Kariv, O.: An o(n\(\hat{\,\,}2.5\)) algorithm for maximum matching in general graphs. In: Symposium on Foundations of Computer Science FOCS, pp. 100–112 (1975)

    Google Scholar 

  11. Ferreira, A.: On models and algorithms for dynamic communication networks: the case for evolving graphs. In: \(4^{e}\) rencontres francophones sur les Aspects Algorithmiques des Telecommunications (ALGOTEL), pp. 155–161 (2002)

    Google Scholar 

  12. Hopcroft, J.E., Karp, R.M.: A n\(\hat{\,\,}5/2\) algorithm for maximum matchings in bipartite graphs. In: Symposium on Switching and Automata Theory SWAT, pp. 122–125 (1971)

    Google Scholar 

  13. Huang, S., Fu, A.W., Liu, R.: Minimum spanning trees in temporal graphs. In: ACM SIGMOD International Conference on Management of Data, pp. 419–430 (2015)

    Google Scholar 

  14. Kostakos, V.: Temporal graphs. Phys. A 388(6), 1007–1023 (2009)

    Article  MathSciNet  Google Scholar 

  15. Mandal, S., Gupta, A.: Approximation algorithms for permanent dominating set problem on dynamic networks. In: Negi, A., Bhatnagar, R., Parida, L. (eds.) ICDCIT 2018. LNCS, vol. 10722, pp. 265–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72344-0_22

    Chapter  Google Scholar 

  16. Micali, S., Vazirani, V.V.: An o(sqrt(\(\vert \)v\(\vert \)) \(\vert \)e\(\vert \)) algorithm for finding maximum matching in general graphs. In: Symposium on Foundations of Computer Science FOCS, pp. 17–27 (1980)

    Google Scholar 

  17. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. Theoret. Comput. Sci. 634, 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mucha, M., Sankowski, P.: Maximum matchings in planar graphs via Gaussian elimination. Algorithmica 45(1), 3–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: ACM Symposium on Theory of Computing STOC, pp. 457–464 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhrangsu Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandal, S., Gupta, A. (2020). 0-1 Timed Matching in Bipartite Temporal Graphs. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics