
Arbitrary Pattern Formation by Opaque Fat Robots with
Lights?

Kaustav Bose1[0000−0003−3579−1941], Ranendu Adhikary1[0000−0002−9473−2645], Manash Kumar
Kundu2[0000−0003−4179−8293], and Buddhadeb Sau1

1 Department of Mathematics, Jadavpur University, Kolkata, India
2 Gayeshpur Government Polytechnic, Kalyani, India

{kaustavbose.rs, ranenduadhikary.rs, manashkrkundu.rs,
buddhadeb.sau}@jadavpuruniversity.in

Abstract. Arbitrary Pattern Formation is a widely studied problem in autonomous robot
systems. The problem asks to design a distributed algorithm that moves a team of autonomous,
anonymous and identical mobile robots to form any arbitrary pattern given as input. The majority
of the existing literature investigates this problem for robots with unobstructed visibility. In a few
recent works, the problem has been studied in the obstructed visibility model, where the view of a
robot can be obstructed by the presence of other robots. However, in these works, the robots have
been modelled as dimensionless points in the plane. In this paper, we have considered the problem
in the more realistic setting where the robots have a physical extent. In particular, the robots are
modelled as opaque disks. Furthermore, the robots operate under a fully asynchronous scheduler.
They do not have access to any global coordinate system, but agree on the direction and orientation
of one coordinate axis. Each robot is equipped with an externally visible light which can assume a
constant number of predefined colors. In this setting, we have given a complete characterization of
initial configurations from where any arbitrary pattern can be formed by a deterministic distributed
algorithm.

Keywords: Distributed algorithm · Arbitrary Pattern Formation · Leader election · Opaque fat
robots · Luminous robots · Asynchronous scheduler

1 Introduction

Arbitrary Pattern Formation or APF is a fundamental coordination problem for distributed multi-
robot systems. Given a team of autonomous mobile robots, the goal is to design a distributed algorithm
that guides the robots to form any specific but arbitrary geometric pattern given to the robots as input.
Arbitrary Pattern Formation is closely related to the Leader Election problem where a unique
robot from the team is to be elected as the leader. In the traditional framework of theoretical studies,
the robots are modelled as autonomous (there is no central control), homogeneous (they execute the
same distributed algorithm), anonymous (they have no unique identifiers) and identical (they are indis-
tinguishable by their appearance) computational entities that can freely move in the plane. Each robot is
equipped with sensor capabilities to perceive the positions of other robots. The robots do not have access
to any global coordinate system. The robots operate in Look-Compute-Move (LCM) cycles: upon
becoming active, a robot takes a snapshot of the positions of the other robots (Look), then computes a
destination based on the snapshot (Compute), and then moves towards the destination along a straight
line (Move).

The Arbitrary Pattern Formation problem has been extensively studied in the literature in
various settings (See [2, 4, 6, 7, 9, 11] and references therein). Until recently, the problem had only been

? The first two authors are supported by NBHM, DAE, Govt. of India and CSIR, Govt. of India, respectively.

ar
X

iv
:1

91
0.

02
70

6v
1 

 [
cs

.D
C

] 
 7

 O
ct

 2
01

9



studied for robots with unobstructed visibility. In [10], the problem was first considered in the opaque
robots or obstructed visibility model which assumes that the visibility of a robot can be obstructed by
the presence of other robots. This is a more realistic model for robots equipped with camera sensors.
They also assumed that the robots are equipped with persistent visible lights that can assume a constant
number of predefined colors. This is known as the luminous robot model, introduced by Peleg [8], where
the lights serve both as a medium of weak explicit communication and also as a form of memory. In
[10], the robots are first brought to a configuration in which each robot can see all other robots, and
then Leader Election is solved by a randomized algorithm. The first fully deterministic solutions
for Leader Election and Arbitrary Pattern Formation were given in [3] for robots whose local
coordinate systems agree on the direction and orientation of one coordinate axis. However, in both [3,10],
the robots were modelled as dimensionless points in the plane. This assumption is obviously unrealistic, as
real robots have a physical extent. In this work, we extend the results of [3] to the more realistic opaque fat
robots model [1,5]. Furthermore, our algorithm also works for robots with non-rigid movements (a robot
may stop before it reaches its computed destination), whereas the algorithm of [3] requires robots to have
rigid movements (a robot reaches its computed destination without any interruption). Also, the total
number of moves executed by the robots in our algorithm is asymptotically optimal. The contribution of
this paper is summarized in Table 1.

Robots
Agreement in

coordinate
system

Scheduler
No. of
colors
used

Movement
Total no. of

moves

[3] Point
One-axis

agreement
Async 6 Rigid O(n2)

This
paper

Fat
One-axis

agreement
Async 10 Non-rigid Θ(n)

Table 1: Comparison of this work with previous ones.

2 Model and Definitions

In this section, we shall formally describe the robot model and also present the necessary definitions and
notations that will be used in the rest of the paper.

Robots. We consider a set of n ≥ 3 autonomous, anonymous, homogeneous and identical fat robots.
Each robot is modelled as a disk of diameter equal to 1 unit. The robots do not have access to any
global coordinate system, but their local coordinate systems agree on the direction and orientation of the
X-axis. They also agree on the unit of length as the diameter of the robots are same and taken as 1 unit.

Lights. Each robot is equipped with an externally visible light which can assume a constant number
of colors. Our algorithm will require in total ten colors, namely off, terminal, interior, failed,
symmetry, ready, move, switch off, leader and done. Initially all robots have their lights set to
off.

Visibility. The visibility range of a robot is unlimited, but can be obstructed by the presence of other
robots. Formally, a point p in the plane is visible to a robot ri if and only if there exists a point xi on
the boundary of ri such that the line segment joining p and xi does not contain any point of any other
robot. This implies that a robot ri can see another robot rj if and only if there is at least one point on
the boundary of rj that is visible to ri. Also, if ri can see any portion of the boundary of rj , then we
assume that it can determine the position of (the center of) rj .



Look-Compute-Move cycles. The robots, when active, operate according to the so-called Look-
Compute-Move (LCM) cycle. In each cycle, a previously idle robot wakes up and executes the following
steps. In Look, a robot takes the snapshot of the positions of the robots visible to it (represented
in its own coordinate system), along with their respective colors. Then in Compute, based on the
perceived configuration, the robot performs computations according to a deterministic algorithm to decide
a destination point and a color. Finally in Move, it sets its light to the decided color and moves towards
the destination point. When a robot transitions from one LCM cycle to the next, all of its local memory
(past computations and snapshots) are erased, except for the color of the light.

Scheduler. We assume that the robots are controlled by a fully asynchronous adversarial scheduler.
The robots are activated independently and each robot executes its cycles independently. The amount of
time spent in Look, Compute, Move and inactive states is finite but unbounded, unpredictable and
not same for different robots. As a result, a robot can be seen while moving, and hence, computations
can be made based on obsolete information about positions.

Movement. We assume that the robots have non-rigid movements. This means that a robot may
stop before it reaches its destination. However, there is a fixed δ > 0 so that each robot traverses at
least the distance δ unless its destination is closer than δ. The value of δ, however, is not known to the
robots. The existence of a fixed δ is necessary, because otherwise, a robot may stop after moving distances
1
2 ,

1
4 ,

1
8 , . . . and thus, not allowing any robot to traverse a distance of more than 1.

Definitions and Notations. We shall denote the set of robots by R = {r1, r2, . . . , rn}, n ≥ 3. When
we say that a robot is at a point p on the plane, we shall mean that its center is at p. For any time t, the
configuration of the robots at time t, denoted by C(t) or simply C, is a sequence (p1(t), p2(t), . . . , pn(t))
of n points on the plane, where pi(t) is the position of (the center of) the robot ri at t. At any time t,
r(t).light or simply r.light will denote the color of the light of r at t. With respect to the local coordinate
system of a robot, positive and negative directions of the X-axis will be referred to as right and left
respectively, and the positive and negative directions of the Y -axis will be referred to as up and down
respectively. Since the robots agree on the X-axis, they agree on horizontal and vertical. They also agree
on left and right, but not on up and down. For a robot r, LV (r) and LH(r) are respectively the vertical
and horizontal lines passing through the center of r. We denote by HO

U (r) (resp. HC
U (r)) and HO

B(r) (resp.
HC

B(r)) the upper and bottom open (resp. closed) half-planes delimited by LH(r) respectively. Similarly,
HO

L (r) (resp. HC
L (r)) and HO

R(r) (resp. HC
R(r)) are the left and right open (resp. closed) half-planes

delimited by LV (r) respectively. For a configuration C, a subset of robots that are on the same vertical
line will be called a batch. Thus, any configuration C can be partitioned into batches B1, . . . , Bk, ordered
from left to right. The vertical line passing through the centers of the robots of a batch will be called the
central axis of that batch. When we say ‘the distance between a batch Bi and a robot r (resp. another
batch Bj)’, we shall mean the horizontal distance between the central axis of Bi and the center of r (resp.
central axis of Bj). A robot r belonging to batch Bi will be called non-terminal if it lies between two
other robots of Bi, and otherwise it will be called terminal. Consider any batch Bj whose central axis is
S and a horizontal line T . Let H1 and H2 be the closed half-planes delimited by T . For each Hi, i = 1, 2,
consider the distances of the robots on S ∩ Hi from T arranged in increasing order. The string of real
numbers thus obtained is denoted by λi. To make the lengths of the strings λ1 and λ2 equal, null elements
Φ may be appended to the shorter string. Now the two strings are different if and only if the robots of
Bj are not in symmetric positions with respect to T . In that case, Hi will be called the dominant half
with respect to T and Bj if λi is the lexicographically smaller sequence (setting x < Φ for any x ∈ R).

Problem Definition. Consider an initial configuration of n fat opaque robots in the Euclidean plane,
all having their lights set to off. Each robot is given as input, a pattern P, which is a list of n distinct
elements from R2

≥0 = {(a, b) ∈ R2|a, b ≥ 0}. The Arbitrary Pattern Formation requires to design
a distributed algorithm that guides the robots to a configuration that is similar to P with respect to
translation, reflection, rotation and uniform scaling.



3 The Algorithm

The main result of the paper is Theorem 1. The proof of the ‘only if’ part is the same as in case for point
robots, proved in [3]. The ‘if’ part will follow from the algorithm presented in this section.

Theorem 1. For a set of opaque luminous fat robots with non-rigid movements and having one axis
agreement, APF is deterministically solvable if and only if the initial configuration is not symmetric with
respect to a line K which 1) is parallel to the agreed axis and 2) does not pass through the center of any
robot.

For the rest of the paper, we shall assume that the initial configuration C(0) does not admit the
unsolvable symmetry stated in Theorem 1. Our algorithm works in two stages, namely leader election
and pattern formation from leader configuration. The first stage is again divided into two phases, namely
Phase 1 and Phase 2. In the first stage, a single robot will be elected as the leader of the swarm. Since the
robots do not have access to any global coordinate system, they do not agree on how the given pattern P
would be realized in the plane. With the help of the elected leader, the robots can implicitly agree on a
common coordinate system. Once an agreement on a common coordinate system is achieved, the robots
will arrange themselves to form the given pattern in the agreed coordinate system in the second stage.
Since the robots are oblivious, in each LCM cycle, a robot has to infer the current stage or phase from
its local view. This is described in Algorithm 1.

Algorithm 1: Arbitrary Pattern Formation
Input : The configuration of robots visible to me.

1 Procedure ArbitraryPatternFormation()
2 if there is a robot with light set to leader then // stage 2
3 PatternFormationFromLeaderConfiguration()
4 else // stage 1
5 if (the first batch has two robots with light set to terminal) and (the lights of all robots of the

second batch are set to same color) and (the distance between the first and second batch is at

least n+3
2 units) then

6 Phase2()
7 else if there is at least one robot with light set to failed, symmetry, ready, move or switch off

then
8 Phase2()
9 else

10 Phase1()

3.1 Leader Election

In the leader election stage, a unique robot rl will elect itself as leader by setting its light to leader
(while the lights of all other robots should be set to off). We want the configuration to satisfy some
additional properties as well, that will be useful in the second stage of the algorithm. In particular, we
want 1) all the non-leader robots to lie insideHO

R(rl)∩H whereH ∈ {HO
U (rl),HO

B(rl)}, and 2) the distance
of any non-leader robot from LH(rl) to be at least 2 units. We shall call this a leader configuration, and
call rl the leader.

3.2 Phase 1

Since the robots already have an agreement on left and right, if there is a unique leftmost robot, i.e.,
the first batch has only one robot, then that robot, say r, can identify this from its local view and
elect itself as the leader. However, the robot r will not immediately change its light to leader as the
additional conditions of a leader configuration might not be yet satisfied. So, it will start executing the
procedure BecomeLeader() (See Fig. 1). Only after these conditions are satisfied, r will change its light
to leader. However, there might be more than one leftmost robots in the configuration. In the extreme
case, all the robots may lie on the same vertical line, i.e., there may be only one batch. So if there are



more than one leftmost robots, the aim of Phase 1 is to move the two terminal robots of the first batch
leftwards by the same amount. We also want the distance between (the central axes of) the first batch
and second batch in the new configuration to be at least n+3

2 units. Therefore, at the end of Phase 1, we
shall either have a leader configuration or have at least two batches in the configuration with the first
batch having exactly two robots and at least n+3

2 units to the left of the second batch. In the second case,
the lights of the two robots of the first batch will be set to terminal, lights of all robots of the second
batch will be set to either interior or off, and all other robots have lights set to off. Due to space
restrictions, we will not describe the algorithm here in much detail. A formal pseudocode description of
the algorithm is given in Algorithm 2. Further details can be found in Appendix A.1.

Algorithm 2: Phase1
1 Procedure Phase1()
2 r ← myself
3 if r.light = off then
4 if I am in the first batch and I am the only robot in my batch then
5 BecomeLeader()
6 else if I am in the first batch and I am not the only robot in my batch then
7 if I am terminal then
8 r.light← terminal
9 else

10 r.light← interior

11 else if there is a robot with light interior on LV (r) then
12 if I am not terminal then
13 r.light← interior

14 else if (I am terminal) and (there is exactly one robot r′ in HO
L (r)) and (r′.light = terminal) then

15 r.light← terminal

16 Move n+3
2 units to the left

17 else if r.light = terminal then
18 if there is a robot on LV (r) with light interior then

19 Move n+3
2 units to the left

20 else if there is a robot on LV (r) with light terminal then

21 d← my horizontal distance from the leftmost robot in HO
R(r)

22 if d < n+3
2 then

23 Move n+3
2 − d units to the left

24 else if there is a robot r′ in HO
L (r) with light terminal then

25 d← my horizontal distance from r′

26 Move d units to the left

3.3 Phase 2

Assume that at the end of Phase 1, we have k ≥ 2 batches and exactly two robots r1
1 and r1

2 in the first
batch B1 with light terminal that are at least n+3

2 units to the left of B2. So now we are in Phase 2.
Let L be the horizontal line passing through the mid-point of the line segment joining r1

1 and r1
2. Let H1

and H2 be the two open half-planes delimited by L such that r1
1 ∈ H1 and r1

2 ∈ H2. Our algorithm will
achieve the following. Define i > 1 to be the smallest integer such that Bi is either (Case 1) asymmetric
with respect to L, or (Case 2) symmetric with respect to L, but it has a robot lying on L. In Case 1, a
terminal robot from Bi−1 will become the leader and in Case 2, the robot from Bi that lies on L will
become the leader. From left to right, terminal robots of different batches will attempt to elect a leader
either by electing itself as the leader or by asking a robot of the next batch to become the leader. In
particular, when a batch Bj tries to elect leader, its terminal robots will check whether the next batch
Bj+1 is asymmetric or symmetric with respect to L. In the first case, the terminal robot of Bj lying in
the dominant half with respect to L and Bj+1 will elect itself as the leader. In the later case, the terminal
robots of Bj , using light, will communicate to the robots of Bj+1 the fact that Bj+1 is symmetric with
respect to L. If L passes through the center of a robot of Bj+1, then that robot will elect itself as the



leader. Now there are three issues regarding the implementation of this strategy, which we shall discuss
in the following three sections.

1. What happens when the robots of Bj are unable to see all the robots of Bj+1?
2. How will the robots ascertain L from their local view?
3. How will all the conditions of a leader configuration be achieved?

3.3.1 Coordinated Movement of a Batch

When the terminal robots of a batch Bj attempt to elect leader, they need to see all the robots of the
next batch Bj+1. But since the robots are fat and opaque, a robot may not be able to see all the robots of
the next batch (See Fig. 2). However, each robot of two consecutive batches will be able to see all robots
of the other batch if the two batches are more than 1 unit distance apart. Recall that at the beginning
of Phase 2, the robots of B1 are at least n+3

2 units to the left of the robots of B2. Therefore, when the
robots of the first batch attempt to elect leader, they are able to see all robots of B2. Now consider the
case where the terminal robots of Bj , j > 1 are trying to elect leader. Therefore, the first j − 1 batches
must have failed to elect leader. This implies that the first j batches are symmetric with respect to L and
L does not pass through the center of a robot of the first j batches. After the terminal robots of Bj−1

fail to elect leader, they will change their lights to failed and ask the next batch Bj to try to elect a
leader. Then the robots of Bj will move left to position themselves exactly at a distance 1 + 1

n units from
the robots of Bj−1. It can be shown that (See the proof of Theorem 6.) Bj will have sufficient space to
execute the movement and also, their horizontal distance from the robots of Bj+1 will be at least 2 units
after the movement. So, after the movements, the terminal robots of Bj can see all the robots of Bj+1.

However, since the scheduler is asynchronous and the movements are non-rigid, the robots of Bj can
start moving at different times, move at different speeds and by different amounts. Then there could be
many ways in which our algorithm can fail. For example, suppose that a few robots of Bj have seen the
two terminal robots of Bj−1 with light failed and thereafter, have completed their moves in one go,
while the rest of the robots of the batch are yet to move. Some of these robots have pending moves, while
some may not move at all as they may not see the robots with light failed in the new configuration.
Now the robots that have completed their moves earlier may now erroneously conclude that these robots
belong to Bj+1, and one of them may find itself eligible to become leader. Meanwhile, one of the robots
with a pending move might complete its move and finds itself eligible to become leader in the new
configuration. Thus we may end up with two robots electing themselves as leader. Therefore, we have to
carefully coordinate the movements of the batch so that they do not get disbanded. We have to ensure
that all the robots of the batch remain vertically aligned after their moves, and also the completion of
the moves of the batch as a whole must be detectable. We will need two extra colors for this. When the
robots of Bj find two terminal robots of Bj−1 with light failed, they will not immediately move; they
will first change their lights to ready (See Fig. 3). Having all robots of Bj with light set to ready will
help these robots to identify their batchmates. On one hand, a robot that moves first will be able to
identify the robots from its batch that are lagging behind and also detect when every one has completed
their moves. On the other hand, a robot that has lagged behind will be able to remember that it has to
move (from its own light ready) and determine how far it should move (from robots with light ready
on its left) even if it can not see the terminal robots of batch Bj−1. Therefore, before moving, all robots
of Bj must change their lights to ready. But they can not verify if all their batchmates have changed
their lights as they can not see all the robots of their batch. But the robots of Bj−1 are able to see all the
robots of Bj , and thus can certify this. So when all the robots Bj have changed their lights to ready,
the terminal robots of Bj−1 will confirm this by turning their lights to move. Only after this, the robots
of Bj will start moving. The robots will be able to detect that the movement of the batch has completed
by checking that its distance from Bj−1 is 1 + 1

n and there are no robots with light ready on its right.
When it detects that the movement of the batch has completed, it will try to elect leader if it is terminal,
otherwise, it will change its light to off.



3.3.2 Electing Leader from Local View

When the terminal robots of a batch will attempt to elect leader, they will require the knowledge of L.
Therefore, as different batches try to elect leader from left to right, the knowledge of L also needs to
be propagated along the way with the help of lights. Consider the terminal robots rj1 and rj2 of a batch
Bj , j ≥ 1, that are attempting to elect a leader. In order to do so, they need two things: 1) the knowledge
of L, and 2) a full view of the next batch Bj+1. First consider the case j = 1. The terminal robots of
the first batch r1

1 and r1
2 (with lights set to terminal) obviously have the knowledge of L as it is the

horizontal line passing through the mid-point of the line segment joining them. Also, since r1
1 and r1

2 are
at least n+3

2 units apart from the robots of B2, they can see all the robots of B2. Now suppose that a
batch Bj , j > 1, is attempting to elect leader. Then as discussed in the last section, the robots of Bj are
horizontally exactly 1 + 1

n units to the right of the robots of Bj−1 and at least 2 units to the left of the

robots of Bj+1. Therefore, rj1 and rj2 can see all the robots of both batches Bj−1 and Bj+1. Now since Bj

is attempting to elect leader, it implies that the first j− 1 batches have failed to break symmetry. Hence,
the first j batches are symmetric with respect to L. In particular, L passes through the mid-point of the
line segment joining the terminal robots of Bj−1. Since rj1 and rj2 can see the terminal robots of Bj−1

(having lights set to move), they can determine L.
Now, for a batch Bj , j ≥ 1, attempting to elect leader, there are three cases to consider. If the robots

of Bj+1 are asymmetric with respect to L (Case 1), the one of rj1 and rj2 which is in the dominant half
will change its light to switch off and start executing BecomeLeader() (described in the following
section). If the robots of Bj+1 are symmetric with respect to L and L passes through the center of a

robot r′ of Bj+1 (Case 2), then rj1 and rj2 will change their lights to symmetry. When r′ finds two robots
on its left batch with light symmetry that are equidistant from it, it will change its light to switch
off and start executing BecomeLeader(). If the robots of Bj+1 are symmetric with respect to L and

L does not pass through the center of any robot of Bj+1 (Case 3), then rj1 and rj2 will change their lights
to failed. Then the robots of Bj+1 execute movements as described in the previous section.

3.3.3 Executing BecomeLeader()

When a robot finds itself eligible to become leader, it sets its light to switch off and executes Be-
comeLeader() in order to fulfill all the additional conditions of a leader configuration (See Fig. 4). A
robot with light switch off will not do anything if it sees any robot with light other than off in its
own batch or an adjacent batch, i.e., it will wait for those robots to turn their lights to off (See line 4
of Algorithm 3). A robot r that finds itself eligible to become leader, is either (Case 1) a terminal robot
of a batch, or (Case 2) a middle robot of a batch. The first objective is to move vertically so that all
robots are in H ∈ {HO

U (r),HO
B(r)} and at least 2 units away from LH(r). In case 1, the robot has no

obstruction to move vertically. But in case 2, it will have to move horizontally left first. We can show
(See the proof of Theorem 6) that it will have enough room to move and place itself at a position where
there is no obstruction to move vertically. After the vertical movement, it will have to move horizontally
so that all other robots are in HO

R(r). But it will not try to do this in one go, as we have to also ensure
that all other robots turn their lights to off. It will first move left to align itself with its nearest left
batch, say Bj . From there it can see all robots of Bj−1 and Bj+1, and it will wait until all robots of Bj−1

and Bj+1 turn their lights to off. Then it will move to align itself with Bj−1 and so on. Eventually all
the conditions of a leader configuration will be satisfied and it will change its light to leader.



Algorithm 3: Phase2
1 Procedure Phase2()
2 r ← myself
3 if r.light 6= switch off then
4 if there is a robot with light switch off in my batch or an adjacent batch then
5 r.light← off
6 else if r.light = off or interior then
7 if both terminal robots of my left batch have lights set to failed and the non-terminal robots (if any) have

lights set to off then
8 r.light← ready
9 else if both terminal robots of my left batch have lights set to symmetry and the non-terminal robots (if

any) have lights set to off then
10 if the two terminal robots of my left batch are equidistant from me then
11 r.light← switch off

12 else if r.light = terminal then
13 ElectLeader()
14 else if r.light = failed then
15 if all robots of my right batch have their lights set to ready then
16 r.light← move

17 else if r.light = ready then

18 if there is a robot r′ in HO
L (r) with light set to ready then

19 d← the horizontal distance of r′ from me
20 Move d units towards left

21 else if both terminal robots of my left batch have lights set to move then
22 d← the horizontal distance of my left batch from me

23 if d > 1 + 1
n then

24 Move d− 1− 1
n units towards left

25 else if d = 1 + 1
n then

26 if there is no robot with light ready in HO
R(r) then

27 if I am terminal then
28 ElectLeader()
29 else
30 r.light← off

31 else
32 BecomeLeader()

33 Procedure ElectLeader()
34 if I am in the first batch then
35 L ← the horizontal line passing through the mid-point of the line segment joining me and the other robot (with

light terminal) on LV (r)
36 else
37 L ← the horizontal line passing through the mid-point of the line segment joining the terminal robots (with lights

move) of my left batch

38 if my right batch is symmetric with respect to L then
39 if L passes through the center of a robot of the right batch then
40 r.light← symmetry
41 else
42 r.light← failed

43 else if I am in the dominant half with respect to L and my right batch then
44 r.light← switch off

3.4 Pattern Formation from Leader Configuration

In a leader configuration, the robots can reach an agreement on a common coordinate system. All non-
leader robots in a leader configuration lie on one of the open half-planes delimited by the horizontal line
passing through the leader rl. This half-plane will correspond to the positive direction of Y -axis or ‘up’.
Therefore, we have an agreement on ‘up’, ‘down’, ‘left’ and ‘right’. Now the origin will be fixed at a
point such that the coordinates of rl are (0,−2). Now the given pattern can be embedded on the plane
with respect to the common coordinate system. Let us call these points the target points. Order these
points as t0, t1, . . . , tn−1 from top to bottom, and from right to left in case multiple robots on the same



horizontal line (See Fig. 5b). Order the robots as rl = r0, r1, . . . , rn−1 from bottom to up, and from left
to right in case multiple robots on the same horizontal line (See Fig. 5a). The non-leader robots will move
sequentially according to this order and place themselves on LH(rl). Then sequentially r1, . . . , rn−1 will
move to the target points t0, . . . , tn−2, and finally r0 will move to tn−1. Pseudocode of the algorithm is
given in Algorithm 4 and further details are in Appendix B.

Algorithm 4: Pattern Formation from Leader Configuration
Input : The configuration of robots visible to me.

1 Procedure PatternFormationFromLeaderConfiguration()
2 r ← myself
3 rl ← the robot with light leader
4 if r.light = off then
5 if (rl ∈ HO

B(r)) and (there is no robot in HO
B(r) ∩HO

U (rl)) and (r is leftmost on LH(r)) then
6 if there are no robots on LH(rl) other than rl then
7 if there is a robot with light done then
8 if I am at tn−2 then
9 r.light← done

10 else
11 Move to tn−2

12 else
13 Move to (1,−2)

14 else if there are i robots on LH(rl) other than rl at (1,−2), . . . , (i,−2) then
15 Move to (i + 1,−2)
16 else if there are i robots on LH(rl) other than rl at (n− i,−2), . . . , (n− 1,−2) then
17 if I am at tn−i−2 then
18 r.light← done
19 else
20 Move to tn−i−2

21 else if rl ∈ LH(r) and HO
U (r) has no robots with light off then

22 if I am at (i,−2) then
23 Move to ti−1

24 else if r.light = leader then
25 if there are no robots with light off then
26 if I am at tn−1 then
27 r.light← done
28 else
29 Move to tn−1

4 Conclusion

Using 4 extra colors, we have extended the results of [3] to the more realistic setting of fat robots with
non-rigid movements and also improved the move complexity to Θ(n), which is asymptotically optimal.
Techniques used in Phase 2 of our algorithm can be used to solve Leader Election without movement
for luminous opaque point robots for any initial configuration where Leader Election is solvable in
full visibility model, except for the configuration where all robots are collinear. An interesting question
is whether there is a no movement Leader Election algorithm for (luminous and opaque) fat robots.
Another open question is whether it is possible to solve APF for opaque (point or fat) robots with only
agreement in chirality.

References

1. Chrysovalandis Agathangelou, Chryssis Georgiou, and Marios Mavronicolas. A distributed algorithm for
gathering many fat mobile robots in the plane. In Proceedings of the 2013 ACM symposium on Principles of
distributed computing, pages 250–259. ACM, 2013.

2. Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu, and Buddhadeb Sau. Arbitrary pattern forma-
tion on infinite grid by asynchronous oblivious robots. In 13th International Conference and Workshops on
Algorithms and Computation, WALCOM 2019, Guwahati, India, February 27-March 2, 2019, Proceedings,
pages 354–366, 2018. doi: 10.1007/978-3-030-10564-8_28.

10.1007/978-3-030-10564-8_28


3. Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary, and Buddhadeb Sau. Arbitrary pattern formation
by asynchronous opaque robots with lights. In Structural Information and Communication Complexity - 26th
International Colloquium, SIROCCO 2019, L’Aquila, Italy, July 1-4, 2019, Proceedings, pages 109–123, 2019.
doi: 10.1007/978-3-030-24922-9_8.

4. Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous arbitrary pattern forma-
tion: the effects of a rigorous approach. Distributed Computing, pages 1–42, 2018. doi: 10.1007/
s00446-018-0325-7.

5. Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. Gathering few fat mobile robots in the plane. Theoretical
Computer Science, 410(6-7):481–499, 2009. doi: 10.1007/11945529_25.

6. Yoann Dieudonné, Franck Petit, and Vincent Villain. Leader election problem versus pattern formation
problem. In Distributed Computing, 24th International Symposium, DISC 2010, Cambridge, MA, USA,
September 13-15, 2010. Proceedings, pages 267–281, 2010. doi: 10.1007/978-3-642-15763-9_26.

7. Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. Arbitrary pattern formation by
asynchronous, anonymous, oblivious robots. Theor. Comput. Sci., 407(1-3):412–447, 2008. doi: 10.1016/j.
tcs.2008.07.026.

8. David Peleg. Distributed coordination algorithms for mobile robot swarms: New directions and challenges.
In International Workshop on Distributed Computing, pages 1–12. Springer, 2005.

9. Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM J. Comput., 28(4):1347–1363, 1999. doi: 10.1137/S009753979628292X.

10. Ramachandran Vaidyanathan, Gokarna Sharma, and Jerry L. Trahan. On fast pattern formation by au-
tonomous robots. In Stabilization, Safety, and Security of Distributed Systems - 20th International Sym-
posium, SSS 2018, Tokyo, Japan, November 4-7, 2018, Proceedings, pages 203–220, 2018. doi: 10.1007/
978-3-030-03232-6_14.

11. Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by oblivious anonymous
mobile robots. Theor. Comput. Sci., 411(26-28):2433–2453, 2010. doi: 10.1016/j.tcs.2010.01.037.

10.1007/978-3-030-24922-9_8
10.1007/s00446-018-0325-7
10.1007/s00446-018-0325-7
10.1007/11945529_25
10.1007/978-3-642-15763-9_26
10.1016/j.tcs.2008.07.026
10.1016/j.tcs.2008.07.026
10.1137/S009753979628292X
10.1007/978-3-030-03232-6_14
10.1007/978-3-030-03232-6_14
10.1016/j.tcs.2010.01.037


A Correctness of Stage 1

For the correctness proofs, we shall use the notion of a stable configuration from [3]. Denote the position
of a robot r at time t to be r(t). Suppose that a robot r at p takes a snapshot at time t1. Based on
this snapshot, suppose that it decides to change its light (Case 1) or move to a different point (Case 2)
or both (Case 3). In case 1, assume that it changes its light at time t2 > t1. In case 2, assume that it
starts moving at time t3 > t1. When we say that it starts moving at t3, we shall mean that r(t3) = p,
but r(t3 + ε) 6= p for sufficiently small ε > 0. For case 3, assume that r changes its light at t2 > t1 and
starts moving at t3 > t2. Then we say that r has a pending move at t if t ∈ (t1, t2) in case 1 or t ∈ (t1, t3]
in case 2 and 3. A robot r is said to be stable at time t, if r is stationary and has no pending move
at t. A configuration at time t is said to be a stable configuration if every robot is stable at t. Also, a
configuration at time t is said to be a final configuration if

1. every robot at t is stable,
2. any robot taking a snapshot at t will not decide to move or change its color.

The aim of the leader election stage is to form a leader configuration. Formally, we define a leader
configuration to be a stable configuration in which there is a unique robot rl such that

1. rl.light = leader,
2. r.light = off for all r ∈ R \ {rl},
3. there is H ∈ {HO

U (rl),HO
B(rl)} such that r ∈ HO

R(rl) ∩H for all r ∈ R \ {rl},
4. distance of any robot of R \ {rl} from LH(rl) is at least 2 units.

In this section, we shall prove Theorem 2. It will follow from Theorem 3, Theorem 4, Theorem 5 and
Theorem 6, whose proofs are given in the following subsections.

Theorem 2. For any initial configuration C(0) which is not symmetric with respect to a line K such
that 1) K is parallel to the X-axis and 2) K is not passing through the center of any robot, ∃ T1 > 0 such
that C(T1) is a leader configuration.

A.1 Correctness of Phase 1

Theorem 3. If the first batch of C(0) has exactly one robot, then ∃ T1 > 0 such that C(T1) is a leader
configuration.

Proof. Let r be the robot in the first batch. From its local view, r will find that it is the unique leftmost
in the configuration and start executing BecomeLeader(), i.e., it will move vertically until all other
robots are in HO

R(r)∩H, where H ∈ {HO
U (r),HO

B(r)} and the distance of any robot of R\{r} from LH(r)
is at least 2 units.

Case 1 If there is no obstruction to move vertically in both directions (‘up’ and ‘down’), it will move
‘down’ according to its local coordinate system.

Case 2 If there is exactly one direction where there is no obstruction to move vertically, then it will
move in that direction accordingly.

Case 3 If there is obstruction in both directions, then it will have to first move left (See Fig. 1).
When the required condition is achieved, r will change its light to leader at some time T1 > 0. It is

easy to see that all other robots will remain stable in [0, T1]. So, C(T1) is the required leader configuration.
ut

Theorem 4. If the first batch of C(0) has exactly two robots, then ∃ T ′ > 0 such that C(T ′) is a stable
configuration where



r

(a)

r

(b)

Fig. 1: a) Execution of BecomeLeader() by the unique leftmost robot r. b) The leader configuration
after r changes its light to leader.

1. the first batch has exactly two robots with lights set to terminal,
2. the robots of all other batches have their lights set to off,
3. the distance between the first and the second batch is at least n+3

2 units.

Proof. Let r1 and r2 be the two robots of the first batch of C(0). After some time, both of them will
change their lights to terminal. Notice that the robots do not move until both of them change their
lights. If the distance d between the first and the second batch is already at least n+3

2 in C(0), then the
robots do not need to move and we are done. So let d < n+3

2 . Then the robots r1 and r2 will have to move
n+3

2 − d units to the left, to the points P1 and P2 respectively, so that their distance from the second
batch becomes exactly n+3

2 . We will show that the algorithm will successfully bring the robots stationary
at the points P1 and P2.

Suppose that the robots take snapshots at times t1 ≤ t2 ≤ . . .. We shall show that if ri ∈ {r1, r2}
takes a snapshot at tk, then it will not decide (instructed by Algorithm 2) to move beyond Pi. Without
loss of generality, assume that r1 takes snapshot at t1. Notice that if the second batch is too close to
the first batch, r1 and r2 may not be able to correctly identify the second batch (See Fig. 2). So r1 will
decide to move n+3

2 −d1 units left, where d1 is its horizontal distance from the leftmost robot (that it can
see) on its right. Notice that d1 ≥ d (where d is its distance from the actual second batch), and hence,
n+3

2 − d1 ≤ n+3
2 − d. So r1 does not decide to move beyond P1. Suppose that the same is true up to the

(k− 1)th snapshot. Suppose ri ∈ {r1, r2} takes the snapshot at tk and at that time, its distance from the
(actual) second batch of C(0) is d′.

Case A1 The other robot rj (with light set to terminal) is on LV (ri). If d′ = n+3
2 , it will not move.

Otherwise, by the same argument as earlier, ri will not decide to move beyond Pi.
Case A2 The other robot rj (with light set to terminal) is on HO

R(ri). In this case, ri will decide
not to move.

Case A3 The other robot rj (with light set to terminal) is on HO
L (ri). In this case, ri will decide to

move left to vertically align itself with rj . By our assumption, rj is not beyond Pj . So ri has not decided
to move beyond Pi.

Now we show that if ri at some time t is stationary and its distance d′ from the second batch (of
C(0)) is less than n+3

2 , then it will decide to move towards Pi at some time after t. Suppose that it takes
the first snapshot after t at tk.



r1

r2

r3

r5

r4

Fig. 2: The first three batches of a configuration, where B1 = {r1, r2}, B2 = {r3} and B3 = {r4, r5}. Here,
r1 can not see r3. Therefore, r1 thinks that {r4, r5} is the second batch.

Case B1 The other robot rj (with light set to terminal) is on LV (ri). Of course, it will decide to
move left in this case.

Case B2 The other robot rj (with light set to terminal) is on HO
R(ri). In this case, ri will decide

not to move. Then after finite time, rj will overtake ri or stop on LV (ri). In either case, ri will decide to
move left.

Case B3 The other robot rj (with light set to terminal) is on HO
L (ri). Clearly, ri will decide to

move left to vertically align itself with rj .
So, we have shown that each ri, i = 1, 2 gradually moves towards Pi and never decides to move beyond

Pi. Therefore both will eventually reach Pi and remain stationary. Also observe that during this process,
all the other robots remain stable. Therefore, we shall obtain the required configuration at some time
T ′ > 0. ut

Theorem 5. If the first batch of C(0) has more than two robots, then ∃ T ′ > 0 such that C(T ′) is a
stable configuration where

1. the first batch has exactly two robots with lights set to terminal,
2. the robots of the second batch have their lights set to interior,
3. the robots of all other batches have their lights set to off,
4. the distance between the first and the second batch is exactly n+3

2 units.

Proof. Let r1 and r2 be the two terminal robots of the first batch of C(0). We will first show that both
robots will start moving after some finite time. Let r′1 and r′2 be the two non-terminal robots of the first
batch that are adjacent to r1 and r2 respectively (r′1 = r′2, if there are exactly three robots in the batch).
It is easy to see that one of the robots, say ri will start moving. It suffices to argue for the situation where
ri starts moving before the other terminal robot rj wakes up. Notice that since ri starts moving, r′i must
have set its light to interior. Then the algorithm ensures that (See line 13 of Algorithm 2) eventually
r′j must also change its light to interior. So when rj takes snapshot, it finds that the conditions in
line 24 of Algorithm 2 are satisfied, and hence will decide to move.

Notice that in this case, our algorithm asks the robots to move n+3
2 units. This is because, in this

case, the non-terminal robots of the first batch would be the second batch of the desired configuration.



Arguing similarly as in the proof of Theorem 3, we can show that they will be able to do so. Also, it
is easy to see that all non-terminal robots of the first batch of C(0) will eventually turn their lights to
interior, but will stay stationary throughout the process. All the other robots will also remain stable
during the process. Hence, we shall obtain the required configuration at some time T ′ > 0. ut

A.2 Correctness of Phase 2

Theorem 6. If C(T ′) is the configuration from Theorem 3 or Theorem 4, then ∃ T1 > T ′ such that
C(T1) is a leader configuration.

Proof. We assumed that C(0) is not symmetric with respect to any line that is parallel to the X-axis
and does not pass through the center of any robot. The same should be true for C(T ′) because it is
obtained from C(0) by moving the two terminal robots of the first batch horizontally by equal amounts.
So, in particular, if L is the horizontal line passing through the mid-point of the line segment joining the
terminal robots of the first batch of C(T ′), then either C(T ′) is asymmetric with respect to L or C(T ′) is
symmetric with respect to L, but there is a robot whose center lies on L. So there is at least one batch
that is either asymmetric with respect to L or symmetric with respect to L, but it has a robot whose
center lies on L. Let Bi be the first such batch. Obviously, i > 1.

We have discussed in Section 3.3 how different batches from left to right will sequentially try to elect
a leader. Obviously, Bi−1 will be successful. If (Case 1) Bi is asymmetric with respect to L, then one of
the terminal robots of Bi−1 will start executing BecomeLeader(), while if (Case 2) Bi is symmetric
with respect to L, then the terminal robots of Bi−1 will change their lights to symmetry and the robot
r ∈ Bi lying on L will start executing BecomeLeader().

We have to show that each of B1, . . . , Bi−1 have enough space to successfully execute the instructions
of the algorithm. We shall show that when the terminal robots of Bj , j ≥ 1 call ElectLeader(), the
distance between Bj and Bj+1 will be at least 2 units. This will ensure the following:

1. the robots of Bj can fully see the batch Bj+1,
2. if the terminal robots of Bj fail to elect leader and turn their lights to failed, the robots of Bj+1

will be able to see this and also will be able to move left and place themselves 1 + 1
n units apart from

Bj ,
3. if the middle robot of Bj+1 is to become leader, it can move 1 unit to the left so that there is no

obstruction to move vertically.

This is obvious for j = 1, because B1 is n+3
2 > 2 units away from B2. Now consider a batch Bj , 1 <

j ≤ i− 1 calling ElectLeader(). Initially the distance between B1 and B2 was at least n+3
2 and then

each batch Bl, 1 < l ≤ j, have moved left and placed themselves exactly 1+ 1
n units apart from Bl−1. This

implies that the batch Bj has moved at least n+3
2 − (j − 1)(1 + 1

n ). So, after the movement, the distance
between Bj and Bj+1 is at least n+3

2 − (j − 1)(1 + 1
n ). Now note that each B1, . . . , Bj is symmetric with

respect L and center of no robot of these batches lie on L. Therefore, each B1, . . . , Bj has at least 2
robots. So, 2j < n⇒ j < n

2 . Therefore, the required distance between Bj and Bj+1 is

≥n+ 3

2
− (j − 1)(1 +

1

n
)

>
n+ 3

2
− (

n

2
− 1)(1 +

1

n
)

=2 +
1

n

When a robot finds itself eligible to become leader, it sets its light to switch off and starts ex-
ecuting BecomeLeader(). We have not given any pseudocode for BecomeLeader(). The execution



of BecomeLeader() for a robot with light off was described in the proof of Theorem 3. An informal
description of the process for a robot with light switch off was given in Section 3.3.

In Case 1, a terminal robot r of Bi−1 will start executing BecomeLeader(). Obviously there is one
vertical direction for r to move without any obstruction. However, in Case 2, unless Bi has exactly one
robot, the middle robot r of Bi has both vertical directions blocked. So, r will move 1 unit to the left and
there will be no obstruction to move vertically. So in either case, r will move vertically and eventually all
other robots will be in H ∈ {HO

U (r),HO
B(r)} and the distance of any robot of R\ {r} from LH(r) will be

at least 2 units. Then r will sequentially move to the central axes of the batches on its left and all robots
that having light set to any color other than off, will turn them back to off.

However, there can be a complication regarding the first batch B1 because, as we shall see, there is a
possibility that they might start executing the algorithm for Phase 1. Notice that when r starts executing
BecomeLeader(), the two robots r1

1 and r1
2 of B1 have their lights set to move. Notice that they will

change their light to off, only when r aligns itself with B2 at some time t1 (See line 4 of Algorithm 3).
So, upto time t1, r1

1 and r1
2 with lights move will remain stable. After t1, they will change their lights to

off. After this, r will start moving to the left. At some time t2, r will become aligned with r1
1 and r1

2.
Clearly, r1

1 and r1
2 will remain stable in [t1, t2]. In C(t2), one of r1

1 and r1
2, say r1

1, can not see r. So, if r1
1

takes a snapshot at t2, it will decide to turn its light to terminal according to Algorithm 2. However,
r1
2 will stay stable as it does not loose sight of r with light switch off. Hence, it does not execute

Algorithm 2. Recall that a robot with light terminal decides to move only if it finds another robot with
light terminal or interior. So, r1

1 will not move. When r moves further left, r1
1 will again see it and

will change its light to off. Therefore, we shall obtain a leader configuration at some time T1. ut



r

r31

r32

(a) The batch B3 is 1+ 1
n

units to the right of B2. The
terminal robots r31, r32 of B3 have change their lights to
failed. However, the robot r of B3 still has its light
set to ready.

r

r31

r32

(b) The robots of B4 waits until r changes its light to
off.

r31

r32

(c) The robots of B4 are changing their lights to
ready. The terminal robots r31, r32 of B3 will wait for
all the robots of B4 to change their lights.

r31

r32

(d) After all the robots of B4 change their lights to
ready, r31 and r32 change their lights to move.

r′

r31

r32 r′′

(e) After r31 and r32 change their lights to move, the
robots of B4 start moving. Here r′′ has not yet started.
If it takes a snapshot of this configuration, it will decide
to align itself with r′.

r31

r32

(f) Eventually the robots of B4 will stop 1 + 1
n

units
to the right of B3.

Fig. 3: Coordinated movement of a batch in Phase 2.



r

r31

r32

r′

r′′

(a) (Case 1) r finds itself in the dominant half and
changes its light to switch off. Two robots in its
batch, r′ and r′′, still have their lights set to ready.

r

r′

r′′r31

r32

(b) (Case 1) r starts moving after r31, r32 and r′ have
changed their lights to off. But r can not see r′′ which
is yet to change its light.

r41

r42

r

(c) (Case 2) r changes its light to switch off as r41
and r42 change their lights to symmetry.

r41

r42

r

(d) (Case 2) r41 and r42 change their lights to off. Then
r will move horizontally left and then vertically.

r

(e) When r aligns itself with B3 all robots of B2 and
B4 can see it. So, any robot of B2 and B4 with light
not set to off will change its light to off.

r

r12

r11

(f) When r aligns itself with B1, r11 thinks that it is in
Phase 1, and changes its light to terminal. However,
when r moves further left, r11 will change its light back
to off.

Fig. 4: The execution of BecomeLeader() in Phase 2.



B Correctness of Stage 2

Theorem 7. If C(T1) is a leader configuration, then ∃ T2 > T1 such that C(T2) is a final configuration
similar to the given pattern.

Proof. Ordering of the robots and the target points are shown in Fig. 5a and Fig. 5b respectively. We
shall first show that the non-leader robots r1, . . . , rn−1 will move sequentially and place themselves on
LH(rl) so that at some T ′′ > T1, we shall have r0 = rl, r1, . . . , rn−1 at (0,−2), (1,−2), . . . , (n − 1,−2)
(See Fig. 5d). At the beginning, r1 will find that the conditions of lines 5 and 6 (in Algorithm 4) are
satisfied, while that of line 7 does not hold. So, it will decide to move to (1,−2). Now suppose that
r0 = rl, r1, . . . , ri (i ≥ 1) are at (0,−2), (1,−2), . . . , (i,−2), then ri+1 will find that the condition of line
14 is satisfied and therefore will decide to move to (i+ 1,−2).

Notice that when any robot rj , 1 ≤ j ≤ n − 1, is moving, even if its move is interrupted due to the
non-rigid movement assumption, it will again decide to move to (j,−2) in the next cycle. Also, during
the move, no other robot will decide to move. This is because 1) (if j < n − 1) for rj+1, . . . , rn−1, the
condition of line 5 does not hold, 2) (if j > 1) for r1, . . . , rj−1, the condition of line 21 does not hold and
3) for rl, the condition of line 25 does not hold. Also notice that since the robots have a physical extent,
depending on the starting position and destination, a robot may not be able to move to its destination
linearly in one go. In that case, it will move in a piecewise linear path (with at most three segments in case
of rigid movement) as shown in Fig. 5c. In that case, the ‘Move to (j,−2)’ instructions in the pseudocode
should be understood accordingly. Therefore, at some T ′′ > T1, we shall have a stable configuration with
r0 = rl, r1, . . . , rn−1 at (0,−2), (1,−2), . . . , (n− 1,−2).

Now we shall show that there is T2 > T ′′, such that C(T2) is a final configuration similar to the
given pattern. Notice that in this configuration, the agreement in ‘up’ and ‘down’ is lost. When r1 takes
a snapshot for the first time after T ′′, it finds the conditions of line 21 to be true as both HO

U (r1) and
HO

B(r1) (according to its own notion of ‘up’ and ‘down’) has no robots. Since r1 can see rl, it will take
the center of rl as (0,−2) and fix the positive direction of Y -axis according to it own notion of ‘up’,
compute the point t0 in that coordinate system and move to that point. After the move, it will turn its
light to done. Now suppose that r1, . . . , ri (i ≥ 1) are at t0, . . . , ti−1 with light set to done. Obviously,
here ri+1 will have no ambiguity regarding the Y -axis. So, ri+1 will find the conditions of line 21 to be
true, compute the point ti in the agreed coordinate system and move accordingly.

As before, the movements of the robots may not be linear due to their physical extent (See Fig. 5e).
The move of any robot rj , 1 ≤ j ≤ n− 1, may be interrupted due to the non-rigid movement assumption.
The ordering of the target points are such that when it takes snapshot in the next cycle, it will be able
to see all the robots on LH(rl) and hence, will find the condition of line 16 holding (with i = n− j − 1).
So, it will recompute tj−1 and move accordingly. Now we shall argue that no other robot will decide to
move during the move of any robot rj , 1 ≤ j ≤ n− 1. This is because during the movement of any robot
rj , all the robots on LH(rl) will be able to see it with light set to off. Therefore, 1) (if j < n − 1) for
rj+1, . . . , rn−1, the condition of line 21 does not hold, and 2) for rl, the condition of line 25 does not hold.
Also, (if j > 1) for r1, . . . , rj−1, their lights are set to done and hence, they will remain stable. Now,
only after all of r1, . . . , rn−1 have completed their moves and turned their lights to done, rl = r0 will
find condition of line 25 to hold. Then r0 will move towards tn−1. If it stops in between, it can identify
rn−1 from its local view. Therefore, it knows the points tn−2 on the plane and knows its coordinate in the
agreed coordinate system from the given input. From this it can recompute tn−1 and hence will eventually
reach there. Therefore, the given pattern is formed at some T2 > T1. ut



r2
r3 r4

r5

r6 r7

r8 r9

r1

rl

r10

(a) A leader configuration with the leader rl with light
leader at (0,−2) in the agreed coordinate system.

t7t8

t5t6

t2t3t4

t0

t9t10

t1

(b) The pattern P embedded in the agreed coordinate
system.

r2

r3

r4

r5

r6

r7

r8

r9

r1

rl

r10

(c) Movement of r8 to LH(rl).

r2

r3

r4

r5

r6

r7

r8

r9r1

rl r10

(d) r0 = rl, r1, . . . , rn−1 are at (0,−2), (1,−2), . . . , (n−
1,−2).

r2

r3 r4

r5

r6

r7

r8

r9

r1

rl r10

t2

(e) Movement of r3 to t2.

t7t8

t5t6

t2t3t4

t0

t9t10

t1

r0

r1

r3

r7

r6

r2

r10

r9

r5 r4

(f) Movement of r0 to t10.

Fig. 5: Execution of Stage 2.



C Efficiency of the Algorithm

We shall study the efficiency of the algorithm in terms of the total number of moves executed by all the
robots in the team. For the efficiency analysis, we shall consider rigid movements and semi-synchronous
scheduler. That is, we shall assume the following.

1. Time is logically divided into global rounds. In each round, a finite but non-zero number of the robots
are activated. Every robot is activated infinitely often.

2. In each round, all activated robots take the snapshots at the same time, and then perform their moves
simultaneously, and completes their moves before the end of the round. As a result, no robot r sees
another robot r′ while r′ is moving.

3. Each robot is able to reach its computed destination without any interruption.

In this setting, we shall calculate the total number of moves required, in the worst case, in order to
reach the final configuration. In Stage 1, all robots, except the one that eventually becomes the leader,
execute O(1) moves each. The robot that becomes the leader, will need Θ(n) moves, in the worst-case,
while executing BecomeLeader(). In Stage 2, it is easy to see that all the robots need O(1) moves
each. Therefore, the total number of moves executed by all the robots in the team is Θ(n). This is also
asymptotically optimal. To see this, consider an initial configuration where all robots are collinear. Then
if the pattern to be formed does not have three collinear robots, then at least n − 2 robots need to
move. So, the total number of moves required to solve APF is Ω(n). Therefore, we can conclude as the
following.

Theorem 8. Algorithm 1 solves APF in asymptotically optimal number of moves.


	Arbitrary Pattern Formation by Opaque Fat Robots with Lights
	1 Introduction
	2 Model and Definitions
	3 The Algorithm
	3.1 Leader Election
	3.2 Phase 1
	3.3 Phase 2
	3.3.1 Coordinated Movement of a Batch
	3.3.2 Electing Leader from Local View
	3.3.3 Executing BecomeLeader()

	3.4 Pattern Formation from Leader Configuration

	4 Conclusion
	A Correctness of Stage 1
	A.1 Correctness of Phase 1
	A.2 Correctness of Phase 2

	B Correctness of Stage 2
	C Efficiency of the Algorithm


