Skip to main content

New Algorithms and Bounds for Halving Pseudolines

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Included in the following conference series:

  • 913 Accesses

Abstract

Let P be a set of points in general position in the plane. A halving line of P is a line passing through two points of P and cutting the remaining \(n-2\) points in a half (almost half if n is odd). Generalized configurations of points and their representations using allowable sequences are useful for bounding the number of halving lines.

We study a problem of finding generalized configurations of points maximizing the number of halving pseudolines. We develop algorithms for optimizing generalized configurations of points using the new notion of partial allowable sequence and the problem of computing a partial allowable sequence maximizing the number of k-transpositions. It can be viewed as a sorting problem using transpositions of adjacent elements and maximizing the number of transpositions at position k.

We show that this problem can be solved in \(O(nk^n)\) time for any \(k>2\), and in \(O(n^k)\) time for \(k=1, 2\). We develop an approach for optimizing allowable sequences. Using this approach, we find new bounds for halving pseudolines for even n, \(n\le 100\).

The research is supported in part by NSF award CCF-1718994.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This improves the space by a factor of \(k^{k-1}/(k-1)!\). For example, if \(k=5\) this a factor of 26.041.

  2. 2.

    The blocks in this section are different from alternating blocks used in the proof of Theorem 6.

References

  1. Ábrego, B.M., Balogh, J., Fernández-Merchant, S., Leaños, J., Salazar, G.: An extended lower bound on the number of (\(\le k\))-edges to generalized configurations of points and the pseudolinear crossing number of \(K_n\). J. Comb. Theory Ser. A 115(7), 1257–1264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ábrego, B.M., Cetina, M., Fernández-Merchant, S., Leaños, J., Salazar, G.: On \(\le \)\(k\)-edges, crossings, and halving lines of geometric drawings of \(k_n\). Discrete Comput. Geom. 48(1), 192–215 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ábrego, B.M., Fernández-Merchant, S.: A lower bound for the rectilinear crossing number. Graphs Combin. 21(3), 293–300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ábrego, B.M., Fernández-Merchant, S., Leaños, J., Salazar, G.: The maximum number of halving lines and the rectilinear crossing number of kn for n \(\le \) 27. Electron. Notes Discrete Math. 30, 261–266 (2008)

    Article  MATH  Google Scholar 

  5. Aichholzer, O.: On the rectilinear crossing number. http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/

  6. Alon, N., Györi, E.: The number of small semispaces of a finite set of points in the plane. J. Comb. Theory Ser. A 41(1), 154–157 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beygelzimer, A., Radziszowski, S.: On halving line arrangements. Discrete Math. 257(2–3), 267–283 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bokowski, J.: On heuristic methods for finding realizations of surfaces. In: Bobenko, A.I., Sullivan, J.M., Schröder, P., Ziegler, G.M. (eds.) Discrete Differential Geometry. Oberwolfach Seminars, vol. 38, pp. 255–260. Springer, Basel (2008). https://doi.org/10.1007/978-3-7643-8621-4_13

    Chapter  Google Scholar 

  9. Cetina, M., Hernández-Vélez, C., Leaños, J., Villalobos, C.: Point sets that minimize (\(\le k\))-edges, 3-decomposable drawings, and the rectilinear crossing number of \(K_{30}\). Discrete Math. 311(16), 1646–1657 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dumitrescu, A., Mandal, R.: New lower bounds for the number of pseudoline arrangements. In: Proceedings of 13th Symposium on Discrete Algorithms, pp. 410–425 (2019)

    Chapter  Google Scholar 

  11. Edelsbrunner, H., Hasan, N., Seidel, R., Shen, X.J.: Circles through two points that always enclose many points. Geometriae Dedicata 32, 1–12 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eppstein, D.: Sets of points with many halving lines. Technical Report ICS-TR92-86, University of California, Irvine, Department of Information and Computer Science, August 1992

    Google Scholar 

  13. Erdős, P., Lovász, L., Simmons, A., Straus, E.: Dissection graphs of planar point sets. In: Srivastava, J.N. (ed.) A Survey of Combinatorial Theory, pp. 139–154. North-Holland, Amsterdam (1973)

    Chapter  Google Scholar 

  14. Felsner, S.: On the number of arrangements of pseudolines. Discrete Comput. Geom. 18, 257–267 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Handbook of Discrete and Computational Geometry, pp. 125–157. Chapman and Hall/CRC (2017)

    Google Scholar 

  16. Felsner, S., Valtr, P.: Coding and counting arrangements of pseudolines. Discrete Comput. Geom. 46(3), 405–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of arrangements. J. Comb. Theory Ser. A 37(3), 257–293 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knuth, D.E. (ed.): Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55611-7

    Book  MATH  Google Scholar 

  19. Lovász, L.: On the number of halving lines. Annal. Univ. Scie. Budapest. de Rolando Eötvös Nominatae, Sectio Math. 14, 107–108 (1971)

    MathSciNet  MATH  Google Scholar 

  20. Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and \(k\)-sets. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, pp. 139–148. Contemporary Mathematics, American Mathematical Society (2004)

    Google Scholar 

  21. Matoušek, J.: Lectures on Discrete Geometry, vol. 212. Springer-Verlag, New York (2002). https://doi.org/10.1007/978-1-4613-0039-7

    Book  MATH  Google Scholar 

  22. Mnëv, N.: On manifolds of combinatorial types of projective configurations and convex polyhedra. Soviet Math. Doklady 32, 335–337 (1985)

    MATH  Google Scholar 

  23. Mnev, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.) Topology and Geometry — Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0082792

    Chapter  Google Scholar 

  24. Rodrigo, J., López, M.D.: An improvement of the lower bound on the maximum number of halving lines in planar sets with 32 points. Electr. Notes in Discr. Math. 68, 305–310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shor, P.: Stretchability of pseudolines is NP-hard. Applied Geometry and Discrete Mathematics-The Victor Klee Festschrift (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Bereg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bereg, S., Haghpanah, M. (2020). New Algorithms and Bounds for Halving Pseudolines. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics