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Abstract. While medical image analysis has seen extensive use of deep
neural networks, learning over multiple tasks is a challenge for connec-
tionist networks due to tendencies of degradation in performance over
old tasks while adapting to novel tasks. It is pertinent that adaptations
to new data distributions over time are tractable with automated analy-
sis methods as medical imaging data acquisition is typically not a static
problem. So, one needs to ensure that a continual learning paradigm be
ensured in machine learning methods deployed for medical imaging. To
explore interpretable lifelong learning for deep neural networks in medical
imaging, we introduce a perspective of understanding forgetting in neural
networks used in ultrasound image analysis through the notions of at-
tention and saliency. Concretely, we propose quantification of forgetting
as a decline in the quality of class specific saliency maps after each sub-
sequent task schedule. We also introduce a knowledge transfer from past
tasks to present by a saliency guided retention of past exemplars which
improve the ability to retain past knowledge while optimizing parame-
ters for current tasks. Experiments on a clinical fetal echocardiography
dataset demonstrate a state-of-the-art performance for our protocols.
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1 Introduction

Medical image analysis pipelines have made extensive use of deep neural net-
works in recent years with state-of-the-art performances on several tasks. In diag-
nostic ultrasound, the availability of trained sonographers and capital equipment
continues to be scarce. For congenital heart disease diagnosis in particular, the
challenges become even more pronounced with the actual identification and pro-
cessing of relevant markers in sonography scans being made difficult through the
presence of speckle, enhancements and artefacts over a small region of interest.
As with other applications of deep networks in medical image analysis[1], the
retention of performance on already learnt information while adapting to new
data distributions has been a challenge. Often, a requirement for deep networks
is the availability of large labeled datasets. In medical imaging tasks however,
data is often not abundant or legally available. There exist intra-patient vari-
ations, physiological differences, different acquisition methods and so on. Not
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all necessary data may be available initially but accumulated over time, and be
used to establish overall diagnosis. Incremental learning systems are those that
leverage accumulated knowledge gained over past tasks to optimize adaptation
to new tasks. Such optimization may not always ensure the traversal through the
parameter space in a manner suitable for old tasks. This causes degradation in
the performance of old tasks while adapting to new ones, and a balance is desired
between stability of old knowledge and plasticity to absorb new information.

Literature Review The loss of learnt features from prior tasks on retrain-
ing for new tasks leading to a diminished performance on old tasks is a phe-
nomenon called ’catastrophic forgetting’[3]. Many methods have been proposed
to build a lifelong learner. These are broadly classified[4] into i)architectural
additions to add new parameters for new data distributions, such as Progres-
sive Networks [11] where new parameter sets get initialised for new tasks with
a hierarchical conditional structure imposed in the latter case and the memory
footprint is of the order of the number of parameters added ii) memory and
rehearsal based methods where some exemplars from the past are retained for
replay (rehearsal[16], or are derived by generative models in pseudo-rehearsal,
for replay while learning on new tasks. Examples include iCaRL [5],end-to-end
lifelong learning[6] etc. In these, certain informative exemplars from the past
are retained and used as representative of past knowledge on future learning
sessions iii) regularization strategies, which include methods to enforce preser-
vation of learnt logits in parts of the network like in distillation strategies in
Learning without Forgetting [7], or estimate parameter importance and assign
penalties on them to ensure minimal deviation from learnt values over future
tasks like in Elastic Weight Consolidation [8] and Synaptic Intelligence based
continual learning [9]. In medical imaging, incremental addition of new data has
been sporadically addressed,notably in [2,12], despite clinical systems often ac-
quiring data in non-deterministic phases. While there have been efforts apart
from transfer learning [10] to resolve the paucity of labeled data, these have con-
centrated on augmentation ,multitask learning [1], and so on. In the domain of
interpretability of medical images, there has been a focus on utilizing attention
mechanisms to understand decisions of machine learning models, such as atten-
tion mechanisms for interpretation in ultrasound images in fetal standard plane
classification[13],pancreas segmentation [14] and so on. Utilizing the notions of
interpretability in a continual setting or for enabling learning in incremental ses-
sions is yet to be studied in literature and we introduce notions of class saliency
and explainability for assessing and influencing continual learning mechanisms.

Contributions Our contributions are a)a novel method to avoid catastrophic
forgetting in medical image analysis b)quantifying model forgetting and incre-
mental performance via saliency map quality evolution over multiple learning
sessions c)saliency quality in individual sessions to choose informative exemplars
for class-wise rehearsal over successive learning sessions.Usage of saliency map
quality for evaluating incremental learning performance and saliency maps to se-
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Fig. 1. (a) Fetal cardiac anatomical classes (b) Classification and knowledge distillation
scheme for our model.

lect exemplars to retain for replay and distillation based knowledge regularization
are new to computer vision and medical imaging to our knowledge.’Incremental
learning’ and ’continual learning’ are used interchangeably in literature.

2 Methodology

The aim of the study is to introduce the usage of interpretability as a building
block for incremental learning in clinical imaging using fetal cardiac anatomy
classification as a proof-of-concept.Our classes of interest are anatomical struc-
tures apparent in standard fetal cardiac planes (four-chamber or 4C, three-vessels
or 3V and left ventricular outflow tract or LVOT view). Our problem deals with
a class-incremental setting for detecting fetal cardiac structures Ventricle Walls
(VW),Foramen ovale (FO), valves (mitral,tricuspid) (4C view structures), left
atrium (LA), right ventricles (RV), Aorta (LV and aorta are seen as a continu-
ous cavity and labeled as LV-Ao hereafter) and right atrium (LVOT structures),
Pulmonary Artery (PA), Aorta, Superior Vena Cava (SVC) (3V view). These
structures are considered for study because of their relevance in assessment of
congenital heart disease [17]. Out of these, structures are learnt in sets of 3, first
as base categories in the initial task, followed by incremental task sessions. The
remaining 3 are shown to the base-trained model in incremental stages in our
class incremental learning experiments. (VW, Valves, FO) and (RV, PA, Aorta)
and (LV-Ao, SVC, LA) are then the class groups introduced in successive task
sessions. This simulates a setting where the algorithm needs to adapt to new data
distributions in the absence of a majority of exemplars from past distributions.

We propose a dual utilization of saliency to implement this continual learn-
ing setting. First, we define novel quality metrics for class averaged attention
maps that also quantify the ability of a model to learn continually.CNNs learn
hierarchical features that are aggregated towards a low-dimensional represen-
tation and the inability of the model to retain knowledge is manifested in this
hierarchy as well. Since attention maps point out the most relevant pixels in an
input image towards the classification decision made on it by a model, a digres-
sion of focus from these pixels is indicative of degradation of past knowledge.
Thus, attention map quality can be used to quantify not only the overall decline
in performance over old tasks, but offer detailed insights into relative decline
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at the level of individual classes in the task, and also for individual instances
in a class (which can be used as a measure of some examples being especially
difficult to retain). This attention based analysis is motivated by the fact that
there has been no standard agreement on how continual learning performance
ought to be evaluated. Present measures of forgetting and knowledge transfer do
not allow a granular assessment of learning processes or distinctions on the basis
of difficulty of an instance, nor do they allow a scope for explainability of the
continual learning process. Creating attention maps by finding class activations
allows for feature level explainability of model decision on every learning cycle.

2.1 Saliency map quality.

At the conclusion of a given task of N classes, the validation set of each class is
passed through the model which is then subjected to class activation mappings
(CAM) to obtain attention maps using the GradCAM approach [15]. Note that
the specific method to obtain attention/saliency maps here is for demonstra-
tion only and any suitable method may replace it. We consider only the maps
resulting from correct predictions because the explanations are generated even
otherwise but is suboptimal for further inference. Each instances map represents
the understanding of the model for the decision taken on that instance. Averaged
over the validation set of a class in a task, this average saliency map represents
the average explanation of the model for the decisions of classification. In the
absence of a ground truth, estimating a quality metric for the explanation based
saliency map is non-trivial. We try to assess the extent of forgetting by tracking
the difference between the activations obtained just after the class or task has
been learnt and that after a few other tasks are learnt subsequently. This can be
performed both for individual instances of classes and by considering classwise
average saliency maps. Past literature has explored saliency map quality in terms
of being able to mimic human gaze fixations or as a weak supervision for seg-
mentation or detection tasks,in which ground truth signals were enforced, even
if weakly. That apart, saliency maps were evaluated by [16] in context of their
attempts at designing explainable deep models. They interpret the efficiency of
saliency maps as a reasonable self-sufficient unit for positive classification of the
base image. Then, the smaller the region that could give a confident classifica-
tion in the map the better the saliency. Mathematically, this was expressed as
a log of the ratio of the area and the class probability if that area was fed to
the classifier alone. This quantity called the SSR (Smallest Sufficient Region) is
expressed in [16] as |log(a)-log(p)|, where a is the minimum area that gives a
class probability for the correct class as p. This method assumes that the con-
centration of informative pixels is a good indicator of attentive features, and is
unsuitable for cases where features of interest are distributed spatially in a non-
contiguous manner (say a fetal cardiac valve motion detection, lesions in x-rays
for lung cancer classification etc.). As such, considering our dataset of fetal heart
ultrasound, attentive regions may be distributed over a spatial region and the
non-contiguous informative regions can be adequately quantified only through
metrics designed for multiple salient region estimation and cannot be adequately
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expressed by SSR. We extend from the SSR concept, and instead of thinking in
terms of concentration of information consider the extent of regions of informa-
tive content. To do so, we consider a grid of fixed uniform regions on the input
image. Each grid region is taken as a small rectangular space whose information
content is evaluated, the size of these small regions is fixed as a hyperparameter
(we consider 224 x 224 image inputs, and 16 x 16 grid regions by optimizing
for computational cost and accuracy). Each of these grids is evaluated by the
trained model after a task for their prediction probabilities by themselves. Then
for each grid region, a quantity |log(Ag) – log(p)| can be used, with log(Ag) being
constant for fixed size grid regions, to estimate the contribution of the region to
the overall saliency map. The smaller this quantity, the more informative this
region is. A threshold can be imposed and all n grid regions contributing can be
summed up to express the Overall Saliency Quality (OSQ)as:

n∑
k=1

|log
(
Ak

g

)
− log (p) | (1)

This threshold depends on the desired class probability for the correct class
(this expression would be valid even for incorrect classifications, but we choose
regions only with correct predictions). Thus, a quality measure can be derived
for each saliency map at all stages of tasks. The expression above essentially
gives an absolute measure of saliency map quality. Retention of exemplars for

Fig. 2. Schematic of saliency curriculum based exemplar retention - After training for
a session, CAM modules compute attention maps from instances for OSQ calculations
and selecting retention examples. Figures for representation purposes only

efficient continual learning was done by random selection, by nearest class mean
and so on. These methods do not consider actual performance while making the
retention decision but derive from input distributions if not selecting randomly.
While in ideal cases, the class mean will reflect exemplars with high quality
saliency maps (as one would trivially expect that the average class representation
has the most volume of data and hence is more influential on the learning curve
for these classes), it is not always true in case of classes with significant diversity
and multiple sub-clusters of exemplars. In the latter, selecting exemplars by
methods like herding [5], the need for retaining exemplars close to the class
means is not optimal for retaining the diversity of class information, and the
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diversity of informative representations needs to be accounted for, which can be
informed by saliency based retention strategies.

2.2 Saliency driven continual curriculum.

We attempt to use the attention maps of past representations to help actively
preserve knowledge and at the same time improve generalization to future classes.
This is similar to transfer of knowledge from Task N to Task (N+1) through the
attention maps of the former being used to condition the latter. After each task
schedule we generate class activation maps using [9] for the validation data per
class and estimate the quality measure defined in the first part. Following our
need for retaining prior knowledge while moving to the next task, we consider
a selective retention strategy. In order to account for fixed memory allocations
per class, a fixed number of exemplars may be retained. We try to establish the
most informative of instances through an optimal map quality curriculum over
available instances in a class. This relies on studies of explainable representation
learning that if a classification decision were established through an empirical
risk minimization objective, a majority of instances for that category would
have low-dimensional feature representations in a close vicinity and away from
hyperplanes separating different clusters [3]. We propose two ways of preparing
a saliency based exemplar retention: 1) Assuming the presence of definitely iden-
tifiable salient cues in available instances, an average class saliency map can be
understood as an overall class decision explanation. A relative proximity at the
pixel space of a given saliency map of a given instance to this average saliency
map would indicate the suitability of such an instance for being stored as a
representative exemplar for its class. This approach is termed the Average Rep-
resentative Distance Selection (ARDS). 2) Another alternative is to pre-select a
set of most representative exemplars from a validation dataset of the class, in
terms of the class confidence probabilities, and use the normalized cumulative
distance from their saliency maps to every other instances saliency map. This
is termed Distributed Exemplar Distance Selection (DEDS), and is primarily
useful for cases where the salient regions of interest have a non-trivial spatial
variation within the same class exemplar set. ARDS is suited when strong cues
are localised and class prototype saliency maps are useful. DEDS is useful in
cases of a diversity of cues not similarly located on all exemplars or when a
significant shift is caused by affine transformations. ARDS is computationally
more efficient as a prototype-to-exemplar distance is computed in a single step.
Actual choices between the two would depend on data characteristics. In both
cases, the saliency map is treated as a probability distribution and similarity is
assessed by KL divergence between reference saliency maps and instance maps,

DKL[e, d] =

∫
(e(x)− d(x))log(e(x)/d(x))dx (2)

considering that e(x) and d(x) are the respective saliency maps being compared.
As the computation over the pixel space is discretized, the integral form is re-
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placed with a discrete summation,

DKL[e, d] =

Npixels∑
x=1

(e(x)− d(x))log(e(x)/d(x)) (3)

As for choosing instances for the ARDS or DEDS calculations, it would be
superfluous to compute for entire training sets. We choose 100 exemplars from
each class’s training set (based on their confidence probabilities in final epoch)
for this process. The retention examples are chosen from training sets as they
are replayed in future sessions and hence validation set examples cannot be used
except as saliency benchmarks, i.e, while the benchmarks for average saliency
or representative exemplar sets are derived from validation sets, these can’t be
retained as validation data can’t be used in any part of training. In both cases,
30 instances are finally chosen after a grid search over integral number of samples
between 10 and 50 (with the upper bound governed by memory constraints and
lower bound on performance thresholds), to be retained in memory for future
rehearsal. Choosing higher numbers of exemplars was found to lead to minimal
performance gains (a detailed study of these trade-offs is kept for future work).

3 Model and Objective functions

For our architecture, we implement a convolutional network with 8 convolutional
layers, interspersed alternately with maxpooling and a dropout of 0.5 (Fig.1(b)).
This is followed by a 512-way fully-connected layer before a softmax classification
stage. The focus of the work is not to achieve possible state-of-the-art classifica-
tion accuracies on the tasks and datasets studied, but to investigate catastrophic
forgetting in learning incrementally. Thus, the base network used is significantly
simplified to keep the order of magnitude of the number of parameters within
that of other continual learning approaches reported in literature [4] and enable
a fair benchmarking. For a loss function, we implement a dual-objective of min-
imizing a shift on learnt representations in the form of prior logits in the final
model layers using a knowledge distillation approach[17], and performing a cross-
entropy classification on the current task classes. A quadratic regularization is
additionally imposed with a correction factor that is set as a hyperparameter
by grid search. The overall objective function is:

L = Lcur + LKD + Lr (4)

where L is the total objective composed of the softmax cross entropy as the
current loss, the knowledge distillation loss on past logits, and the regularization
term for the previously trained parameters.

Lcur(Xn, Yn) = − 1

|Nn|

Nn∑
i=1

Jn∑
j=1

yijn .log(pijn ) (5)
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where Nnis the number of examples in a batch, Jnis the number of classes,
yn

ij is the one-hot encoded label for an instance, and pn
ij is the softmax pre-

diction. For the distillation terms, the original labels not being available,yo
ij is

computed with new and retained examples and compared to stored logits for the
old examplespo

ij , giving a loss term:

LKD(Xn, Yo) = − 1

|Nn|

Nn∑
i=1

Jo∑
j=1

yij
′

o . log(pij
′

o ) (6)

where yo
ij′ = (yo

ij)1/λ∑
j
(yoij)1/λ

and po
ij′ = (po

ij)1/λ∑
j
(poij)1/λ

, where the distillation tem-

perature λ is set at 2.0 over hyperparameter search on values from 1 to 10.
The parameter regularization is imposed for already trained weights for the

past classes and penalises the shift for current adaptation through a Frobenius
norm over the parameters as Lr = µ

∑
j ||wo−w′||2.µ is set to 0.4 by grid search.

The idea here is that while the retained exemplars from the past tasks are seen
with the present data, the process of optimization should update parameters in a
manner compatible with past prediction features. This ensures that parameters
are adapted to present distributions without drastic shifts that adversely affect
their ability to arrive at the optimal representations for previously seen examples.
A distillation framework is implemented here as such a loss term in conjunction
with a cross-entropy objective can enforce a regularization on representations
from the past, which is not achieved by a simple parametric regularization.

Data. For fetal echocardiography data, we consider a clinically annotated
dataset of 91 fetal heart videos from 12 subjects of 2-10 s with 25-76 fps. Ob-
taining 39556 frames of different standard planes and background, we crop out
relevant anatomical structures in patches of 100 x 100 from the frames, lead-
ing to a total of 13456 instances of 4C view structures (Ventricle Walls, Valves,
Foramen ovule), 7644 instances of 3V view structures (Pulmonary Artery, Supe-
rior Vena Cava, Descending Aorta) and 6480 LVOT structures (Right Atrium,
Left ventricle-Aorta continuum and Right Ventricle). A rotational augmentation
scheme is applied with angular rotations of 10 degrees considering the rotational
symmetry of the actual acquisition process.Instances sourced from 10 subjects
are used for training sets and the rest for validation.

Training. For initial training, the number of base classes (N) are taken as
3. In the (N+1)th task (N¿1) following the creation of exemplar sets of the im-
mediate past task, the training process is started for the (N+1)th task and so
on (this goes on for 3 sessions in total in our case as we deal with a total of 9
classes of sub-anatomies). Batches are created between old and new data, and
to further improve performance a distillation based regularization with repre-
sentative logits of the past tasks is used along with the cross-entropy loss for
the present task and exemplars. The training stage essentially involves a base
training with the first set of classes, carried over 50 epochs with a learning rate
of 0.001. This is followed by a class activation mapping stage with the recently
trained model, and an averaged saliency map calculation per class. This model
is now fine-tuned for the group of classes for the next task with a joint distilla-
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tion and cross-entropy loss over past logits and new labels for 50 epochs. The
process continues over the remaining task sessions. CAM stages are carried out
only after entire task session is completed and not in-between epochs. In those
models where past exemplars are retained and rehearsed, these are interspersed
with the batches during fine-tuning over the new class sets.

Baselines. For baseline comparisons, the network model described is adapted
with the protocol in iCaRL [5], where the representation learning stages are fol-
lowed by a storage of class-specific exemplars using a herding algorithm [5]. This
is implemented in our datasets by computing average prototype representations
through the penultimate fully-connected layers for the classes seen till the pre-
vious task. A multi-class adaptation of Learning without Forgetting (LwF.MC)
[7] is attempted with our network and objective function without the weight
regularization term, and logits for distillation are retained. For the end-to-end
learning (E2EL) [8] method adapted to our network, a fixed memory version is
followed to be a more accurate benchmark to our own fixed memory per class
assumptions. The representative memory fine-tuning protocol in E2EL is imple-
mented for baselines with the same training configurations as the initial training,
except that the learning rate is reduced to 1/10th the initial value. A progressive
distillation and retrospection scheme (PDR) [9] is implemented with replicated
versions of our network serving as the teacher network for the distillation and
the retrospection phases, with the exemplars generating retrospection logits for
regularization while progressively learning on new data which are presented as a
second set of logits which have been learned separately in another replication of
the base network. In these implementations, storage of prior exemplars follows
the same protocols as used in the original implementations.

4 Results and Discussion

We consider configurations of our approach in terms of the exemplar retention
method used and adopt OSQ in tandem: 1)map quality with OSQ and ARDS,
2)map quality with OSQ + DEDS. Variants of our approach without storing
rehearsal exemplars are also considered in terms of training a vanilla CNN with
similar architecture as the base CNN used in other approaches. This is same
as using a simple CNN baseline with transfer learning over task sessions. An-
other version CNN(TL) also functions without retention strategies but with
convolutional layers frozen while further task finetuning(this would reflect in a
much higher difference between initial task performance and subsequent task val-
ues).The reported performances include the average accuracies at incremental
levels, with and without using the salient retention scheme in step 2, bench-
marked with our adaptations of methods in iCaRL[5], LwF.MC[7], E2EL[18]
and Progressive distillation (PDR)[19]. Using these benchmarks indirectly also
allow comparison between different exemplar retention strategies, such as with
naive and herding based methods explored in iCaRL and LwF. Also reported is
the average saliency map quality in each stage. This OSQ metric is a proxy for
the level of forgetting over multiple stages, and a difference between consecutive
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stages in the OSQ represents the decline in the models ability to seek out most
salient image regions over classes. Also, the OSQ is an indicator of stagewise
model interpretability since accurate model explanations rely directly on the
quality of saliency maps for medical images.

The reported OSQ over learning sessions is the saliency quality averaged over
all validation exemplars available for previously seen classes. We report the av-
erage value for tasks so far, since we want to look at broad trends in the overall
saliency to assess the overall ability to retain knowledge. For future extensions,
it is straight-forward to obtain these values at both class and instance level and
only requires them to be input to the trained model and class activation maps
processed before the OSQ calculation. There is a difference in accuracies for base-
line methods compared to original implementations due to our using the same
base network for all baselines and models for uniform assessments (e.g. iCarL
originally used embeddings from 32 layer ResNet on CIFAR 100 but we use the
iCaRL baseline on our data and our base network). A trend is established where
the inclusion of exemplars based on a saliency driven approach is seen to have
a marked improvement on mitigation of forgetting, based on the OSQ metrics
introduced here, and also on the validation accuracies averaged on previously
seen classes for the task sessions considered (the past accuracy % in Table 1 for
a task stage refers to validation accuracy of validation sets from previously seen
classes, and the present accuracy % is the validation accuracy obtained on the
present validation set). The saliency quality variation roughly corresponds to the
past accuracy percentages demonstrating the efficacy of using map quality as a
metric for evaluation of continual learning algorithms in medical image analy-
sis. The methods that consider the retention of exemplars from the past overall
show not only a better performance with respect to past task accuracies, but
also demonstrate considerably higher current learning performances. This im-
plies that a feature importance based identification of informative examples for
classes of physiological markers not only improves the ability to better rehearse
on past data during future learning stages but also transfers salient representa-
tive knowledge leading to better initialization of the parameters for improving
performances on the present as well.Here, the diversity of the examples that can
constitute a single class type representing a physiological region requires that
multiple salient features can be used to explain the final optimization decisions
and a diversity of informative exemplars need to be chosen for optimal forward
propagation of knowledge while learning on future increments of tasks. The pro-
posed pipeline ensures an inherent continual explainability of the decisions and
how they shift over new data arrivals.

Conclusion. In this proof-of-concept for saliency aware continual learning
paradigms, we presented metrics for assessment of continual learning in terms
of saliency allowing for instance and class level understanding of the basis for
prediction and a shift in the learning of the same. We also utilised the saliency
from the past task as a selected representative for prior tasks during subsequent
learning and developed a joint curriculum for creating such sets of exemplars.
Our method makes the continual learning process interpretable to a degree,
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Table 1. Evolution of model performance over task sessions.Past accuracy refers to
validation accuracy on past session classes (or past tasks). Map quality (MQ) is re-
ported for present task session (leftmost column for each task session head) and for
previous session classes.

Method Task 1 Task 2 Task 3

MQ Task 1
acc %

MQ
(T2)

MQ
(T1)

Task 2
acc. %

Past
acc %

MQ
(T3)

MQ
(T2)

Task 3
acc. %

Past
acc %

Ours(OSQ
+ ADRS)

0.933 0.812 0.942 0.915 0.845 0.704 0.913 0.876 0.632 0.568

Ours(OSQ
+ DEDS)

0.946 0.812 0.938 0.923 0.863 0.691 0.887 0.843 0.636 0.593

OSQ +
std. CNN

0.871 0.811 0.840 0.631 0.778 0.592 0.852 0.802 0.661 0.455

OSQ +
CNN(TL)

0.827 0.813 0.822 0.612 0.702 0.511 0.772 0.647 0.560 0.322

iCaRL 0.811 0.775 0.831 0.622 0.713 0.616 0.834 0.674 0.658 0.321

LwF.MC 0.773 0.762 0.767 0.668 0.732 0.529 0.822 0.731 0.621 0.301

E2EL 0.818 0.793 0.792 0.703 0.742 0.554 0.785 0.706 0.603 0.295

PDR 0.842 0.802 0.837 0.711 0.759 0.514 0.791 0.721 0.581 0.342

and thereby ensures that the forgetting and retention characteristics of models
are explainable. Given the foundations laid here, multiple future directions are
possible starting with an exploration of classwise chracteristics in terms of for-
getting and retention performances and the trends of decline in map quality over
intra-class variations. This is likely to be a natural follow-up of the ideas pro-
posed here. Another immediate direction would be to study other strategies for
saliency-curriculum driven exemplar retention. While we used a fixed number of
exemplars for retention and rehearsal over future tasks, other approaches like a
variable retention based on class difficulty are possible. Future directions can also
include expanding to different tasks and datasets, using the saliency based ex-
emplar scheme with other lifelong learning methods, using generative replay for
estimating past saliency maps and images without need to retain exemplars, and
so on. While we have demonstrated on approaches on distillation-based preser-
vation, and using class activation derived saliency maps, the concept is generally
applicable with any other continual learning pipeline, and can use other methods
of estimating saliency maps, with different base architectures or objectives.
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