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Abstract. The fetal brain undergoes extensive morphological changes
throughout pregnancy, which can be visually seen in ultrasound acqui-
sitions. We explore the use of convolutional neural networks (CNNs)
for the segmentation of multiple fetal brain structures in 3D ultrasound
images. Accurate automatic segmentation of brain structures in fetal ul-
trasound images can track brain development through gestation, and can
provide useful information that can help predict fetal health outcomes.
We propose a multi-task CNN to produce automatic segmentations from
atlas-generated labels of the white matter, thalamus, brainstem, and
cerebellum. The network as trained on 480 volumes produced accurate
3D segmentations on 48 test volumes, with Dice coe�cient of 0.93 on
the white matter and over 0.77 on segmentations of thalamus, brainstem
and cerebellum.

1 Introduction

Fetal ultrasound scanning is a routine procedure during prenatal care, and is in
many countries part of standard obstetric care. The scans are visually inspected
to verify normal fetal development and to screen for disorders visible at speci�c
gestational timepoints. These scans can be used to discern anatomical struc-
tures and track brain development [1]. Cortical structures �rst become visible
within the fetal brain around 14 weeks of gestation and progressively develop
throughout pregnancy [1].

Most studies that have analysed brain development have relied on MR imag-
ing to perform segmentation and make quantitative measurements, due to its
higher image resolution and signal-to-noise ratio [2]. However, MRI scans are
relatively expensive and inaccessible, while ultrasound scans are a routine and
widely available modality. Ultrasound displays artifacts which are di�cult to
interpret. Furthermore, due to the e�ects of increasing cranial ossi�cation, the
cerebral hemisphere proximal to the probe tends to be indistinct and it is dif-
�cult to discern structural boundaries [3], while the distal hemisphere is more
detailed.

A number of atlases have been constructed for fetal and neonatal brains using
MRI. Kuklisova-Murgasova et al [4] generated a publicly available 4D probabilis-
tic atlas over a wider range of gestational ages (29−44 gestational weeks (GW))



that could be used to segment speci�c structures within the brain; however,
this atlas was constructed using images of neonatal brains born preterm, and
is therefore anatomically distinct from fetal brains. Most recently, Gholipour et
al [5] proposed a 4D spatiotemporal atlas of the fetal brain spanning 19 − 39
GW, using 3D MRI scans of fetuses and producing atlas labels of tissue type
and structure.

Previous work on segmentation of fetal brain structures has proposed meth-
ods based on regression forests [6], and segmentation based on image atlases
[7]. Machine-learning techniques such as convolutional neural networks (CNNs)
can learn to distinguish important boundaries and artifacts and are increasingly
popular in the segmentation of fetal ultrasound images [8], as they can learn to
disregard some of the artifacts presented by ultrasound imaging and indepen-
dently learn important segmentation features. Ronneberger et al have developed
the U-net [9], a CNN architecture for the segmentation of biomedical images.

We propose a machine learning-based method for automated segmentation
of multiple fetal brain structures. We implement a CNN structure based on the
U-net structure to perform multiple segmentations on 3D ultrasound volumes.
To the best of our knowledge, this is the �rst work that demonstrates a CNN-
based segmentation of individual fetal brain structures in 3D ultrasound. This
is also the �rst work to demonstrate that segmentation in ultrasound can be
achieved using a network trained exclusively on auxiliary generated labels.

2 Methods

2.1 Network design

A 3D encoder-decoder network architecture based on the U-net architecture was
used to perform multi-task segmentation. The size of the network was limited by
memory constraints, so the top-level layer learned 16 3×3×3 feature maps. To
satisfy memory constraints, the V-net architecture [10] was used. A softmax acti-
vation function was used at the output of the �nal convolutional layer to classify
each voxel. The output was a �ve-class segmentation Y ∈ Rn×Nx×Ny×Nz×5where
n is the number of volumes, and all volumes have dimensions Nx × Ny × Nz.
Segmentation maps for the thalamus, white matter, brainstem, cerebellum and
background were generated1. Multi-label Dice coe�cient, the sum of the Dice co-
e�cients of all classes, was used as the loss function, as this led to what visually
appeared to be the best results. Multi-label Dice is given by

DSCml =
∑
i

2 (GTi ∩ Segi)

GTi + Segi

where GT and Seg are mappings of voxels corresponding to the ground truth
and generated segmentation, respectively. The other parameters for the net-
work's training were replicated from Milletari et al's V-net study [10] , but
ReLU activation functions were used instead of PReLU for simplicity.

1 Due to the size of this network, we used a batch size of 1 volume for training.
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Fig. 1. The di�erent network pipelines proposed. (a) The proposed 3D multi-task ar-
chitecture, based on V-net. (b) A 2D multi-task framework, based on U-net, with
QuickNAT-style merging of the di�erent views. (c) A 3D single-task architecture, where
a di�erent network is trained per structure.

The validation set was comprised of eight volumes per gestational week (for a
total of 48 volumes). The remaining 480 volumes were used for training. A sim-
ilar, single-task version of this network was also implemented for comparison.
The architecture was identical, but the �nal layer was given a sigmoid activation
function, similar to the original U-net architecture. Another technique which was
found to slightly improve performance further was the application of a simple
morphological operation (a 3×3×3 morphological closing followed by an open-
ing) to the resulting segmentation. This operation removes any small gaps from
the segmentation, and weakly enforces smoothness near the edges of the segmen-
tation. The edges are where the trained network shows the most uncertainty in
its segmentations: �gure 3 shows that the most misclassi�cations occur near the
edge of the tissues of interest.

A classical 2D U-net architecture was also implemented for comparison. This
network took 2D slices as input, and output a segmentation map for each slice.
The segmentations of each slice were then stacked to obtain a full 3D semantic
segmentation. To incorporate contextual information from other views, the data
was sliced in 3 di�erent ways, corresponding to the 3 canonical views, in a strat-
egy similar to QuickNAT [11]. Each 2D network outputs �soft� segmentation
masks for each structure, with each voxel given a value between 0 and 1 for each
structure corresponding to the network's con�dence. Combining the output of
each network could exploit 3D information for segmentation, and therefore lead
to a better accuracy than networks trained on individual views. Each network's
output for every voxel was averaged and a threshold was applied to obtain a
joint segmentation.



A comparison of all proposed network architectures can be seen in Figure
1. All training was done on an Nvidia GeForce GTX 1080 GPU. The CNN
converged to its highest Dice coe�cient after 20 epochs, and after training each
new volume could be segmented in 250ms.

A large ultrasound dataset is available from the INTERGROWTH-21st study,
a longitudinal multi-centre study [12] that collected data from optimally healthy
pregnancies carried to term. The data obtained from this study was used to
provide a dataset to train and test a CNN-based solution.

The volumes used in this investigation are all of healthy fetuses between 20
and 25 weeks' gestation. A total of 528 3D ultrasound volumes were selected
within this age range, based on a visual inspection of the anatomy and the sub-
jective visibility of brain structures of interest within each scan. This narrow
range of gestational ages is of particular interest, as women have a routine ul-
trasound scan at 20 weeks of gestation, and sulci and gyri in the cortex become
visible around this time in pregnancy [1].

All volumes were manually cropped to include just the cranium, and rotated
to a canonical reference space [13]. Each brain was centered and resampled to a
160 × 160 × 160 volume, with the mean voxel sampled at 0.6 × 0.6 × 0.6 mm.
The hemisphere distal to the ultrasound probe is always more detailed than
the proximal hemisphere due to interactions between the concave skull and the
ultrasound signal, but the acquisition protocol for this data was agnostic to
which hemisphere would be more visible.

2.2 Label generation

Given the size of this dataset and the visual artifacts and subject-speci�c char-
acteristics inherent in ultrasound imaging, it is challenging and time-consuming
for human experts to manually segment this dataset. We used an atlas-based
method to generate a large amount of weak labels to compensate for this.

Gholipour et al [5] recently proposed a 4D spatiotemporal atlas of the fetal
brain spanning 21− 37 GW, using 3D MRI scans of fetuses and producing atlas
labels of tissue type and structure. This atlas can achieve segmentation quality
comparable to human experts based on Dice coe�cient [5]. This atlas was used
to generate auxiliary labels for this dataset, similar to what was done by Guha
Roy et al [11] for the segmentation of brain structures in MRI with limited
annotations.

To propagate the atlas labels to individual ultrasound volumes, a mask of the
skull was manually �tted to each ultrasound volume: since the skull is a strong
ultrasound re�ector and has a predictable ellipsoidal shape, this could be done
quickly. Registration based on a similarity transform (comprising translation, ro-
tation and scaling) was then performed to �nd the transformation between the
skull mask of an age-matched atlas and the manually labeled skull in each vol-
ume. The atlas-based segmentations of four structures, namely the thalamus,
brainstem, cerebellum, and white matter were generated in this way. These
structures were chosen because they are large and can be seen in ultrasound
acquisitions: some, such as the cerebellum, are also inspected as part of routine
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Fig. 2. The pipeline used to generate segmentation labels from the MRI atlas. The
skull was segmented in each volume, a similarity transform - based registration was
performed to �nd the correspondence, and then the structural labels were propagated.

clinical scans [14]. The transformation was applied to each of those structures,
using nearest-neighbor interpolation to adjust to the new coordinate system. A
schematic of the atlas-based segmentation framework can be seen in Figure 2.

Since only the hemisphere distal to the ultrasound probe can be seen in
any detail, for structures that extend far from the midsagittal plane (the white
matter and the thalamus) only the label distal to the probe was segmented. The
cerebellum and brainstem do cross the midsagittal plane, so the entire label was
segmented.

3 Results

Each single view was trained for 20 epochs. After this the network showed a
tendency to over�t and reduce validation accuracy.

Table 1 shows the improvement in performance when doing multi-task seg-
mentation compared to a single-task framework for each brain structure stud-
ied. For every brain structure, the multi-task segmentation framework performed
better, with a mean improvement in Dice coe�cient improvement of more than
33% over identical network trained with the same data on single-task segmenta-
tion. This is a substantial performance improvement, likely due to the fact that
the brain structures analysed are spatially near to each other and often share
anatomical boundaries, meaning that the same features are useful to extract



Network DSC ED (mm) HD (mm)

Thalamus

3D multi-task 0.811 ± 0.061 2.17 ± 1.35 3.80 ± 1.95

3D single-task 0.708 ± 0.070 2.82± 1.65 4.16 ± 2.39
2D 0.664 ± 0.081 2.09 ± 1.74 4.18 ± 2.87

Brainstem
3D multi-task 0.820 ± 0.081 2.09 ± 1.26 4.14 ± 1.29

3D single-task 0.723 ± 0.098 1.96 ± 1.76 5.47 ± 2.37
2D 0.716 ± 0.066 2.07 ± 1.95 4.95 ± 3.20

Cerebellum
3D multi-task 0.773 ± 0.149 2.42 ± 1.32 4.20 ± 2.39
3D single-task 0.689 ± 0.165 2.20 ± 1.72 4.42 ± 1.66

2D 0.681 ± 0.089 2.15 ± 1.96 3.78 ± 2.77

White matter
3D multi-task 0.921 ± 0.033 2.27 ± 1.46 5.93 ± 2.28

3D single-task 0.865 ± 0.036 2.32 ± 1.72 5.90 ± 2.04
2D 0.819 ± 0.040 2.23 ± 1.89 14.40 ± 8.21

Table 1. Segmentation performance of single-task and multi-task segmentation archi-
tectures, as measured by Dice coe�cient (DSC), Euclidean distance of the centres of
mass (ED) and Hausdor� distance (HD). Across measures and brain structures, the
multi-task architecture outperforms the single-task network.

False positives False negatives

0

20%
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Fig. 3. A schematic showing the position of false negatives and false positives at a
given axial slice for this data.



them. A richer training label e�ectively increases the amount of training data
available, by providing important contextual information [15]. We expect that
with larger training datasets, this di�erence should therefore decrease.

(a) (b)

Fig. 4. (a) the atlas-generated labels used to train the CNN. (b) the resulting predic-
tions on the same volumes (from the test set).

It is notable that segmentation of smaller structures, such as the thalamus,
results in a signi�cantly lower Dice coe�cient than segmentation of the white
matter on the same network. This can be explained by their di�ering physical
characteristics: the thalamus is physically much smaller than the white matter
label. In the dataset used, the white matter typically has a volume 15 times
greater than the thalamus at 20 weeks, and 20 times greater at 24 weeks. The
Dice coe�cient is therefore biased by the larger number of interior voxels that
can be predicted with high con�dence, compared to voxels near the surface for
which classi�cation is more uncertain.. On the other hand, measures such as
the Hausdor� distance are lower on smaller structures, showing that the overall
subjective segmentation quality is similar across all structures.

Some examples of the resulting segmentations can be seen in Figure 4. Where
anatomical features are clearly visible in the ultrasound image, such as the
boundaries of the white matter near the skull, the CNN appears to improve
on the atlas-based labels: this is expected, as (beyond gestational age and skull



shape) the atlas-based labels do not take individual variation into account. On
the other hand, in regions where the ultrasound image is poor or subject to shad-
owing artifacts, such as the base of the medulla, the CNN appears to perform
worse than the atlas.

Labels:
thalamus
brainstem
cerebellum
white
matter

Ground truth Prediction

Fig. 5. Comparison of the visual appearance in 3D of the atlas-based ground truth
labels and the prediction for a volume.

Visually, the prediction seems to be signi�cantly smoother than the atlas-
based ground truth labels used for training, as seen in Figure 5. This is likely
due to the roughness of the original atlas-based segmentation: since nearest-
neighbour interpolation is necessary, aliasing artifacts are likely to be introduced
into the image. The resulting learned images, while smoother, do also appear to
lose some of the detail available.



Fig. 6. Estimates of lengths, such as the transcerebellar diameter (TCD) derived from
our data are in general agreement with the literature [14].

It is also possible to compare the measurements we obtained to previous
results in the literature. Figure 6 shows the transcerebellar diameter (TCD),
a clinical biomarker often measured in scans [14]. Our proposed method �nds
segmentations with lengths that seem to be in agreement with others that have
previously been done.

4 Conclusion

In this paper, we obtained multi-task segmentation maps of several brain struc-
tures from 3D ultrasound acquisitions, using only coarse atlas-based segmen-
tations for training. The results show that a CNN can learn to segment these
structures even from weak labels, and visually improve on the quality of the
segmentation. A multi-task segmentation framework was also proposed that im-
proves on the performance of a similar single-task network, and we showed that
a natively 3D architecture outperforms a 2D architecture. The methods devel-
oped here are an interesting proof of concept, showing that this problem can be
tackled with the proposed approach.
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