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Abstract. The segmentation of Left Ventricle (LV) is currently carried out 

manually by the experts, and the automation of this process has proved 

challenging due to the presence of speckle noise and the inherently poor quality 

of the ultrasound images. This study aims to evaluate the performance of different 

state-of-the-art Convolutional Neural Network (CNN) segmentation models to 

segment the LV endocardium in echocardiography images automatically. Those 

adopted methods include U-Net, SegNet, and fully convolutional DenseNets 

(FC-DenseNet). The prediction outputs of the models are used to assess the 

performance of the CNN models by comparing the automated results against the 

expert annotations (as the gold standard). Results reveal that the U-Net model 

outperforms other models by achieving an average Dice coefficient of 0.93 ± 

0.04, and Hausdorff distance of 4.52 ± 0.90. 
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1 Introduction 

To evaluate the cardiac function in 2D ultrasound images, quantification of the LV 

shape and deformation is crucial, and this relies on the accurate segmentation of the LV 

contour in end-diastolic (ED) and end-systolic frames [1]. Currently, the manual 

segmentation of the LV has the following problems such as, it needs to be performed 

only by an experienced clinician, the annotation suffers from inter-and intra-observer 

variability, and it should be repeated for each patient. Consequently, it is a tedious and 

time-costing task. Therefore, the automatic segmentation methods have been proposed 

to resolve this issue that can lead to increase patient throughput and can reduce the 

inter-user discrepancy. 

 

There are many proposed methods for 2D LV segmentation. Recently deep CNN 

has shown very promising results for image segmentation [8, 9, 11].  
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This study aims to adapt and evaluate the performance of different state-of-the-art 

deep learning semantic segmentation methods to segment the LV border on 2D 

echocardiography images automatically. The rest of the paper is structured as follows. 

In section 2, the dataset and the several neural networks models are described. In section 

3, evaluation measures of the performance and accuracy of the neural network are 

addressed. Experimental results and discussion are presented in section 4. Finally, 

conclusion and future work are provided in section 5.  

2 Methodology 

2.1 Dataset 

 

The study population consisted of 61 patients (30 males), with a mean age of 6411, 

who were recruited from patients who had undergone echocardiography with Imperial 

College Healthcare NHS Trust. Only patients in sinus rhythm were included. No other 

exclusion criteria were applied. The study was approved by the local ethics committee 

and written informed consent was obtained. 

 

Each patient underwent standard Transthoracic echocardiography using a 

commercially available ultrasound machine (Philips iE33, Philips Healthcare, UK), and 

by experienced echocardiographers. Apical 4-chamber views were obtained in the left 

lateral decubitus position as per standard clinical guidelines [3].  

 

All recordings were obtained with a constant image resolution of 480×640 pixels. 

The operators performing the exam were advised to optimise the images as would 

typically be done in clinical practice. The acquisition period was 10s to make sure at 

least three cardiac cycles were present in all cine loops. To take into account, the 

potential influence of the probe placement (the angle of insonation) on the 

measurements, the entire process was conducted three times, with the probe removed 

from the chest and then placed back on the chest optimally between each recording. A 

total of three 10-second 2D cine loops was, therefore, acquired for each patient. The 

images were stored digitally for subsequent offline analysis. 

 

To obtain the gold-standard (ground-truth) measurements, one accredited and 

experienced cardiology expert manually traced the LV borders. Where the operator 

judged a beat to be of extremely low quality, the beast was declared invalid, and no 

annotation was made. We developed a custom-made program which closely replicated 

the interface of echo hardware. The expert visually inspected the cine loops by 

controlled animation of the loops using arrow keys and manually traced the LV borders 

using a trackball for the end-diastolic and end-systolic frames. Three heartbeats (6 

manual traces for end-diastolic and end-systolic frames) were measured within each 

cine loop. Out of 1098 available frames (6 patients × 3 positions × 3 heartbeats × 2 

ED/ES frames), a total of 992 frames were annotated. To investigate the inter-observer 
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variability, a second operator repeated the LV tracing on 992 frames, blinded to the 

judgment of the first operator. A typical 2D 4-chamber view is shown in Fig 1, where 

the locations of manually segmented endocardium by the two operators are highlighted. 

 

 

 

Fig. 1. An example 2D 4-chamber view. The blue and yellow curves represent the annotations 

by Operator-A and Operator-B, respectively. 

2.2 Neural network for semantic segmentation 

All images were resized to a smaller dimension of 320×240 pixels for feeding into the 

deep learning models. From the total of 992 images, 595 (60%) were randomly selected 

for training, 20% of total data used for validation, and the remaining 20% was used for 

testing. 

 

Standard and well-established U-Net neural network architecture was firstly used 

since this architecture is applicable to multiple medical image segmentation problems 

[4]. The U-Net architecture comprises of three main steps such as down-sampling, up-

sampling steps and cross-over connections. During the down-sampling stage, the 

number of features will increase gradually while during up-sampling stage the original 

image resolution will recover. Also, cross-over connection is used by concatenating 

equally size feature maps from down-sampling to the up-sampling to recover features 

that may be lost during the down-sampling process.  

 

Each down-sampling and up-sampling has five levels, and each level has two 

convolutional layers with the same number of kernels ranging from 64 to 1024 from 

top to bottom correspondingly. All convolutions kernels have a size of (3×3). For down-

sampling Max pooling with size (2 × 2) and equal strides was used.  

 

In addition to the U-net, SegNet and FC-DenseNet models were also investigated. 

The SegNet model contains an encoder stage, a corresponding decoder stage followed 

by a pixel-wise classification layer. In SegNet model, to accomplish non-linear up-
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sampling, the decoder performs pooling indices computed in the max-pooling step of 

the corresponding encoder [5]. The number of kernels and kernel size was the same as 

the U-Net model.  

FC-DenseNet model is a relatively more recent model which consists of a down-

sampling and up-sampling path made of dense block. The down-sampling path is 

composed of two Transitions Down (TD) while an up-sampling path is containing two 

Transitions Up (TU). Before and after each dense block, there is concatenation and skip 

connections (see Fig 2). The connectivity pattern in the up-sampling is different from 

the down-sampling path. In the down-sampling path, the input to a dense block is 

concatenated with its output, leading to linear growth of the number of feature maps, 

whereas in the up-sampling path, it is not [6].  

 

 

Fig. 2. Diagram of FC-DenseNet architecture for semantic segmentation [6].  

All models produce the output with the same spatial size as the input image (i.e., 

320×240). Pytorch was used for the implementations [10], where Adam optimiser with 

250 epochs and learning rate of 0.00001 were used for training the models. The network 

weights are initialised randomly but differ in range depending on the size of the 

previous layer [7]. Negative log-likelihood loss is used as the network’s objective 

function. All computations were carried using an Nvidia GeForce GTX 1080 Ti GPU. 

 

All models were trained separately and indecently using the annotations provided by 

either of the operators, and following acronyms are used for the sake of simplicity: 

GTOA and TOB as ground-truth segmentations provided by Operator-A and Operator-B, 
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respectively; POA and POB as Predicted LV borders by deep learning models trained 

using GTOA and TOB.  

3 Evaluation measures 

The Dice Coefficient (DC), Hausdorff distance (HD), and intersection-over-union 

(IoU) also known as the Jaccard index were employed to evaluate the performance and 

accuracy of the CNN models in segmenting the LV region. The DC (1) was calculated 

to measure the overlapping regions of the Predicted segmentation (P) and the ground 

truth (GT). The range of DC is a value between 0 and 1, which 0 indicates there is not 

any overlap between two sets of binary segmentation results while 1, indicates complete 

overlap. 

 

                                          𝐷𝐶 =  
2|𝑃 ∩ 𝐺𝑇|  

|𝑃|+ |𝐺𝑇|
                          (1) 

Also, the HD was calculated using the following formula for the contour of 

segmentation where, d (j, GT, P) is the distance from contour point j in GT to the closest 

contour point in P. The number of pixels on the contour of GT and P specified with O 

and M respectively.  

 

               𝐻𝐷 = max(𝑚𝑎𝑥𝑗 ∈ [0,𝑂−1] 𝑑(𝑗, 𝐺𝑇, 𝑃), 𝑚𝑎𝑥𝑗 ∈ [0,𝑀−1] 𝑑(𝑗, 𝑃, 𝐺𝑇))        (2) 

 

Moreover, the IoU was calculated image-by-image between the Predicted 

segmentation (IP) and the ground truth (GT). For a binary image (one foreground class, 

one background class), IoU is defined for the ground truth and predicted segmentation 

GT and IP as 

 

                                    𝐼𝑜𝑈(𝐺𝑇, 𝐼𝑃) =  
|𝐺𝑇 ∩ 𝐼𝑃|  

|𝐺𝑇 ∪ 𝐼𝑃|
                                              (3) 

4 Experiment results and discussion 

Fig 3 shows example outputs from the three models when trained using annotation 

provided by Operator-A (i.e., GTOA). The contour of the predicted segmentation was 

used to specify the LV endocardium border. The red, solid line represents the automated 

results, while the green line represents the manual annotation. 

 

As can be seen, the U-Net model achieved higher DC (0.98), higher IoU (0.99), and 

lower HD (4.24) score. A visual inspection of the automatically detected LV border 

also confirms this. The LV border obtained from the SegNet and FC-DenseNet models 

seems to be less smooth compared to that in the U-Net model. However, all three 

models seem to perform with reasonable accuracy.       
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U-Net SegNet FC-DenseNet 

    DC = 0.98 0.96 0.91 

HD = 4.24 6 6.78 

IoU = 0.99 0.98 0.96 

 

   

       Fig. 3.  Typical outputs from U-Net, SegNet, and FC-DenseNet models. 

 

 

U-Net SegNet FC-DenseNet 

    DC = 0.77 0.49 0.00 

HD = 4.12 4.00 4.35 

IoU = 0.96 0.94 0.91 

 

   

Fig. 4. Failed case example outputs from U-Net, SegNet, and FC-DenseNet models. 

 

Fig 4 illustrates the results for a sample failed case, for which all three models seem to 

struggle with the task of LV segmentation. By closer scrutiny of the echo images for 

such cases, it is evident that the image quality tends to be lower due to missing borders, 

presence of speckle noise or artefacts, and poor contrast between the myocardium and 

the blood pool. 

 

Table 1 provides the average Dice coefficient, Hausdorff distance, and Intersection- 

over-Union for the three models, across all testing images (199 images). The U-Net 

model, in comparison with the SegNet and FC-DenseNet models, achieved relatively 

better performance. The average Hausdorff distance, however, was higher for the FC-

DenseNet, compared to the other two models. 
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Table 1. Comparison of evaluation measures of dice coefficient (DC), Hausdorff distance (HD), 

and intersection-over-union (IoU) between the three examine models, expressed as meanSD. 

 

model DC HD IoU  

U-Net 0.93 ± 0.04 4.52 ± 0.90 0.98 ± 0.01 

SegNet 0.91± 0.06 4.65 ± 0.89 0.98 ± 0.01 

FC-DenseNet 0.84 ± 0.11 5.05 ± 0.69 0.96 ± 0.02 

 

 

For each image, there were four assessments of the LV border; two human and two 

automated (trained by the annotation of either of human operators). As shown in table 

2, the automated models perform similarly to human operators. The automated model 

disagrees with the Operator-A, but so does the Operator-B. Since different experts make 

different judgments, it is not possible for any automated model to agree with all experts. 

However, it is desirable for the automated models do not have larger discrepancies 

when compared with the performance of human judgments; that is, to behave 

approximately as well as human operators. 

Table 2. Comparison of evaluation measures (Dice coefficient, Hausdorff distance, and 

intersection-over-union) for the U-Net model between five possible scenarios.  

 

compared scenarios      DC      HD      IoU 

OA VS OB 0.88 ± 0.06 4.50 ± 0.87 0.83 ± 0.03 

POA VS OA 0.93 ± 0.04 4.52 ± 0.90 0.98 ± 0.01 

POA VS OB 0.89 ± 0.04 4.76 ± 0.91 0.97 ± 0.01 

POB VS OB 0.91 ± 0.05 4.87 ± 0.85 0.98 ± 0.01 

POB VS OA 0.89 ± 0.06 4.82 ± 0.82 0.98 ± 0.01 

5 Conclusion and future work 

The time-consuming and operator-dependent process of manual annotation of left 

ventricle border on a 2D echocardiographic recording could be assisted by the 

automated models that do not require human intervention. Our study investigated the 

feasibility of such automated models which perform no worse than human experts. 

 

The automated models demonstrate larger discrepancies with the gold-standard 

annotations when encountered with the lower image qualities. This is potentially caused 

by the lack of balanced data in terms of different image quality levels. Since the patient 

data in our study was obtained by the expert echocardiographers, the distribution leans 

more towards higher average and higher quality images. This may result in the model 

forming a bias towards the more condensed quality-level images. Future investigations 
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will examine the correlation between the performance of the deep learning model and 

the image qualities, as well as using more balanced datasets. 

 

The patients were a convenience sample drawn from those attending a cardiology 

outpatient clinic. They, therefore, may not be representative of patients who enter trials 

with particular enrolment criteria or of inpatients or the general population. A further 

investigation will look at a wide range of subjects in any cardiovascular disease setting. 

The segmentation of other cardiac views, and using data acquired by various ultrasound 

vendors can also be considered for a comprehensive examination of the deep learning 

models in echocardiography. 
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