Skip to main content

Function Interpolation for Learned Index Structures

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12008))

Abstract

Range indexes such as B-trees are widely recognised as effective data structures for enabling fast retrieval of records by the query key. While such classical indexes offer optimal worst-case guarantees, recent research suggests that average-case performance might be improved by alternative machine learning-based models such as deep neural networks. This paper explores an alternative approach by modelling the task as one of function approximation via interpolation between compressed subsets of keys. We explore the Chebyshev and Bernstein polynomial bases, and demonstrate substantial benefits over deep neural networks. In particular, our proposed function interpolation models exhibit memory footprint two orders of magnitude smaller compared to neural network models, and 30–40% accuracy improvement over neural networks trained with the same amount of time, while keeping query time generally on-par with neural network models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is sufficient but not necessary to prohibit insertions/deletions as done in [16].

References

  1. Aldà, F., Rubinstein, B.I.P.: The Bernstein mechanism: function release under differential privacy. In: AAAI, pp. 1705–1711 (2017)

    Google Scholar 

  2. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices. In: SIGFIDET, pp. 107–141 (1970)

    Google Scholar 

  3. Boyd, J.P., Ong, J.R.: Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, part I: single-interval schemes. Commun. Comput. Phys. 5(2–4), 484–497 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Brisebarre, N., Joldeş, M.: Chebyshev interpolation polynomial-based tools for rigorous computing. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp. 147–154. ACM (2010)

    Google Scholar 

  5. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  6. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a Matlab-like environment for machine learning. In: BigLearn NIPS Workshop (2011)

    Google Scholar 

  7. Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: Fiting-tree: a data-aware index structure. In: SIGMOD, pp. 1189–1206 (2019)

    Google Scholar 

  8. Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: UAI, pp. 148–155 (1998)

    Google Scholar 

  9. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  10. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In: ICDE (1998)

    Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  12. Graefe, G., Larson, P.A.: B-tree indexes and CPU caches. In: ICDE, pp. 349–358 (2001)

    Google Scholar 

  13. Hadian, A., Heinis, T.: Interpolation-friendly B-trees: bridging the gap between algorithmic and learned indexes. In: EDBT, pp. 710–713 (2019)

    Google Scholar 

  14. Idreos, S., Kersten, M.L., Manegold, S.: Database cracking. In: CIDR, pp. 68–78 (2007)

    Google Scholar 

  15. Kim, C., et al.: Fast: fast architecture sensitive tree search on modern CPUs and GPUs. In: SIGMOD, pp. 339–350 (2010)

    Google Scholar 

  16. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: SIGMOD (2018)

    Google Scholar 

  17. Kubica, J.M., Moore, A., Connolly, A.J., Jedicke, R.: Spatial data structures for efficient trajectory-based queries. Technical report, CMU-RI-TR-04-61, Carnegie Mellon University (2004)

    Google Scholar 

  18. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: artful indexing for main-memory databases. In: ICDE, pp. 38–49 (2013)

    Google Scholar 

  19. Microsoft: Hardware and software requirements for installing SQL server

    Google Scholar 

  20. Mitzenmacher, M.: A model for learned bloom filters, and optimizing by sandwiching. In: NIPS, pp. 462–471 (2018)

    Chapter  Google Scholar 

  21. Rao, J., Ross, K.A.: Making b+-trees cache conscious in main memory. In: SIGMOD, pp. 475–486 (2000)

    Article  Google Scholar 

  22. Schonfelder, J.: Chebyshev expansions for the error and related functions. Math. Comput. 32(144), 1232–1240 (1978)

    Article  MathSciNet  Google Scholar 

  23. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  24. Stonebraker, M.: The case for partial indexes. SIGMOD Rec. 18(4), 4–11 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naufal Fikri Setiawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Setiawan, N.F., Rubinstein, B.I.P., Borovica-Gajic, R. (2020). Function Interpolation for Learned Index Structures. In: Borovica-Gajic, R., Qi, J., Wang, W. (eds) Databases Theory and Applications. ADC 2020. Lecture Notes in Computer Science(), vol 12008. Springer, Cham. https://doi.org/10.1007/978-3-030-39469-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39469-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39468-4

  • Online ISBN: 978-3-030-39469-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics