
ar
X

iv
:1

90
5.

08
59

2v
1 

 [
cs

.D
S]

  2
1 

M
ay

 2
01

9

Approximation results for makespan minimization with

budgeted uncertainty ⋆

Marin Bougeret2, Klaus Jansen1, Michael Poss2, and Lars Rohwedder1

1Department of Computer Science, Kiel University, 24098 Kiel, Germany
2LIRMM, University of Montpellier, CNRS, France

{marin.bougeret,michael.poss}@lirmm.fr
{kj,lro}@informatik.uni-kiel.de

Abstract. We study approximation algorithms for the problem of minimizing the makespan
on a set of machines with uncertainty on the processing times of jobs. In the model we
consider, which goes back to [3], once the schedule is defined an adversary can pick a
scenario where deviation is added to some of the jobs’ processing times. Given only the
maximal cardinality of these jobs, and the magnitude of potential deviation for each job,
the goal is to optimize the worst-case scenario. We consider both the cases of identical and
unrelated machines. Our main result is an EPTAS for the case of identical machines. We
also provide a 3-approximation algorithm and an inapproximability ratio of 2 − ǫ for the
case of unrelated machines.
Keywords: Makespan minimization, robust optimization, approximation algorithms, EP-
TAS, parallel machines, unrelated machines

1 Introduction

Classical optimization models suppose perfect information over all parameters. This
can lead to optimal solutions having poor performance when the actual parameters
deviate, even by a small amount, from the predictions used in the optimization model.
Different frameworks have been proposed to overcome this issue, among which Robust
Optimization which tackles the uncertainty by providing a set of possible values for these
parameters, and considering the worst outcome over that set. In this paper, we consider
the problem of scheduling a set of jobs J on the set of machines M , so as to minimize
the makespan, and considering that the processing times are uncertain. What is more,
we consider the budgeted uncertainty model introduced by [3] where each processing
time varies between its nominal value and the latter plus some deviation. Further, in
any scenario, at most Γ of the uncertain parameters take the higher values, the other
being at their nominal values.

Let us now formally define the Robust Scheduling on Unrelated Machines (R|UΓ |Cmax)
problem. For any job j ∈ J and machine i ∈M , we denote by pij ≥ 0 the nominal pro-
cessing time of j on i, and by p̂ij ≥ 0 the (potential) deviation of j on i. A schedule σ
is a function from J → M . We write σi for the subset of jobs scheduled on machine i.
Let UΓ = {ξ ∈ {0, 1}|J | : ‖ξ‖1 ≤ Γ} be the set of all possible scenarios where at most Γ

⋆ This work was partially supported by DFG Project, “Robuste Online-Algorithmen für Scheduling-und
Packungsprobleme”, JA 612/19-1, and ANR project ROBUST (ANR-16-CE40-0018).

http://arxiv.org/abs/1905.08592v1


jobs deviate. For any ξ ∈ UΓ , we set pξij = pij + ξj p̂ij to be the actual processing time of
j on i in scenario ξ.

Let us now formalize some common terms, but with dependence on scenario ξ.
The load of machine i in scenario ξ is calculated as

∑

j∈σi
pξij. The makespan in sce-

nario ξ is the maximum load in scenario ξ, i.e., Cξ
max(σ) = maxi∈M

∑

j∈σi
pξij. Finally,

CΓ
max(σ) = maxξ∈UΓ Cξ

max(σ) denotes the objective function we consider in Robust

Scheduling, where the adversary takes the worst scenario among UΓ .

Next, we will state important observations about the objective function. We first
need to introduce the following notations. Given a set of jobs Xi scheduled on machine
i, we define p(Xi) =

∑

j∈Xi
pij , p̂(Xi) =

∑

j∈Xi
p̂ij, Γ (Xi) as the set of the Γ jobs of Xi

with the largest p̂ij values (or Γ (Xi) = σi when |Xi| < Γ ) with ties broken arbitrarily.
Finally, set p̂Γ (Xi) = p̂(Γ (Xi)).

By definition we have CΓ (σ) = maxξ∈UΓ maxi∈M
∑

j∈σi
Cξ(σ), and thus we can

rewrite CΓ (σ) = maxi∈M maxξ∈UΓ

∑

j∈σi
Cξ(σ) = maxi∈M CΓ (σi), where CΓ (σi) =

maxξ∈UΓ

∑

j∈σi
Cξ(σ) is the worst-case makespan on machine i. The benefit of rewriting

CΓ (σ) in this form is that it is now clear that CΓ (σi) = p(σi) + p̂Γ (σi) as the worst
scenario ξ for a fixed σi is obtained by picking the Γ jobs with highest p̂ij and make
them deviate. Thus, R|UΓ |Cmax can also be thought as a “classical” scheduling problem
(without adversary) where the makespan on a machine CΓ (σi) is simply the sum of all
the nominal processing time of jobs of σi, plus only the Γ largest deviating values of
jobs of σi. We are now ready to define R|UΓ |Cmax.

Problem 1. Robust Scheduling on Unrelated Machines (R|UΓ |Cmax)

– Input: (J,M, p ∈ Q
|M |×|J |
+ , p̂ ∈ Q

|M |×|J |
+ ) where J is the set of jobs, M the set

of machines, p are the vectors of nominal processing times, and p̂ the vectors of
deviation

– Output: find a schedule σ : J →M

– Objective function: min CΓ (σ) = maxξ∈UΓ maxi∈M
∑

j∈σi
[pij+ξj p̂ij ] = maxi∈M CΓ (σi),

where CΓ (σi) = p(σi) + p̂Γ (σi).

Following the classical three field notation, we denote by R|UΓ |Cmax the previous
problem. Notice that when all p̂ij = 0 the problem corresponds to the classical R||Cmax,
for which we denote by C(σi) =

∑

j∈σi
pij the makespan on machine i. We are also

interested in simplifications of the above problem. The first one is Robust Scheduling
on Uniform Machines (Q|UΓ |Cmax) where each machine has a speed si, each job

has two processing times (pj and p̂j), and we have pij =
pj
si

and p̂ij =
p̂j
si
. The other

simplification is Robust Scheduling on Identical Machines (P |UΓ |Cmax) where
si = 1 for any machine i.

Robust scheduling has been considered in the past, mostly for finite uncertainty sets
without particular structure, see for instance [1,6,9,10,12]. More recently, [5,13,2] consid-
ered robust packing and scheduling with the budgeted uncertainty model UΓ from [4].
Specifically, [5] (with authors in common) provided a 3-approximation algorithm and a



(1+ǫ)-approximation (PTAS) for P |UΓ |Cmax but only for a constant Γ , as well as a ran-
domized approximation algorithm for R|UΓ |Cmax having an average ratio of O(log(m)).
They also considered problem 1|UΓ |

∑

j wjCmax, proving that the problem is NP-hard
in the strong sense, and providing a polynomial-time algorithm when wj = 1 for j ∈ J .
Authors of [13] considered the robust one-machine problem for four commonly-used
objective criteria: (weighted) total completion time, maximum lateness/tardiness, and
number of late jobs. They showed that some of these problems are polynomially solvable
and provide mixed-integer programming formulations for others. Their results consid-
ered UΓ as well as two closely related uncertainty sets. Paper [2] (with also authors in
common) considers robust bin-packing problem for UΓ and one of the uncertainty sets
considered by [13], and provided constant-factor approximations algorithms for the two
problems.

In this paper we improve the results of [5] for P |UΓ |Cmax and R|UΓ |Cmax. In Section 2
we show that any c-approximation for the classical R||Cmax problem leads to a (c+ 1)-
approximation for R|UΓ |Cmax, hence obtaining a 3-approximation algorithm for the
latter problem, and a (2 + ǫ)-approximation for Q|UΓ |Cmax. We point out that this
result improves the ad-hoc 3-approximation of [5] for P |UΓ |Cmax, while having a simpler
proof. In Section 3, we show through a reduction from the Restricted Assignment
Problem that there exists no (2 − ǫ)-approximation algorithm for R|UΓ |Cmax unless
P = NP. In Section 4 we consider the P |UΓ |Cmax problem and present the first step
our main result, namely a PTAS which is valid even when Γ is part of the input, i.e., not
constant. Having Γ in the input (and not constant) requires a totally different technique
from the one used in [5]. The algorithm is turned into an EPTAS in Section 5, i.e., a
PTAS where the dependency of ǫ is not in the exponent of the encoding length.

2 A 3-approximation for unrelated machines

Theorem 1. Any polynomial c-approximation for R||Cmax implies a polynomial (c+1)-
approximation for R|UΓ |Cmax.

Proof (Proof of Theorem 1). We design a dual approximation, i.e., given an instance I of
R|UΓ |Cmax and an threshold T , we either give a schedule σ of I with CΓ (σ) ≤ (c+1)T ,
or prove that T < OPT(I). Using a binary search on T this will imply a (c + 1)-
approximation algorithm.

For that, given an instance I = (J,M, p, p̂) of R|UΓ |Cmax, and T the current thresh-
old, our objective is to define an instance I ′ = (J,M, p) of the classical R||Cmax problem.
The transformation of a solution for I ′ to a solution for I will be straightforward since
the jobs and machines will be the same.

Given a machine i, let Bi = {j|p̂ij >
T
Γ } and Si = J \Bi. Define

pij :=

{

pij + p̂ij if j ∈ Bi

pij otherwise.
(1)



Let us now prove that (1) if OPT(I ′) > T then we have OPT(I) > T , and (2)
every schedule σ with makespan CI′(σ) in I ′ has a makespan at most CI′(σ) + T in I
(CΓ (σ) ≤ CI′(σ) + T ).

For (1), we prove that OPT(I) ≤ T implies that OPT(I ′) ≤ T . Let σ be an optimal
solution of I and i a machine. CΓ (σ) ≤ T implies that CΓ (σi) ≤ T for any i, and
thus that p(σi) + p̂Γ (σi) ≤ T . Now, observe that Bi ⊆ Γ (σi). Indeed, assume towards
contradiction that there exists j ∈ Bi \ Γ (σi). This implies that |Γ (σi)| = Γ . As by
definition, any j′ ∈ Γ (σi) has p̂ij′ ≥ p̂ij > T

Γ , we get that p̂Γ (σi) > T , a contradiction.

This implies CI′(σi) = p(σi) + p̂(Bi) ≤ p(σi) + p̂Γ (σi) ≤ T .
For (2), let σ be a solution of I ′. Let i ∈ M . Observe that p̂(Γ (σi)) ≤ p̂(Bi) + T as

Γ (σi) contains at most Γ jobs in σi \Bi, and these jobs have p̂ij ≤
T
Γ . Thus, CΓ (σi) =

p(σi) + p̂Γ (σi) ≤ p(σi) + p̂(Bi) + T = CI′(σi) + T .
Thus, given a T and I we create I ′ as above and run the c-approximation for R||Cmax

to get a solution σ. If CI′(σ) > cT then OPT(I ′) > T , implying OPT(I) > T , and thus
we reject T . Otherwise, we consider σ as a solution for I, and CΓ (σ) ≤ (c+ 1)T .

⊓⊔

Using the well-known 2-approximation algorithm from [11], we obtain immediately
the following.

Corollary 1. There is a 3-approximation for R|UΓ |Cmax.

Since by this reduction uniform machines stay uniform we also obtain the following
using the EPTAS of [7] for the classical Q||Cmax problem.

Corollary 2. For every ǫ > 0 there is a (2 + ǫ)-approximation for Q|UΓ |Cmax running
in time 2O(1/ǫ log(1/ǫ)4) + poly(n).

3 A 2 − ǫ inapproximability for unrelated machines

For the classical R||Cmax problem, when all pij ∈ {1,∞}, deciding if the optimal value
is at most 1 is polynomially solvable as it can be reduced to finding a matching in a
bipartite graph. The result below shows that answering the same question for R|UΓ |Cmax

is NP-complete.

Theorem 2. Given an instance I of R|UΓ |Cmax, it is NP-complete to decide if OPT(I) ≤
1 or OPT(I) ≥ 2, and thus for any ǫ > 0 is no (2 − ǫ)-approximation algorithm for
R|UΓ |Cmax unless P = NP, even for Γ = 1 and when each job can be scheduled on at
most 3 machines.

Proof. Let us define a reduction from 3-SAT to R|UΓ |Cmax with Γ = 1. Let I0 be an
instance of 3-SAT with clauses {Ci, i ∈ [m0]} and variables {xj , j ∈ [n0]}. Each Ci

is of the form l1i ∨ l2i ∨ l3i where lki ∈ {xj , x̄j} for some j. We define an instance I of
R|UΓ |Cmax with m = 2n0 machines and n = n0 +m0 jobs as follows. To each variable
xj we associate two machines {jf , jt}. We create a set of n0 variable jobs where for any
j ∈ [n0], pjf j = pjtj = 1, pi′j =∞ for any other i′, and p̂ij = 0 for any i ∈ [m]. For any



clause Ci, i ∈ [m0] we define Mi: the set of 3 machines corresponding to literals {lki }
satisfying Ci. For example, if C7 = x1 ∨ x̄3 ∨ x5 then M7 = {1t, 3f , 5t}. We now define
a set of m0 clause jobs as follows. For any j ∈ [n0 + 1, n0 +m0], job j represents clause
Cj−n0

with p̂ij = 1 iff i ∈Mj−n0
, p̂i′j =∞ for any other i′, and pij = 0 for any i ∈ [m].

For example, job j = n0+7 is associated to C7 where in particular p̂1tj = p̂3f j = p̂5tj = 1.
Notice that each clause job can be scheduled on at most 3 machines. Let us now verify
that I0 is satisfiable iff OPT(I) = 1.
⇒. Suppose I0 is satisfied by assignment a. For any j ∈ [n0], we schedule j on jt if

xj is set to false in a and on jf otherwise. For any j ∈ [n0 + 1, n0 + m0], we schedule
job j on any machine i ∈Mj−n0

corresponding to a literal satisfying Ci in assignment a.
Notice that in this schedule, a machine either receives exactly one variable job, implying
a makespan of 1, or only clause jobs, also implying a makespan of 1 as Γ = 1.
⇐. Suppose that OPT(I) = 1 and let us define an assignment a. This implies that

any variable job j is either scheduled on machine jf , in which case we set xj to true,
or on machine jt, in which case we set xj to false. As OPT(I) = 1, and clause job
j ∈ [n0+1, n0+m0] is scheduled on a machine i ∈Mj−n0

that did not receive a variable
job, implying that clause j − n0 is satisfied by literal i. ⊓⊔

4 A PTAS for identical machines

Note that we can assume that m < n. If m ≥ n, a trivial schedule with every job on a
different machine is optimal. In some problems the encoding length may be much smaller
than m, when m is only encoded in binary. However, here a polynomial time algorithm
is allowed to have a polynomial dependency on m.

Recall that for the P |UΓ |Cmax problem, given two n dimensional vectors p̂ and p
and the number of machine m, the objective is to create a schedule σ that minimizes
maxi∈M CΓ (σi). Recall also that CΓ (σi) = p(σi) + p̂Γ (σi), where p(σi) =

∑

j∈σi
pj, and

p̂Γ (σi) is the sum of the p̂j values of the Γ largest jobs (w.r.t. p̂j) of σi (or the sum of all
p̂j values if |σi| ≤ Γ ). To obtain a PTAS for P |UΓ |Cmax, we will reduce to the following
problem, which admits an EPTAS (see [8]).

Problem 2. Unrelated Machines with few Machine Types

– Input: n jobs and a set M of m machines with processing times pij ≥ 0 for job
j on machine i. Moreover, there is a constant k and machine types T1∪̇ · · · ∪̇Tk =
{1, . . . ,m}, such that every machine within a type behaves the same. Formally, for
every k′, every i, i′ ∈ Tk′ and every j ≤ n it holds that pij = pi′j

– Output: find a schedule σ : J →M
– Objective function: minimize makespan C(σ) = maxi∈M C(σi), where C(σi) =

∑

j∈σi
pij

Notice that the EPTAS of [8] for this problem provides an (1 + ǫ)-approximation

running in time f(|I|, ǫ, k) = 2O(k log(k) 1
ǫ
log4( 1

ǫ
)) + poly(|I|).

We also introduce the following decision problem.

Problem 3. Unrelated Machines with few Machine Types and capacities



– Input: as above, but in addition every machine i has a capacity ci ∈ (0, 1]. Moreover,
capacities are the same among a type (for any k′ ∈ [k], for any i, i′ ∈ Tk′ , ci = ci′)

– Output: decide if there is a schedule where C(σi) ≤ ci for any i.

Notice that the EPTAS for Problem 2 allows to approximately decide Problem 3 in
the following sense.

Lemma 1. There is an algorithm that for any ǫ > 0, either outputs a schedule with
C(σi) ≤ (1+ ǫ) ·ci for any i, or reject the instance, proving that there is no schedule with
C(σi) ≤ ci for any i. This algorithm runs in time f(|I|, ǫ, k) where f is the complexity
of the above EPTAS to get a (1 + ǫ)-approximation.

Proof. Let A be the EPTAS of [8] for Problem 2. Given a input I of Problem 3 we
define an input I ′ of Problem 2 in the following way. For every j ≤ n, scale pij to pij/ci.
Then, if A(I ′) ≤ (1 + ǫ), we can convert the solution found by A into a solution for I of
makespan at most (1 + ǫ) · ci for any i. Otherwise, as A is a (1 + ǫ)-approximation, it
implies that OPT(I ′) > 1, and thus that no solution can have makespan at most ci for
any i. ⊓⊔

Let us now describe the PTAS for P |UΓ |Cmax. Our objective is to provide a (1+O(ǫ))
dual approximation for P |UΓ |Cmax. The constant factor with ǫ can be ignored, since we
can divide ǫ with this constant in the preprocessing.

1. Guess the makespan and scale OPT to 1. Let I be an input of P |UΓ |Cmax, and T be
a positive value (representing the current threshold). We start by redefining I by scaling
pj :=

pj
T . Our objective is now to produce a schedule σ with CΓ (σ) ≤ 1 + ǫ, or to prove

that OPT(I) > 1.

2. Rounding deviations. Let us now define I1 (having vectors p1 and p̂1) in the following
way. For any j, if p̂j < ǫ/Γ then we set p̂1j ← 0. Intuitively, this will only result in

an error of at most Γ · ǫ/Γ on every machine. Otherwise (p̂j ≥ ǫ/Γ ), we define p̂1j by

rounding p̂j to the closest smaller value of the form ǫ/Γ · (1 + ǫ)i.

Observation 1 In I1 there are at most O(1/ǫ log(Γ/ǫ)) deviation values, and at most
O(1/ǫ log(1/ǫ)) deviation values in the interval [ǫ/Γ, 1/Γ ].

In the following, we will denote by CI′
Γ (σ) the cost of σ for instance I ′.

Observation 2 If OPT(I) ≤ 1 then OPT(I1) ≤ 1. If we get solution σ1 of I1, then
CI
Γ (σ

1) ≤ (1 + ǫ)CI1
Γ (σ1) + ǫ

It only remains now to either produce a good solution of I1 (of cost at most 1+O(ǫ)),
or prove that OPT(I1) > 1.



3. Machine thresholds. Given any solution σ of I1 such that CI1
Γ (σ) ≤ 1, we can associate

to σ an outline t = o(σ) which is defined as follows. For any machine i with more that
Γ jobs, the threshold value ti is such that any job on i with p̂j > ti deviates (belongs to
Γ (σi)) and none of the jobs with p̂j < ti deviate. Notice that among jobs with p̂j = ti,
some may deviate, but not necessarily all. For any machine i with at most Γ jobs, we
define ti = 0, implying again that any job with p̂j > ti deviates on i. Notice that in

both cases we have p̂Γ (σi) ≥ Γ · ti. Notice also that CI1
Γ (σ) ≤ 1 implies ti ≤

1
Γ . Indeed,

if we had ti >
1
Γ , there would be Γ deviating jobs with p̂j > ti, implying CI1

Γ (σi) > 1,
a contradiction. Let us denote by ∆ the set of all possible values of a ti. According to
Observation 1 we have |∆| = O(1/ǫ log(1/ǫ)). Let P = ∆m be the set of all outlines (of
solutions of cost at most 1).

Lemma 2. Consider a solution σ1∗ of I1 such that CΓ (σ
1∗) ≤ 1, and let t∗ = o(σ1∗).

Then, we can guess in mO(1/ǫ log(1/ǫ)) time the vector t∗ (or a permutation thereof).

Proof. As t∗ ∈ T , all the t∗i have a value in {0} ∪ [ ǫΓ ,
1
Γ ]. Thus, as deviating values are

rounded in I1, there are only a constant number of possible threshold value and we can
guess them. For every possible threshold, we guess how many machines in the optimal
solution have it. ⊓⊔

Thus, we can now assume that we know the vector t∗.

4. Constructing an instance with few machine types and capacities. To give an insight of
the correct reduction defined below, let us first see what happen if we define an instance
I2(t∗) of R||Cmax as follows. For simplicity, we also assume that there are no job with
p̂j = t∗i on each machine i in the previously considered optimal solution of I1. For any
machine i and job j, define the processing time in I2(t∗) as pij = pj + p̂j if p̂j ≥ t∗i , and
pij = pj otherwise. Then, consider the following implications.

1. if OPT (I1) ≤ 1, then OPT(I2(t∗)) ≤ 1

2. for any solution σ′ of I2(t∗), CI1

Γ (σ′) ≤ CI2(σ′) (implying that if there exists σ′ with

CI2(σ′) ≤ 1 + ǫ, then we will have our solution for I1 of cost 1 + ǫ)

While Property (1) holds, this is not the case for Property (2). Indeed, suppose that
in σ′ there is a machine i such that for all jobs j scheduled on i, p̂j < t∗i . This implies

that C(σi) =
∑

j∈σi
pj . However, if we look now at σ′ in I1, we get CI1

Γ (σi) = CI2(σi) +
p̂(Γ (σi)), which is greater than the claimed value. To solve this problem we have to
remember in R||Cmax that there will be a space of size at most Γ · ti which will be
occupied by deviations.

Let us now turn to the correct version.

Definition 1. For any t ∈ P, we define the following input I2(t) of Problem 3. We set
the machine capacity to

ci := 1− Γ · ti + ǫ.



The addition of ǫ is only a technicality to ensure that all ci are non-zero. Note that if
there are less than Γ jobs on i, then ti must be 0 and therefore ci = 1+ ǫ. For every job
j set

pij :=

{

pj + p̂j − ti if p̂j ≥ ti,

pj if p̂j < ti.

Note that at p̂j = ti, the values of both cases are equal. Notice also that in I2(t) there
are only |∆| different machine types.

Lemma 3. If OPT(I1) ≤ 1 and t is the outline of an optimal solution σ2, for any i,
CI2(t)(σ2

i ) ≤ ci.

Proof. Let us consider jobs σ2
i scheduled on machine i. If ti = 0, then

∑

j∈σ2

i

pij =
∑

j∈σ2

i

pj + p̂j ≤ 1 < ci.

Assume now ti > 0, implying that |Γ (σ2
i )| ≥ Γ . By choice of ti, every job j ∈ Γ (σ2

i ) has
p̂j ≥ ti and every j ∈ σ2

i \ Γ (σ2
i ) has p̂j ≤ ti. This implies

∑

j∈σ2

i

pij =
∑

j∈Γ (σ2

i )

pij +
∑

j∈σ2

i \Γ (σ2

i )

pij =
∑

j∈Γ (σ2

i )

[pj + p̂j − ti] +
∑

j∈σ2

i \Γ (σ2

i )

pj ≤ 1− Γ · ti < ci.

⊓⊔

Lemma 4. For any t ∈ P, if there is a solution σ2 of I2(t) such that CI2(t)(σ2
i ) ≤

(1 + ǫ) · ci for any i, then CI1

Γ (σ2) ≤ (1 + ǫ)2.

Proof. Let i be a machine. Then for every j ∈ σ2
i ,

pij =

{

pj + p̂j − ti ≥ pj if p̂j ≥ ti,

pj if p̂j < ti.

Furthermore, for every j ∈ Γ (σ2
i ),

pij =

{

pj + p̂j − ti if p̂j ≥ ti,

pj > pj + p̂j − ti if p̂j < ti.

This implies,

∑

j∈Γ (σ2

i )

[pj + p̂j] +
∑

j∈σ2

i \Γ (σ2

i )

pj ≤ Γ · ti +
∑

j∈Γ (σ2

i )

[pj + p̂j − ti] +
∑

j∈σ2

i \Γ (σ2

i )

pj

≤ Γ ·ti+
∑

j∈Γ (σ2

i )

pij+
∑

j∈σ2

i \Γ (σ2

i )

pij = Γ ·ti+
∑

j∈σ2

i

pij

︸ ︷︷ ︸

≤(1+ǫ)·ci

≤ Γ ·ti+(1+ǫ)·(1−Γ ·ti+ǫ) ≤ (1+ǫ)2.

⊓⊔



Theorem 3. There is a (1+ǫ)-approximation algorithm for P |UΓ |Cmax running in time
O(mO(1/ǫ log(1/ǫ)) × f(|I|, ǫ, O(1/ǫ log(1/ǫ))) where f is the function of Lemma 1.

Proof. Given I input of P |UΓ |Cmax and a threshold T , we run algorithm A of Lemma 1
on I2(t) for any t ∈ P with a precision ǫ. If A rejects all the I2(t) then we can reject T
according to Observation 2 and Lemma 3. Otherwise, there exists t0 such that A(I2(t0))
outputs a schedule σ2 where CI2(t0)(σ2) ≤ (1 + ǫ) · ci for any i, implying CI

Γ (σ
2) ≤

(1 + ǫ)CI1
Γ (σ2) + ǫ ≤ (1 + ǫ)3 + ǫ ≤ 1 + 5ǫ according to Observation 2 and Lemma 4 (for

sufficiently small ǫ). Finally, the running time is as claimed due to the bound of P in
Lemma 2. ⊓⊔

5 EPTAS for identical machines

The approach for an EPTAS is similar to the PTAS above. We would like to remove the
bottleneck from the previous section, which is the guessing the thresholds. In the PTAS
we notice that even if the thresholds were chosen incorrectly, but we find a solution
to the derived problem, we can get a good solution for the initial problem. Informally,
we will now still create an instance of Problem 3, but we only guess approximately the
number of machines for each threshold.

We start by defining I1 as in the previous section. Given any solution σ1 of I1 such
that CI1

Γ (σ1) ≤ 1, we can associate to σ a restricted outline m = o(σ) where m is defined
as follows. Let t = o(σ). For any threshold value l ∈ ∆, letml = |{i|ti = l}| be the number
of machines with threshold l in σ1. We define ml ∈ {0, 1, 2, 4, 8, . . . , 2

⌊log(m)⌋} such that
ml ≤ ml < 2ml. Let P = {m ∈ {0, 1, 2, 4, 8, . . . , 2⌊log(m)⌋}∆ such that m

2 ≤
∑

l ml ≤ m}
be the set of restricted outlines (of solutions of cost at most 1).

Lemma 5. Consider a solution σ1∗ of I1 such that CΓ (σ
1∗) ≤ 1, and let m∗ = o(σ1∗).

Then, we can guess in time 2O(1/ǫ log2(1/ǫ)) +mO(1) the vector m∗.

Proof. Clearly it suffices to iterate over all values mi ∈ {0, 1, 2, 4, 8, . . . , 2
⌊log(m)⌋}, i.e.,

O(log(m)) many. Guessing this number for every threshold value in∆ takes logO(1/ǫ log(1/ǫ))(m)
time. Consider first the case when log(m)/ log log(m) ≤ 1/ǫ log(1/ǫ). For sufficiently large
m it holds that log1/2(m) ≤ log(m)/ log log(m) ≤ 1/ǫ log(1/ǫ). Hence,

logO(1/ǫ log(1/ǫ))(m) = (log1/2(m))2·O(1/ǫ log(1/ǫ)) ≤ (1/ǫ log(1/ǫ))O(1/ǫ log(1/ǫ)) ≤ 2O(1/ǫ log2(1/ǫ)).

If on the other hand log(m)/ log log(m) ≥ 1/ǫ log(1/ǫ), then

logO(1/ǫ log(1/ǫ))(m) ≤ logO(log(m)/ log log(m))(m) = 2O(log(m)/ log log(m)·log log(m)) = mO(1).

We conclude,

logO(1/ǫ log(1/ǫ))(m) ≤ 2O(1/ǫ log2(1/ǫ)) +mO(1).

From all the guesses, we report fail whenever
∑

imi < m/2 or
∑

imi > m. ⊓⊔



For any m ∈ P , we define the following input I2(m) of Problem 3. We first create for
any l a set Ml of ml machines where for each machine i ∈ Ml the capacity and the pij
are defined as in Definition 1 for threshold ti = l. Then, we create another set M ′

l of ml

machines (that we call cloned machines) with the same capacity and the same pij values.
Let m′ =

∑
ml. Notice that the total number of machines is 2m′, with m ≤ 2m′ < 2m.

Thus, we have to ensure that not too many machines are used in total. For that purpose
we add a set of 2m′ −m dummy jobs D, where all j ∈ D have pij = ∞ on the original
machines i ∈ Ml and pij = ci on every cloned machine i ∈ M ′

l . Notice that the number
of types is now 2|∆|, which is still small enough to get an EPTAS. Let us call the
non-dummy jobs regular jobs.

Lemma 6. If OPT(I1) ≤ 1 and m is the restricted outline of an optimal solution, then
there exists a solution σ2 of I2(m) such that for any i, CI2(m)(σ2

i ) ≤ ci.

Proof. Letm∗
l = |{i|ti = l}| be the number of machines with threshold l in the considered

optimal solution of I1. Let l ∈ ∆ be a threshold value. We first schedule 2ml−m∗
l many

dummy jobs on cloned machines of M ′
l . This will cover all dummy jobs, since

∑

l

[2ml −m∗
l ] = 2

∑

l

ml −
∑

l

m∗
l = 2m′ −m.

We will now schedule all remaining jobs on the empty machines. For every threshold
value l we have 2ml − (2ml − m∗

l ) = m∗
l many empty machines. In other words, we

are left with an instance with the exact same number of machines for each threshold as
in the optimal solution and with the original jobs. As argued in Lemma 3, we get the
desired claim. ⊓⊔

Lemma 7. For any m ∈ P, if there is a solution σ2 of I2(m) such that CI2(m)(σ2
i ) ≤

ci + ǫ for any i, then we can deduce a solution σ3 for I1 with CI1
Γ (σ3) ≤ (1 + 2ǫ)2.

Proof. We will first normalize σ2. Since dummy jobs have pij = ci on cloned machines,
in a (1 + ǫ)-approximation there can only be one per machine (assuming that ǫ < 1).
Indeed, there may still be a load of ǫ · ci from other jobs on the same machine. We want
to ensure that every machine either has a dummy job or some regular load, but not both.
For every threshold value l ∈ ∆, there can be at most ml machines in M ′

l that have a
dummy job. For any such machine in M ′

l , we remove all the regular jobs (of total load of
at most ǫ ·ci) from it and move them to one of the original machines in Ml, without using
the same machine in Ml twice. Since for any i ∈Ml we had CI2(m)(σ2

i ) ≤ (1+ ǫ)ci before
moving the jobs, and since regular jobs have the same processing time on machines Ml

and M ′
l , after moving the jobs we get CI2(m)(σ2

i ) ≤ (1 + 2ǫ)ci for any i ∈ Ml. We now
have a solution violating the capacities by at most 2ǫ · ci such that a machine with a
dummy job has no other jobs.

We now forget about all dummy jobs and the machines they are on. What we are
left with is a set of m machines (with some thresholds t) such that for any i we have
CI2(m)(σ2

i ) ≤ (1 + 2ǫ)ci. By Lemma 4 we get the desired result. ⊓⊔



All in all, we were able to reduce the number of instances created to only 2O(1/ǫ log2(1/ǫ))+
mO(1) many and removed the bottleneck from the PTAS this way. As in Theorem 3, given
an instance of P |UΓ |Cmax we will use the algorithm of Lemma 1 on I2(m) for any m ∈ P.
This leads to the following result.

Theorem 4. There is a (1+ǫ)-approximation algorithm for P |UΓ |Cmax running in time

O(2O(1/ǫ log2(1/ǫ))+mO(1))×f(|I|, ǫ, O(1/ǫ log(1/ǫ))) where f is the function of Lemma 1.

References

1. M. A. Aloulou and F. D. Croce. Complexity of single machine scheduling problems under scenario-
based uncertainty. Operations Research Letters, 36(3):338 – 342, 2008.

2. A. Basu Roy, M. Bougeret, N. Goldberg, and M. Poss. Approximating robust bin-packing with
budgeted uncertainty. In Algorithms and Data Structures Symposium (WADS) 2019, August 5-7,
2019, Edmonton, Canada, 2019.

3. D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Math. Program., 98(1-
3):49–71, 2003.

4. D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.
5. M. Bougeret, A. A. Pessoa, and M. Poss. Robust scheduling with budgeted uncertainty. Discrete

Applied Mathematics, 261:93–107, 2019.
6. R. L. Daniels and P. Kouvelis. Robust scheduling to hedge against processing time uncertainty in

single-stage production. Management Science, 41(2):pp. 363–376, 1995.
7. K. Jansen, K. Klein, and J. Verschae. Closing the gap for makespan scheduling via sparsification

techniques. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, pages 72:1–72:13, 2016.

8. K. Jansen and M. Maack. An eptas for scheduling on unrelated machines of few different types. In
Workshop on Algorithms and Data Structures, pages 497–508. Springer, 2017.

9. A. Kasperski, A. Kurpisz, and P. Zielinski. Approximating a two-machine flow shop scheduling
under discrete scenario uncertainty. European Journal of Operational Research, 217(1):36–43, 2012.

10. A. Kasperski, A. Kurpisz, and P. Zielinski. Parallel machine scheduling under uncertainty. In
Advances in Computational Intelligence - 14th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems, IPMU 2012, Catania, Italy, July
9-13, 2012, Proceedings, Part IV, pages 74–83, 2012.

11. J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for scheduling unrelated
parallel machines. Mathematical programming, 46(1-3):259–271, 1990.

12. M. Mastrolilli, N. Mutsanas, and O. Svensson. Approximating single machine scheduling with scenar-
ios. In Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques,
pages 153–164. Springer Berlin Heidelberg, 2008.

13. B. Tadayon and J. C. Smith. Algorithms and complexity analysis for robust single-machine schedul-
ing problems. J. Scheduling, 18(6):575–592, 2015.


	Approximation results for makespan minimization with budgeted uncertainty 

