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Abstract

The Ring Loading Problem emerged in the 1990s to model an important special case of
telecommunication networks (SONET rings) which gained attention from practitioners and
theorists alike. Given an undirected cycle on n nodes together with non-negative demands
between any pair of nodes, the Ring Loading Problem asks for an unsplittable routing of the
demands such that the maximum cumulated demand on any edge is minimized. Let L be
the value of such a solution. In the relaxed version of the problem, each demand can be
split into two parts where the first part is routed clockwise while the second part is routed
counter-clockwise. Denote with L∗ the maximum load of a minimum split routing solution.
In a landmark paper, Schrijver, Seymour and Winkler [SSW98] showed that L ≤ L∗ +1.5D,
where D is the maximum demand value. They also found (implicitly) an instance of the
Ring Loading Problem with L = L∗ + 1.01D. Recently, Skutella [Sku16] improved these
bounds by showing that L ≤ L∗ + 19

14
D, and there exists an instance with L = L∗ + 1.1D.

We contribute to this line of research by showing that L ≤ L∗ + 1.3D. We also take a first
step towards lower and upper bounds for small instances.

1 Introduction

Given an undirected cycle on n nodes together with non-negative demands between any pair of
nodes, the Ring Loading Problem asks for an unsplittable routing of the demands such that the
maximum cumulated demand on any edge is minimal. Formally, we are given a graph G = (V,E)
with nodes V = [n] := {1, . . . , n}, edges {i, i+ 1} for each i ∈ V , where we assume throughout
the paper that {n, n+ 1} := {n, 1}, and demands for each pair of nodes i < j of value di,j ≥ 0.
By a slight abuse of notation, we refer to both the demand from i to j and its value as di,j . An
unsplittable solution decides for each demand whether it should be routed clockwise, sending all
of its value along the path {i, i+ 1, . . . , j}, or counter-clockwise, sending all of its value along the
path {i, i− 1, . . . , 1, n, . . . , j}. The load of an edge, for a given solution, is the sum of all demand
values that are routed on paths that use the edge. We call the maximum load on any edge of
the ring the load of the solution. The problem is to find an unsplittable routing that minimizes
the load. We denote with L the load of such an optimal unsplittable solution. See Fig. 1 for an
example.

The problem was introduced by Cosares and Saniee [CS94] to mathematically model surviv-
able networks with respect to the emerging standard of synchronous optical networks (SONET).
The underlying structure to this technology, the SONET ring, is a set of network nodes and links
that are arranged in a cycle. In this way, even in the event of a link failure, most of the traffic
could be recovered. See [BC02, Gor02, VPD04] for further resources on technical details. To
the best of our knowledge, Cosares and Saniee [CS94] also established the name Ring Loading
Problem. They further showed via a reduction of the Partition Problem that the problem is
NP-hard and provided an algorithm that returns an unsplittable solution with load at most 2L.
Using a result from Schrijver et al. [SSW98], Khanna [Kha97] showed that there exists a PTAS,
i.e. a class of poly-time algorithms that return a solution with load at most (1 + ε)L, for each
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Figure 1: An instance of the Ring Loading Problem on 8 nodes and 4 non-zero demands with
d1,4 = d2,7 = d3,6 = d5,8 = 1 (left) together with an optimum unsplittable routing of load 2
(right).

fixed ε > 0. If all non-zero demands have the same value, Frank [Fra85] showed that the Ring
Loading Problem can be solved in polynomial time.

Although a PTAS for the Ring Loading Problem exists, there remain unsolved problems that
connect unsplittable solutions to a relaxed version of the Ring Loading Problem. To this end,
consider the Ring Loading Problem where demands are allowed to be routed splittably, i.e. a
demand can be routed partly clockwise while the remaining part is routed counter-clockwise.
The definition of the load of an edge and the load of a solution generalize naturally to the
relaxed version. We denote with L∗ the optimum load of a split solution. The relaxed version of
the Ring Loading Problem has a linear programming formulation [CS94] and can thus be solved
in polynomial time. Further effort was put into finding more efficient algorithms (see [VSKW96,
MKT97, SSW98, DLM99, MK04, Wan05]). It was also shown in [MKT97, SSW98, DLM99] that
L ≤ 2L∗, and this bound is tight ([MKT97, SSW98]).

In a landmark paper, Schrijver, Seymour and Winkler [SSW98] proved in this context that
L ≤ L∗ + 3

2D, where we denote with D := maxi<j di,j the maximum demand value. They
furthermore gave the “guarantee” that L ≤ L∗+D, which was later restated as conjecture in the
survey on multicommodity flows by Shepherd [She09]. More recently, Skutella [Sku16] improved
the upper bound by showing that L ≤ L∗ + 19

14D. He also found an instance of the Ring Loading
Problem with L = L∗ + 11

10D, disproving the long-standing conjecture by Schrijver et al. and
Shepherd. Skutella furthermore conjectured that L ≤ L∗ + 11

10D.
Interestingly, Schrijver et al. [SSW98] gave an instance of the Ring Loading Problem together

with a split routing that cannot be turned into an unsplittable routing without increasing the
load on some edge by at least 101

100D, whereas Skutella [Sku16] writes that this “does not imply a
gap strictly larger than D between the optimum values of split and unsplittable routings”. We
show in Lemma 7 that this implication does hold, and that Schrijver, Seymour and Winkler
therefore (implicitly) found a counterexample to their own conjecture.

Our contributions The following theorem is the main contribution of this work.

Theorem 1. Any split routing solution to the Ring Loading Problem can be turned into an
unsplittable routing while increasing the load on any edge by at most 13

10D. In particular, we have
L ≤ L∗ + 13

10D.

In order to prove the theorem, we first define a general framework that unifies structural
results of split routings introduced by Skutella [Sku16]. We then apply this framework in a new
way to obtain better upper bounds. This result is the first progress towards closing the remaining
additive gap since Skutella [Sku16].

As all previous lower bound examples are of relative small size, it is interesting to settle these
cases conclusively. We take a step into this direction by showing upper and lower bounds for
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small instances. The upper bounds are deduced from a mixed integer linear program that verifies
for a given instance size that no worse examples can exist. Although the lower bounds also follow
from this formulation, we provide further examples to enrich the view on instances where the
difference L−L∗ is large with respect to D. In fact, we give an infinite family of instances with
L > L∗ +D.

A summary of previous results on lower and upper bounds together with new advancements
is shown in Fig. 2 on the right vertical line, while on the left results are given with respect to
δ ∈

[

0, 12
]

that parametrizes instances of the Ring Loading Problem and indicates whether a
demand of medium size exists.

Just as Schrijver et al. [SSW98] and Skutella [Sku16] before, we mention a nice combinatorial
implication of our result. Schrijver et al. [SSW98] define β to be the infimum of all reals α such
that the following combinatorial statement holds: For all positive integers m and nonnegative
reals u1, . . . , um and v1, . . . , vm with ui + vi ≤ 1, there exist z1, . . . , zm such that for every k,
zk ∈ {vk,−uk} and

∣

∣

∣

∣

∣

k
∑

i=1

zi −
m
∑

i=k+1

zi

∣

∣

∣

∣

∣

≤ α.

Schrijver et al. [SSW98] prove that β ∈
[

101
100 ,

3
2

]

. Skutella [Sku16] reduces the size of the
interval to β ∈

[

11
10 ,

19
14

]

. As a result of our work, we obtain β ∈
[

11
10 ,

13
10

]

.

Further Related Work In the Ring Loading Problem with integer demand splitting, each
demand is allowed to be split into two integer parts which are routed in different directions along
the ring. The objective is to find an integer split routing that minimizes the load. Let L′ be
the load of an optimal integer split routing solution. Lee et al. [LC97] showed an algorithm
that returns an integer split routing solution with load at most L′ + 1. Schrijver et al. [SSW98]
found an optimal solution in pseudo-polynomial time. Vachani et al. [VSKW96] provided an
O
(

n3
)

algorithm. In [Myu01] Myung presented an algorithm with runtime O (nk) where k is
the number of non-zero demands. Wang [Wan05] proved the existence of an O (k + tS) algorithm
where tS is the time for sorting k nodes.

More recently, the weighted Ring Loading Problem was introduced where each edge has a
weight associated with it, and the weighted load of an edge is the product of its weight and the
smallest integer greater or equal than its load. In the case where demand splitting is allowed,
Nong et al. [NYL09] gave an O

(

n2k
)

algorithm. If integer demand splitting is allowed, the
authors present a pseudo-polynomial time algorithm. Later, Nong et al. [NCN10] present an
O
(

n3k
)

algorithm. If the demands have to be send unsplittably, Nong et al. [NYL09] prove the
existence of a PTAS.

In a broader context, the Ring Loading Problem is a special case of unsplittable multicom-
modity flows. We mention the case of single source unsplittable flows, as similarities between
theorems and conjectures for these problems exist (see [DGG99, Sku02, GC07, MSS07]). We
also refer to the survey of Shepherd [She09].

Outline In Section 2, we introduce some notation and provide useful results from Schrijver et
al. [SSW98] and Skutella [Sku16] that we need. We then continue in Section 3 with the proof
of Theorem 1. In Section 4, we turn our attention to upper and lower bounds for small instances.
We wrap everything up with our conclusions in Section 5.

2 Preliminaries

In this section, we introduce further notation and mention results already presented in [SSW98,
Sku16]. We start with a preprocessing step to reduce the size and complexity of an instance to
the Ring Loading Problem.
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δ0 0.1 0.2 0.3 0.4 0.5
D

1.1D

1.2D

1.3D

1.4D

1.5D

upper bounds

lower bounds
[Tab. 2][SSW98]

[SSW98]

1.01D

1.5D

[Sku16]

[Sku16]

[Sku16]

19
14D

1.1D

[Lem. 5]
1.3D

Figure 2: Summary of known results dependent on δ (left) and independent of δ (right). The
currently best bounds are due to Theorem 1 together with the lower bound in [Sku16].

Two demands di,j and dk,l are parallel if there exists a path from i to j and a path from k
to l that are edge-disjoint, otherwise they are crossing. Note that the demands di,j and di,k are
parallel.

As Theorem 1 only argues about the load increase on all edges for split routing solutions, we
can ignore and delete all demands that are routed unsplittably. The following observation shows
that we can assume that there are not too many remaining demands.

Observation 1 ([SSW98]). Given a split routing of two parallel demands d1 and d2. The routing
can be altered such that at most one demand is routed splittably, without increasing the load on
any edge.

Proof. By the definition of parallel demands, we know that there are paths Pi, i ∈ [2], connecting
the nodes of demand di, such that P1∩P2 = ∅. Let Qi = E\Pi, i ∈ [2]. Note that P1 is completely
contained in Q2 and vice versa. We denote with xi the amount of flow that demand di is routing
along Qi, i ∈ [2]. If we now decrease the demand value routed along Q1 and Q2 by min {x1, x2}
and increase the demand value routed along P1 and P2 by the same amount, the load on the
edges of P1 and P2 remain unchanged while the load on Q1 ∩Q2 decreases. Afterwards either d1
or d2 is routed unsplittably.

If we apply Observation 1 and delete afterwards all demands that are routed unsplittably, we
can concentrate on instances with pairwise crossing demands, implying in particular that every
node is end point of at most one demand. If a node is not the end point of a demand, the load
on its adjacent edges have the same value, allowing us to delete the node and merge the edges.

After this process we are left with a ring on n = 2m nodes, demands di := di,i+m > 0 for
i ∈ [m] and a split routing. We denote for all i ∈ [m] with ui > 0 the amount of flow from demand
di routed clockwise and likewise with vi > 0 the remainder of flow routed counter-clockwise. Note
that ui+vi = di, i ∈ [m]. From now on we refer to an instance with this structure as split routing
solution. An example is given in Fig. 3 on the left.

The following definition describes for a given δ ∈
[

0, 12
]

all split routing solutions without
demands of medium size (with respect to δ) and ensures the existence of a demand on the
boundary to medium demands. Formally we call these split routing solutions δ-instances:

Definition 1. Let δ ∈
[

0, 12
]

. We call a split routing solution a δ-instance, if for all i ∈
argminj∈[m]

(∣

∣

1
2D − dj

∣

∣

)

holds di ∈ {δD, (1− δ)D}.

4



1
2

3

4

5
6

7

8

9

10
7

6

7
9

99

10
9

7

7

22
1

2

2
1

3
1

1
1

1
2

3

4

5
6

7

8

9

10
+3

+
1

−
3

−
1

+1−3

−
1

+
3

+
1

−1

4

4

2

3

3

Figure 3: An example of a split routing solution on m = 5 pairwise crossing demands with u =
(2, 1, 2, 3, 1) and v = (2, 2, 1, 1, 1) together with the load on each edge (left). The corresponding
unsplittable solution for z = (v1,−u2,−u3, v4, v5) = (2,−1,−2, 1, 1) together with load changes
on every edge (right). The additive performance of z is 3.

A 1
2 -instance for example has a demand of value 1

2D, whereas a 0-instance only has demands
of value D. An important property of δ-instances is that di ∈ [0, δD] ∪ [(1− δ)D,D] for all
i ∈ [m].

Any unsplittable solution has to decide for each demand di whether ui units of flow are
rerouted to use the counter-clockwise direction, or whether vi units of flow are rerouted to use
the clockwise direction. We encode this decision using z = (z1, . . . , zm), with zi ∈ {vi,−ui} for
all i ∈ [m], where zi = vi means that we send the demand completely in clockwise direction,
whereas zi = −ui means that we completely send the demand in counter-clockwise direction.
In either case the zi values model exactly the increase of load on the clockwise edges from i to
i+m, and the decrease of load on the counter-clockwise edges. For k ∈ [m] the load on an edge
{k, k + 1} changes by

k
∑

i=1

zi −
m
∑

i=k+1

zi,

while the load on the opposite edge {k +m,k +m+ 1} changes by the negative amount. The
maximum increase of load on any edge is therefore

max
k∈[m]

∣

∣

∣

∣

∣

k
∑

i=1

zi −
m
∑

i=k+1

zi

∣

∣

∣

∣

∣

.

As described by Skutella [Sku16], we refer to this quantity as the additive performance of z.
In Fig. 3 an example of the load change and the additive performance is given.

Let x ∈ R be fixed, we define pz(k) := x +
∑k

i=1 zi, for k ∈ [m]. We refer to pz as a
pattern starting at x = pz(0) and ending at y = pz(m). We denote with a := mink∈[m] pz(k) and
b := maxk∈[m] pz(k) the minimum and maximum of pattern pz, respectively. We refer to [a, b] as
strip and say that the pattern pz lives on the strip [a, b] of width b−a. As pz(k)−pz(k−1) = zi,
when we refer to a pattern pz we also refer to the corresponding unsplittable solution. As the
choice of x might vary, multiple patterns correspond to a single unsplittable solution. A pattern
can be visualized as seen in Fig. 4.

Observation 2 ([Sku16]). Given an unsplittable solution z with corresponding pattern pz with
start point x, end point y living on a strip of [a, b], then the additive performance of pattern pz is

max
k∈[m]

∣

∣

∣

∣

∣

k
∑

i=1

zi −
m
∑

i=k+1

zi

∣

∣

∣

∣

∣

= max {2b− x− y, x+ y − 2a} . (1)
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Figure 4: An example of a pattern pz that corresponds to the split routing given in Fig. 3
with z = (2,−1,−2, 1, 1) and start point x = 2, end point y = 3, minimum value a = 1
and maximum value b = 4. The additive performance of the pattern due to Observation 2 is
max {2b− x− y, x+ y − 2a} = 3.

Proof. By the definition of pz(k) we have

k
∑

i=1

zi −
m
∑

i=k+1

zi = 2pz(k)− x− y.

The claim then follows from the fact that the maximum in |2pz(k) − x− y| is obtained at an
index k where pz(k) is either maximum or minimum.

Observation 3 ([Sku16]). Let ε > 0. Given an unsplittable solution z with corresponding pattern
pz with start point x and end point y living on a strip of [a, b], the additive performance of pattern
pz is at most b−a+ε if and only if the pattern starts at x and ends at y ∈ [yopt − ε, yopt + ε]∩[a, b]
with yopt := a+ b− x.

Proof. The claim follows from the definitions together with Observation 2.

Given a strip of width D, say [0,D]. Let x ∈ [0,D], we denote throughout with x̄ := D − x
the reflection of x across 1

2D. We can construct a pattern with start point x living on a strip
[a, b] ⊆ [0,D] by applying iteratively the following observation.

Observation 4. Let d = u + v with u, v ≥ 0. If I is an interval of size at least d and x ∈ I,
then x+ v ∈ I or x− u ∈ I (or both).

Formally, we construct the pattern pz by setting pz(0) = x for some x ∈ [0,D] and choose
zk ∈ {−ui, vi} iteratively such that pz(k) = pz(k − 1) + zi ∈ [0,D] for all k = 1, . . . ,m, which
always works by Observation 4. If this decision is not unique, we set zk such that

∣

∣

1
2D − pz(k)

∣

∣

is minimal, i.e. pz(k) is as close as possible to the middle 1
2D of the interval [0,D]. Remaining

ties are broken arbitrarily. A pattern that is constructed with respect to this procedure is called
a forward greedy pattern. For technical reasons, we call a forward greedy pattern pz proper if its
start point is far enough away from the boundary, i.e. x ∈

[

δ
4D,

(

1− δ
4

)

D
]

. This requirement is
used in Lemma 2.

We obtain a backward greedy pattern pz by applying this procedure backwards. We define
pz(m) = y, for some y ∈ [0,D], and iteratively choose pz(k−1) = pz(k)−zk, for all k = m, . . . , 1,
such that

∣

∣pz(k − 1)− 1
2D

∣

∣ is minimal. We call a backward greedy pattern proper if its end point

is far enough away from the boundary, i.e. y ∈
[

δ
4D,

(

1− δ
4

)

D
]

.
A pattern is called a (proper) greedy pattern if it is either a (proper) forward greedy pattern

or a (proper) backward greedy pattern.
Using a forward greedy pattern starting at 1

2D together with Observation 3, Schrijver et
al. [SSW98] showed that any split routing solution to the Ring Loading Problem can be turned
into an unsplittable solution while increasing the load on any edge by at most 3

2D.
Although the following structural properties of (greedy) patterns are crucial for our results,

we refer the reader for complete proofs to [Sku16].
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Definition 2 ([Sku16]). Let ε ≥ 0. Two patterns pz and pz′ are said to be ε-close if |pz(k) −
pz′(k)| ≤ ε for some k ∈ {0, 1, . . . ,m}.

The following lemma combines two ε-close patterns to a single pattern while preserving crucial
properties.

Lemma 1 ([Sku16]). Consider a fixed split routing solution. Let pz′ be a pattern with start point
x′ living on strip [a′, b′], and pz′′ a pattern with end point y′′ living on strip [a′′, b′′]. If the two
patterns are ε-close for some ε ≥ 0, then there is a pattern pz living on a sub-strip of

[

min
{

a′, a′′
}

−
1

2
ε,max

{

b′, b′′
}

+
1

2
ε

]

with start point x and end point y such that x+ y = x′ + y′′.

This lemma describes situations where δ
2D-close patterns exist.

Lemma 2 ([Sku16]). Consider three proper greedy patterns pza , pzb , pzc, all three living on sub-
strips of [0,D]. If the sorting of the patterns by their end points is not a cyclic permutation of
the sorting of their start points, then (at least) two of the three patterns are 1

2δD-close.

At the end of the section reconsider Fig. 2. Both previous and new results are shown with
respect to δ on the left and the consequences for all instances independent of δ on the right.

3 Improved Upper Bound

In this section we prove Theorem 1. We start by defining a general framework that allows us to
use Lemmas 1 and 2 in a very unified manner. The following definition is at the heart of this
framework (see Fig. 5).

Definition 3. Given a greedy pattern pza living on a sub-strip of [0,D] with start point xa and
end point ya, we call a forward greedy pattern pzb induced by pza , if it lives on a sub-strip of
[0,D] with start point xb :=

2
3 ȳa +

1
3xa. Likewise, we call a backward greedy pattern pzc induced

by pza , if it lives on a sub-strip of [0,D] with end point yc :=
2
3 x̄a +

1
3ya.

If a greedy pattern pza and its induced patterns are proper, the following lemma ensures
the existence of a pattern with an additive performance that only depends on the start and end
points of pza together with δ. It is therefore possible to pick a single pattern, check if its induced
patterns are proper, and obtain a strong bound on the additive performance.

Lemma 3. For a δ-instance with δ ∈
[

0, 12
]

, let pza be a greedy pattern living on a sub-strip of
[0,D] with start point xa and end point ya. Denote with pzb a forward greedy pattern induced by
pza and with pzc a backward greedy pattern induced by pza. If all three greedy patterns are proper,
then there exists a pattern with additive performance at most

max

{

4

3
D −

1

3
(xa + ya) +

δ

2
D,

2

3
D +

1

3
(xa + ya) +

δ

2
D

}

.

Proof. We first show that the sorting of the start points is not a cyclic permutation of the sorting
of the end points. This allows us to use Lemma 2 that guarantees the existence of two patterns
that are δ

2D-close. We then conclude the lemma by showing that if any two of the three patterns

are δ
2D-close, that there exists a pattern with the required additive performance. In Fig. 5 is an

illustration of the procedure.
By the definition of pzb as forward greedy pattern induced by pza and pzc as backward greedy

pattern induced by pza, we know that xb =
2
3 ȳa +

1
3xa and yc =

2
3 x̄a +

1
3ya. The definitions are

7
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Figure 5: An illustration of a greedy pattern pza with induced forward greedy pattern pzb and
induced backward greedy pattern pzc as defined in Definition 3.

such that the interval between xa and ȳa is divided into three equal parts by the points xb and
ȳc. A straightforward computation shows that

ȳc =
xa + xb

2
, x̄b =

ya + yc
2

, (2)

i.e. the optimal start point for pattern pzc is in the middle between xa and xb, and the optimal
end point of pxb

is in the middle between ya and yc. Because |xa − ȳa| = |x̄a − ya|, and the
symmetric definitions of xb and yc, it also holds that |xa − xb| = |ya − yc|.

For the sake of brevity we define ε := max
{

1
3D − 1

3 (xa + ya) +
δ
2D, 13 (xa + ya)−

1
3D + δ

2D
}

.
In fact, we want to show that there exists a pattern with additive performance at most D + ε.

We now show that |xa − xb| ≤ 2ε, which also implies that |ya − yc| ≤ 2ε. By definition of
xb =

2
3 ȳa +

1
3xa = 2

3D − 2
3ya +

1
3xa, we can conclude that

|xa − xb| = max {xb − xa, xa − xb} = max

{

2

3
D −

2

3
(xa + ya) ,

2

3
(xa + ya)−

2

3
D

}

≤ 2max

{

1

3
D −

1

3
(xa + ya) +

δ

2
D,

1

3
(xa + ya)−

1

3
D +

δ

2
D

}

= 2ε,

(3)

where the inequality follows from the fact that δ ≥ 0. With Eqs. (2) and (3), it follows that

|ȳc − xb| = |ȳc − xa| = |x̄b − ya| = |x̄b − yc| ≤ ε. (4)

If for the start point of pzc holds xc ∈ [ȳc − ε, ȳc + ε], we know by Observation 3 that the
additive performance of pzc is at most D + ε, from which the lemma follows. We can thus
assume that xc ∈ [0, ȳc − ε] ∪ [ȳc + ε,D]. Using Eq. (4), we can therefore conclude that either
xc ≤ ȳc − ε ≤ min {xa, xb} or max {xa, xb} ≤ ȳc + ε ≤ xc.

Equivalently, if for the end point of pzb holds yb ∈ [x̄b − ε, x̄b + ε], we know by Observation 3
that the additive performance of pzb is at most D + ε, from which the lemma follows. We can
thus assume that yb ∈ [0, x̄b − ε] ∪ [x̄b + ε,D]. Using Eq. (4), we can therefore conclude that
either yb ≤ x̄b − ε ≤ min {ya, yc} or max {ya, yc} ≤ x̄b + ε ≤ yb.

Assume first that ȳa ≤ xa (as shown in Fig. 5), then ȳa ≤ xb ≤ ȳc ≤ xa and x̄a ≤ yc ≤ x̄b ≤ ya,
which implies that either xc ≤ xb ≤ xa or xb ≤ xa ≤ xc and that either yb ≤ yc ≤ ya or
yc ≤ ya ≤ yb. In either case, the sorting of the patterns by their start points is not a cyclic
permutation of the patterns by their end points.

Assume now that xa ≤ ȳa, then xa ≤ ȳc ≤ xb ≤ ȳa and ya ≤ x̄b ≤ yc ≤ x̄a, which implies
that either xc ≤ xa ≤ xb or xa ≤ xb ≤ xc and that either yb ≤ ya ≤ yc or ya ≤ yc ≤ yb. In either
case, the sorting of the patterns by their start points is not a cyclic permutation of the patterns
by their end points.

8



As pza , pzb and pzc are proper greedy patterns, we can apply Lemma 2, ensuring the existence
of two patterns that are δ

2D-close. We conclude the proof by showing that the closeness of any
two patterns guarantees the existence of a pattern with the claimed additive performance.

i) Assume that pza and pzb are δ
2D-close. Then Lemma 1 assures the existence of a pattern

with start point x and end point y such that x + y = xb + ya = 2
3D + 1

3 (xa + ya) on a

sub-strip of
[

− δ
4D,D + δ

4D
]

. Using Observation 2, a straightforward calculation shows that
this pattern has additive performance at most

max

{

4

3
D −

1

3
(xa + ya) +

δ

2
D,

2

3
D +

1

3
(xa + ya) +

δ

2
D

}

.

ii) Assume that pza and pzc are 1
2δD-close. Then Lemma 1 assures the existence of a pattern

with start point x and end point y such that x + y = xa + yc = 2
3D + 1

3 (xa + ya) on a

sub-strip of
[

− δ
4D,D + δ

4D
]

. Using Observation 2, a straightforward calculation shows that
this pattern has additive performance at most

max

{

4

3
D −

1

3
(xa + ya) +

δ

2
D,

2

3
D +

1

3
(xa + ya) +

δ

2
D

}

.

iii) Assume that pzb and pzc are 1
2δD-close. Then Lemma 1 assures that there exists a pattern

with start point x and end point y such that x + y = xb + yc = 4
3D − 1

3 (xa + ya) on a

sub-strip of
[

− δ
4D,D + δ

4D
]

. Using Observation 2, a straightforward calculation shows that
this pattern has additive performance at most

max

{

2

3
D +

1

3
(xa + ya) +

δ

2
D,

4

3
D −

1

3
(xa + ya) +

δ

2
D

}

.

In either case, the lemma follows.

If both the start point and the end point of a greedy pattern pza are far enough away from
the boundary, the next lemma ensures that its induced patterns are proper. Note that this is a
stronger requirement on pza than being a proper greedy pattern.

Lemma 4. For a δ-instance with δ ∈
[

0, 12
]

, let pza be a greedy pattern living on a sub-strip of
[0,D] with start point xa and end point ya. Denote with pzb a forward greedy pattern induced by
pza and with pzc a backward greedy pattern induced by pza. If xa, ya ∈

[

δ
4D,

(

1− δ
4

)

D
]

, then pza,
pzb and pzc are proper.

Proof. By definition, pza is proper. For x ∈ [0,D] holds that x̄ ∈
[

δ
4D,

(

1− δ
4

)

D
]

if and only

if x ∈
[

δ
4D,

(

1− δ
4

)

D
]

. By assumption, we therefore also know that x̄a and ȳa are far enough
away from the boundary. By the definition of induced patterns, we know that xb =

2
3 ȳa +

1
3xa,

which implies in particular that min{xa, ȳa} ≤ xb ≤ max{xa, ȳa}. The start point xb of the
induced forward greedy pattern is consequently far enough away from the boundary. Using the
same argumentation for the definition of yc =

2
3 x̄a +

1
3ya, the lemma follows.

A crucial part of the proof of Theorem 1, and the main contribution of this work is the
following auxiliary lemma.

Lemma 5. For a δ-instance with δ ∈
[

0, 12
]

there exists a pattern with additive performance at

most
(

7
6 + δ

3

)

D.

9



0 1 2 m− 1 m· · ·

xa

0

D

1
2D

ya := y2a

1
2(D + dm)− vm

y1a

Figure 6: An example of the construction step in Lemma 5. If xa ≤ 1
2D, we extend the pattern

with ya = 1
2(D + dm).

Proof. We start the proof by modifying the instance such that the special demand of value either
δD or (1− δ)D is the last demand. These two cases will be treated separately. In either case,
we then use the nice structure of the newly created instance to find a greedy pattern that can
be used with Lemma 3.

Let di be the demand that minimizes
∣

∣

1
2D − di

∣

∣ over all i ∈ [m]. By the definition of a
δ-instance, we know that di ∈ {δD, (1− δ)D}.

We now rotate the instance such that the specially chosen demand di has index m, and
is thus the last demand of the instance. By a slight abuse of notation we will refer to this
newly created instance again as instance. Recall that now the demand dm has the property that
dm ∈ {δD, (1− δ)D}.

The following procedure is similar to the one described by Skutella [Sku16] when dealing with
demands of medium size. An example is depicted in Figure 6. We first delete the last demand m
to obtain a smaller instance. We define a backward greedy pattern ending at 1

2 (D + dm) − vm
and starting at some xa ∈ [0,D]. This backward greedy pattern can be extended in two possible
ways to create a pattern that includes demand m, once with end point y1a := 1

2 (D − dm) and
once with end point y2a := 1

2 (D + dm). A crucial observation is that both possible extensions
produce a valid backward greedy pattern for the original instance. Depending on the particular
start point xa, we choose in which way the pattern will be extended: If xa ≤ 1

2D, we extend the
pattern with end point y2a, otherwise we extend the pattern with y1a. For the rest of the proof,
we may assume that xa is at most 1

2D and the pattern is therefore extended with end point
ya := y2a. This assumption can be made, as the following construction is highly symmetric with
respect to y1a and y2a, in fact, all arguments remain valid if we change start and end points of
subsequent patterns by reflecting their value around 1

2D. Let pza denote the resulting backward
greedy pattern starting at xa and ending at ya.

We consider two cases, first that dm = (1− δ)D and second that dm = δD. For the sake of
brevity, we define ε := 1

6D + δ
3D. In fact, we want to find a pattern with additive performance

at most D + ε.

Case a) If dm = (1− δ)D, we can rewrite ya = 1
2 (D + dm) = D − δ

2D. The lemma follows
immediately from Observation 3 if xa ∈ [ȳa − ε, ȳa + ε]. We can therefore assume that xa falls
either into the interval

[

0, δ6D − 1
6D

]

or into the interval
[

1
6D + 5

6δD, 12D
]

. Recall the assumption

that xa is at most 1
2D. It is easy to see that δ

6D − 1
6D is negative for all δ ∈

[

0, 12
]

. It follows
that xa ∈

[

1
6D + 5

6δD, 12D
]

. Note that this interval is also empty for all δ > 2
5 , and the lemma is

trivially correct. In fact, this is exactly the argumentation used by Skutella [Sku16] in his proof
of Lemma 6.

As ya = D − δ
2D ∈

[

δ
4D,

(

1− δ
4

)

D
]

, the backward greedy pattern pza is proper. Because
1
2D ≥ xa ≥ 1

6D + 5
6δD ≥ δ

4D, it furthermore holds that xa is far enough away from the
boundary. We can thus apply Lemma 4 together with Lemma 3 and the fact that xa + ya ∈

10



[

7
6D + δ

3D, 32D − δ
2D

]

to obtain a pattern with additive performance at most

max

{

17

18
D +

7

18
δD,

7

6
D +

δ

3
D

}

=

(

7

6
+

δ

3

)

D.

Case b) If dm = δD, we can rewrite ya = 1
2 (D + dm) = 1

2D + δ
2D. The lemma follows

immediately from Observation 3 if xa ∈ [ȳa − ε, ȳa + ε]. We can therefore assume that xa falls
either into the interval

[

0, 13D − 5
6δD

]

or into the interval
[

2
3D − δ

6D, 12D
]

. Recall the assumption

that xa is at most 1
2D. It is easy to see that 2

3D − δ
6D ≥ 1

2D for all δ ∈
[

0, 12
]

. It follows that
xa ∈

[

0, 13D − 5
6δD

]

. Note that this interval is also empty for all δ > 2
5 , and the lemma is

trivially correct. We need this assumption, when arguing that we can apply Lemma 3.
As ya = 1

2D+ δ
2D ∈

[

δ
4D,

(

1− δ
4

)

D
]

, the backward greedy pattern pza is proper. As xa might
be zero, we cannot apply Lemma 4. We therefore have to argue that the induced patterns are
proper. Let pzb be a forward greedy pattern induced by pza and pzc be a backward greedy pattern
induced by pza . By definition, we have xb =

2
3 ȳa +

1
3xa and yc =

2
3 x̄a +

1
3ya. By substituting the

definitions and bounds of ya and xa, we obtain

xb =
1

3
D −

δ

3
D +

1

3
xa ≥

1

3
D −

δ

3
D ≥

δ

4
D.

The start point xb is therefore far enough away from the boundary and the pattern pzb is thus
proper. We similarly obtain

yc =
5

6
D +

δ

6
D −

2

3
xa ≤

5

6
D +

δ

6
D ≤ D −

δ

4
D,

for all δ ∈
[

0, 25
]

. As we assumed that δ ≤ 2
5 , the backward greedy pattern pzc induced by pza is

proper. We can thus apply Lemma 3 together with the fact that xa+ya ∈
[

1
2D + δ

2D, 56D − δ
3D

]

to obtain a pattern with additive performance at most

max

{

7

6
D +

δ

3
D,

17

18
D +

7

18
δD

}

=

(

7

6
+

δ

3

)

D.

In either case, the lemma follows.

An easy consequence of Lemma 5 is that there exists for any split routing solution a pattern
with additive performance at most 4

3D, which already improves upon the best known previous
result of 19

14D from Skutella [Sku16]. However, when combined with Skutellas [Sku16] result on
instances with medium demands (see Lemma 6), we obtain our main Theorem 1.

Lemma 6 ([Sku16]). For any δ-instance with δ ∈
[

0, 12
]

there exists a pattern with additive

performance at most
(

3
2 −

δ
2

)

D.

Proof of Theorem 1. Let δ ∈
[

0, 12
]

be such that the given split routing solution is a δ-instance.

If δ ≥ 2
5 , the theorem follows from Lemma 6, as

(

3
2 −

δ
2

)

D ≤ 1.3D. Otherwise, the theorem

follows from Lemma 5, as
(

7
6 +

δ
3

)

D ≤ 1.3D.

4 Bounds for Small Instances

In this section, we show lower and upper bounds for small instances of the Ring Loading Problem.
This is of interest, as strong lower bound examples seem to exist for fairly small values of
m (see Section 4.2). Therefore, dealing with these cases conclusively might lead to a deeper
understanding on the correct bounds.

The main result of this section are bounds on the maximal load increase while turning a split
routing solution into an unsplittable solution for instances of the Ring Loading Problem where
at most 7 demands are routed splittably.
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Theorem 2. Let m ≥ 2 be an integer. Any split routing solution to the Ring Loading Problem
with m split demands can be turned into an unsplittable solution without increasing the load on
any edge by more than

• (1 + ε)D, if m ≤ 6 and

•
(

19
18 + ε

)

D, if m = 7,

for ε ≤ 5×10−6. Furthermore, there are instances of the Ring Loading Problem with m pairwise
crossing demands with L = L∗ +D, for m ≤ 6, and L = L∗ + 19

18D, for m = 7.

Note that the dependency on ε is unavoidable, as our technique for the upper bounds de-
pends on solutions to large mixed integer linear programs that rely on floating point arithmetic.
However, the theorem implies that L ≤ L∗+αD for instances of the Ring Loading Problem where
an optimal split routing solution exists such that at most m demands are routed splittably, with
α = 1 + ε if m ≤ 6 and α = 19

18 + ε if m = 7.
The remainder of this section is structured as follows. In Section 4.1, we introduce the mixed

integer linear program that provides us with the upper bounds for m ≤ 7. In Section 4.2, we
provide a more detailed view on lower bounds, some of which provide the matching lower bounds
in Theorem 2. On the way, we show a lemma that turns any split routing solution into an
instance of the Ring Loading Problem while retaining the load increase. We conclude the section
by proving Theorem 2 in Section 4.3.

4.1 Mixed Integer Linear Program

We introduce a mixed integer linear program (MILP) that outputs for a given integer m a split
routing solution with m demands that cannot be turned into an unsplittable routing without
increasing the load on some edge by at least αD, for α ≥ 0 as large as possible. This gives us
the claimed upper bounds in Theorem 2.

We first introduce our notation. Let P be the set of all patterns, i.e. z ∈ P with z =
(z1, . . . , zm) corresponds to a particular choice of values zi ∈ {vi,−ui} for all i ∈ [m]. Note
that |P| = 2m. Without loss of generality we assume that D = 1, as we can otherwise scale the
instance. We furthermore assume that every pattern z ∈ P starts at xp = 0. We use the following
variables: For all i ∈ [m], we denote with ui and vi the continuous variables that correspond
to a particular split routing. For all patterns z ∈ P we refer to the maximum and minimum
values obtained by the pattern with az and bz, respectively. For this purpose we furthermore
have binary variables wmin

z,i and wmax
z,i that indicate at which position i ∈ {0, 1, . . . ,m} of pattern

z ∈ P the minimal and maximal values are. In fact, wmin
z,i = 1 if i ∈ argminj∈{0,...,m}

∑j
k=1 zj

(and equivalently for wmax
z,i ). The variables yz correspond to the end point and cz to the additive

performance of pattern z ∈ P. In order to decide where the maximum value of the additive
performance is obtained (see Observation 2) we use a binary variable wz.

Our MILP formulation is as follows:

max E

s.t. E ≤ cz, ∀z ∈ P (5a)

ui + vi ≤ 1, ∀i ∈ [m] (5b)
∑m

i=0 w
min
z,i ≥ 1, ∀z ∈ P (5c)

∑m
i=0 w

max
z,i ≥ 1, ∀z ∈ P (5d)

az ≤
∑i

j=1 zj , ∀z ∈ P,∀i ∈ {0, . . . ,m} (5e)

az +W1 ·
(

1− wmin
z,i

)

≥
∑i

j=1 zj , ∀z ∈ P,∀i ∈ {0, . . . ,m} (5f)

bz ≥
∑i

j=1 zj , ∀z ∈ P,∀i ∈ {0, . . . ,m} (5g)

12



bz −W1 ·
(

1− wmax
z,i

)

≤
∑i

j=1 zj , ∀z ∈ P,∀i ∈ {0, . . . ,m} (5h)

yz =
∑m

j=1 zj , ∀z ∈ P (5i)

cz ≥ 2bz − yz, ∀z ∈ P (5j)

cz ≥ yz − 2az, ∀z ∈ P (5k)

cz −W2wz ≤ 2bz − yz, ∀z ∈ P (5l)

cz −W2 (1− wz) ≤ yz − 2az, ∀z ∈ P (5m)

ui, vi ≥ 0, ∀i ∈ {0, . . . ,m} (5n)

wz, w
min
z,i , wmax

z,i ∈ {0, 1} , ∀z ∈ P,∀i ∈ {0, . . . ,m} (5o)

Note that the zi values are no variables but place holders for either −ui or vi variables (depending
on the particular pattern z ∈ P). The constants W1 and W2 should be large enough such
that Eqs. (5f), (5h), (5l) and (5m) are trivially satisfied if the respective binary term doesn’t
vanish. Because we assumed that D = 1, we can fix W1 = W2 = m. The basic idea is
that we compute for each pattern z ∈ P the additive performance cz (Eqs. (5c) to (5m)) and
then ensure that the auxiliary variable E is upper bounded by all of these values (Eq. (5a)).
The objective then maximizes E in order to find feasible u and v values that maximize the
minimum additive performance. More specifically, we first ensure that the split routing is feasible
(Eqs. (5b) and (5n)); secondly, we ensure that for each pattern z ∈ P the variables az, bz, yz
and cz are set to the correct values. To see this we will focus on the az values, the other
variables follow analogously. Let z ∈ P be an arbitrary but fixed pattern. We have to show that
az = mini∈{0,...,m}

∑i
j=1 zj. By Eq. (5e) we know that az ≤ mini∈{0,...,m}

∑i
j=1 zj . If we now

know that there exists an index i ∈ {0, . . . ,m} such that az ≥
∑i

j=1 zj , the claim follows. This
however is ensured by Eq. (5e) together with Eq. (5c), as there exists at least one index i such

that wmin
z,i = 1 and thus az ≥

∑i
j=1 zj −W1

(

1− wmin
z,i

)

=
∑i

j=1 zj .

This very naïve approach has many drawbacks, most prominently the massive amount of
used binary variables (overall (2m+ 1) 2m), the large number of constraints, many symmetries
with respect to the ui and vi variables and the use of big-M constraints (Eqs. (5f), (5h), (5l)
and (5m)). However, we only want to solve the MILP for small values of m.

The first issue can be improved by the following observation: Assume we are given a fixed
pattern z ∈ P with the property that there exists an index 0 < i < m such that zi = vi and
zi+1 = vi+1. Then the index i will never contribute to a maximum or a minimum of the az
and bz variables, as pz(i − 1) ≤ pz(i) ≤ pz(i + 1). It is therefore not necessary to maintain the
variables wmin

z,i and wmax
z,i . In fact, the binary variable wmin

z,i has only to be maintained if zi = −ui
and zi+1 = vi+1, and likewise wmax

z,i has only to be maintained if zi = vi and zi+1 = −ui+1, for
0 < i < m. Similar arguments hold for the border cases i ∈ {0,m}. One can think of these
restrictions as local minima and maxima for any fixed pattern. A local minima is −ui followed
by vi+1 (excluding the extreme cases), and equivalently a maxima is vi followed by −ui+1. As
all local minima and maxima are the same, independent of the specific u and v values, the global
minima and maxima (depending on the concrete realization of u and v) are obtained at one of
those spots. Consequently every pattern has instead of 2m+ 1 binary variables at most m+ 1,
as each index is associated with at most one of the variables wmin

z,i and wmax
z,i .

To break (at least some) symmetries, we added the constraints u1 ≤ ui and u1 ≤ vi for all
i ∈ [m]. To see that these inequalities are valid, consider Fig. 7. By relabelling the ring such that
an arbitrary but fixed node has label 1, while the remaining nodes are labelled consecutive in
clockwise direction, we can assume that the split demand u1 is the smallest among all other split
demands. Note that the number of constraints increased only slightly, while the search space
decreased significantly.

Implementation Details and Experiments We implemented the MILP with the reduced
number of binary variables and the symmetry breaking constraints in C++ and solved it using
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Figure 7: A different view on split routing solutions to visualize necklace symmetries. By rela-
belling the nodes such that an arbitrary node has label 1, while remaining nodes are labelled
consecutive in clockwise direction, we obtain the same instance with 6 different labels.

m add. perf. #bin. var. time memory

2− 6 1 + ε < 226 < 3 s < 350 MB
7 19

18 + ε 528 36:25 h 105.1 GB

Table 1: Additive performance bounds on instances of different sizes together with required
computing resources. The numerical error satisfies ε ≤ 5× 10−6.

gurobi [GO18]. The computations were carried out on a computer cluster with two Xeon E5-
2630 v4 CPU’s and 512GB RAM. Table 1 shows results of the experiments together with run
times, memory consumption and the number of binary variables after gurobis preprocessing. We
can see that the approach produced (almost) optimal solutions for all instances with m ≤ 7.
In particular we see that all split routing solutions of instances with m ≤ 6 can be turned into
unsplittable solutions while increasing the load on any edge by no more than (1 + ε)D. We
furthermore see that all split routing solutions with m = 7 can be turned into unsplittable
solutions while increasing the load on any edge by at most

(

19
18 + ε

)

D. As m increases, the
amount of used memory and run times are growing rapidly. Our approach is therefore incapable
to output a solution for m ≥ 8.

4.2 Lower Bound Examples

Skutella disproved in [Sku16] with a counterexample Schrijver et al.’s conjecture [SSW98] that
L ≤ L∗ +D. Particularly, Skutella found an instance of the Ring Loading Problem on 16 nodes
and 18 demands with D = 10 and δ = 2

5 , where the optimum split routing has load L∗ = 39 while
an optimum unsplittable routing has load L = L∗ +D + 1 = 50, overall providing an additive
gap of 11

10D (see Fig. 10). In this section we present further counterexamples that will extend
the view on known results. We like to highlight that despite our best efforts, we were unable to
find counterexamples that improve upon the additive gap of 11

10D given by Skutella [Sku16].
Note that in general, a split routing solution where the best additive performance is high with

respect to D does not yield a counterexample to Schrijver et al.’s conjecture, as they are not
optimum. In fact an optimum split routing for an instance with m pairwise crossing demands
splits every demand evenly. Furthermore, the increase of load on some edge by αD, for some
α ≥ 0, does not imply that any unsplittable routing increases the load on the edge with the
maximum load by αD.

However, the following lemma justifies our restriction to split routing solutions in search of
instances of the Ring Loading Problem where the difference L − L∗ is large with respect to D.
Note that this can be used in conjunction with the split routing solution of Schijver et al. [SSW98]
to provide a counterexample to their own conjecture, namely an instance of the Ring Loading
Problem with L = L∗ + 101

100D.
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Lemma 7. Let α ≥ 0. Any split routing solution that cannot be turned into an unsplittable
routing without increasing the load on some edge by at least αD can be turned into an instance
of the Ring Loading Problem with L− L∗ ≥ αD.
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(a) A split routing solution together with in-
curred edge loads.
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the loads to 59.
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(c) Subdividing edges such that short demands
are routed along their edge. The highlighted
area contains demands of value 20 > D.
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(d) Enlarged section of Fig. 8c showing the sub-
division of edges to reduce the demand value of
short demands.

Figure 8: An example how to create an instance of the Ring Loading Problem from a given split
routing, where the worst-case load increase is preserved. The split routing has m = 7 pairwise
crossing demands with D = 18 and δ = 8

18 such that any unsplittable routing increases the load
on some edge by at least D + 1 = 19.

Proof. An example of the following procedure can be found in Fig. 8 with a split routing solution
on 14 nodes and 7 non-zero demands such that any unsplittable routing increases the load on
some edge by at least 19

18D for D = 18.
Let l : E → N be the function that maps every edge to its load value with respect to the

given split routing solution. We define lmax := maxe∈E l(e) to be the maximum edge load. For
every edge {i, i + 1} of the ring, we introduce a new demand di,i+1 of value lmax − l({i, i+ 1}).
We call the edge {i, i+ 1} the edge of demand di,i+1. If all new demands at distance one are
routed unsplittably along their edge, we equalize all edge loads, as di,i+1 + l({i, i+ 1}) = lmax.
Because the load is the same on every edge, this configuration is also an optimum split routing
for the newly created instance. Figure 8b shows the made changes to the instance.
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There are two issues that can occur. First that not every unsplittable routing to this en-
hanced instance increases the edge load of an optimum split routing by the same amount as an
unsplittable solution for the initial split routing did. This cannot happen, if the newly introduced
short demands are routed along their short edge in an optimum unsplittable routing. And second
that the introduced demands have a value larger than D, which would consequently reduce the
maximum increase of edge load relative to D.

The first issue is fixed by the following technique: We subdivide every edge, adding between
every neighbouring pair of nodes i and i+1 an additional node i′. All pairwise crossing demands
remain in their current state, whereas the short demands di,i+1 are divided together with the
edge. This means we delete the demand di,i+1 and introduce two new demands di,i′ and di′,i+1

of the same value (see Fig. 8c). Note that an optimum split routing has the same structure
after the subdivision process. We now argue that any unsplittable routing can be turned into
a different unsplittable routing where all short demands are routed along their respective edge,
without increasing the load on any edge. As the node i′ is adjacent to the demands di,i′ and
di′,i+1 only, ignoring these demands ensures that the load on {i, i′} and {i′, i+ 1} is the same.
We consider two cases, first that both di,i′ and di′,i+1 are routed the long way, and second that
only one of them, say di,i′ , is routed the long way while the other demand di′,i+1 is routed on
its edge. Assume therefore that both di,i′ and di′,i+1 are routed the long way. Rerouting both
of them to use their edges decreases the load on every edge different form {i, i′} and {i′, i+ 1}
by 2di,i+1. The load on {i, i′} and {i′, i+ 1} remains the same, implying the claim. If now only
di,i′ is routed the long way, rerouting the demand decreases the load on every edge different from
{i, i′} by di,i+1, while the load on {i, i′} is now increased to match the new load of {i′, i+ 1}.
Thus showing that the maximum load did not increase. We finally relabel all nodes from 1 to
2n clockwise along the ring.

We now fix the second issue (see Fig. 8d): We assume in the following, that in an optimum
unsplittable routing the short demands are routed along the short edge (see the previous step).
Note that only newly introduced demands may have a demand value larger than D. Let dj,j+1 >
D be such a demand. We again subdivide the edge, introducing a node j′ between j and
j + 1 on the ring. For the pairwise crossing demands nothing changes. We introduce two new
demands dj,j′ = dj′,j+1 = dj,j+1 − D and update the original demand value to dj,j+1 = D.
Note that all demand values strictly decreased with respect to the original demand value dj,j+1.
It furthermore holds that the load on the edges {j, j′} and {j′, j + 1} is unchanged, if all new
demands are routed along the short paths. By the assumption, we know that this is fulfilled
for the “outer” demand dj,j+1. For the two created small demands at distance one this follows
from the same argumentation as described in the previous modification step. As the invariant is
preserved, we can repeat this process until no more demands of value greater than D remain.

Overall we obtain an instance of the Ring Loading Problem with L− L∗ ≥ αD, as the load
increase of unsplittable routings on some edge by αD guarantees the increase of load by αD on
an edge of maximum load.

Skutella [Sku16] found the split routing solution that led to the counterexample (see Fig. 10)
by brute force enumeration over instances with specific structural properties on 8 pairwise cross-
ing integer demands of value at most D = 10. We show in the remainder of this section how to
modify this split routing solution in order to obtain further counterexamples that are δ-instances
for 0 < δ ≤ 1

2 (see also Fig. 2).
Consider the split routing solution in the first row of Table 2 (see also Fig. 10 on the left).

For ε = 0, the instance corresponds to one of the split routings given by Skutella [Sku16]. By
adding ε ≥ 0 to certain split demands, the instance changes continuously such that D = 10+ 2ε
and δ = 4

D
while any unsplittable solution increases the load on some edge by at least D + 1.

To see that any unsplittable solution increase the load on some edge by at least 11+2ε, one has
to consider all of the 28 different patterns and observe that its additive performance is at least
11+2ε. In order to obtain the additive performance for a pattern, the minimum a, the maximum
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cond. D δ add. perf. Ref.

u = (4, 4, 6, 2, 7, 1, 7, 2) +

(ε, ε, ε, 0, ε, ε, ε, 0) ε ≥ 0 10 + 2ε
4

D
D + 1 =

(

1 +
δ

4

)

D Fig. 10
v = (6, 4, 4, 2, 3, 7, 3, 2) +

(ε, ε, ε, 0, ε, ε, ε, 0)

u = (4, 4, 6, 2, 7, 1, 7, 2) +

(ε, ε, ε, ε, ε, ε, ε, ε) ε ∈ [0, 1] 10 + 2ε
4 + 2ε

D
D + 1 =

(

7

6
−

δ

6

)

D Fig. 10
v = (6, 4, 4, 2, 3, 7, 3, 2) +

(ε, ε, ε, ε, ε, ε, ε, ε)

u = (7, 11, 6, 10, 6, 8, 5)
– 18 8/18 D + 1 = 19 Fig. 8

v = (11, 3, 12, 2, 2, 10, 5)

Table 2: Lower bound examples and their properties; addition of vectors is component-wise.

b and the end point y with respect to ε has to be calculated and the maximum in Observation 2
computed. One problem that occurs, is that the minimum and maximum values considered
throughout might not be unique, as the dependence on ε might change the results. The example
in Fig. 9 illustrates this issue; the minimum a for this pattern varies for different values of ε.
The minimum is therefore either −4 − ε or −5. In this particular case however, the additive
performance of the pattern is either way at least 11 + 2ε, as

max {2b− y, y − 2a} =

{

max {11 + 2ε, 7} , if a = −5 and

max {11 + 2ε, 5 + 2ε} , if a = −4− ε,

which is exactly 11 + 2ε. A thorough analysis of the remaining cases reveals that the additive
performance of all patterns is at least 11 + 2ε.

For the second split routing solution given in the second row of Table 2 (see also Fig. 10 on
the right) a similar approach can be used to show that the additive performance of all patterns
is at least 11 + 2ε, where we need the fact that ε ∈ [0, 1].

pz(k) = 0 −4− ε 0 4 + ε 2 + ε −5 2 + ε −5 −3

−u1 +v2 +v3 −u4 −u5 +v6 −u7 +v8

ε
=

0

1 2 3 4 5 6 7 8 k
0

ε
=

2

1 2 3 4 5 6 7 8 k
0

Figure 9: A pattern for the unsplittable solution z = (−u1, v2, v3,−u4,−u5, v6,−u7, v8) of the
split routing solution in the first row of Table 2 with ε = 0 (top) and ε = 2 (bottom). The
minima of the two variations (highlighted circles) are different.
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Figure 10: Two examples of split routings with 8 pairwise crossing demands and D = 10+2ε such
that any unsplittable routing increases the load on some edge by at least D+1 = 11+2ε, for ε ≥ 0
(left) and ε ∈ [0, 1] (right). The instances coincide with the split routing from Skutella [Sku16]
for ε = 0.
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Figure 11: Three split routing solutions with m pairwise crossing demands of value D.

4.3 Proof of Theorem 2

With Sections 4.1 and 4.2 at hand, we can turn our attention to the proof of Theorem 2.

Proof of Theorem 2. We see in Table 1 that any split routing solution with m ≤ 6 can be turned
into an usplittable solution while increasing the load on any edge by no more than (1 + ε)D
(after rescaling by D). For m = 7 the worst-case increase of load is

(

19
18 + ε

)

D. Thus the upper
bounds follow. The lower bounds can be produced with Lemma 7 together with the found split
routing solutions given in Figs. 8 and 11a to 11c. The remaining even cases follow with the same
type of instance as Fig. 11c.

5 Conclusions

We showed that any split routing solution to the Ring Loading Problem can be turned into an
unsplittable solution while increasing the load on any edge by at most 13

10D. We furthermore
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showed that split routing solutions with at most 7 pairwise crossing demands cannot yield lower
bounds with additive performance worse than

(

19
18 + ε

)

D, for a small ε. On the way, we also
proved that any split routing solution with large additive performance can be turned into an
instance of the Ring Loading Problem while maintaining the load increase. We also gave a
broader view on instances where the difference L− L∗ is large with respect to D.

The obvious open problem is the correct value of additive load increase. Skutella [Sku16]
conjectured that L ≤ L∗ + 11

10D, which is matched by the currently best lower bound instance.
After spending numerous hours on finding a stronger lower bound, unfortunately without any
success, we are tempted to believe that this conjecture might be true. In any case, we highly
doubt that the current best upper bound is the definitive answer.
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